TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)"

Transcripción

1 TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

2 NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión lineal con dos variables y Regresión lineal múltiple. - El objetivo es recopilar los conceptos aprendidos durante el primer semestre para repasar de forma ordenada la asignatura de forma que podamos ir relacionando de forma lógica los nuevos temas que veremos durante el segundo semestre. - Estas notas dan una visión general de toda la asignatura ya que representan el esquema lógico del pensamiento en econometría. - Entender los contenidos de este tema y dominarlos con soltura es condición necesaria (pero no suficiente) para superar la asignatura y abordar el resto del temario sin dificultad.

3 0. INTRODUCCIÓN GENERAL A LOS MODELOS ECONOMÉTRICOS Un MODELO es una representación simplificada de la realidad. Los MODELOS ECONOMÉTRICOS son una clase particular de modelos que tienen por objeto cuantificar relaciones entre variables en base a unas leyes económicas que las sustenten En sentido amplio puede decirse que el análisis econométrico se ocupa de desarrollar medios a través de los cuales puedan VERIFICARSE HIPÓTESIS RELATIVAS A LOS SISTEMAS ECONÓMICOS. Instrumentos: - MATEMÁTICAS: soporte lingüístico - ESTADÍSTICA: técnicas de estimación y contraste

4 0. TIPOS DE DATOS DISPONIBLES PARA EL ANÁLISIS EMPÍRICO Datos de SECCION CRUZADA (Cross Section): diversos agentes económicos de naturaleza similar proporcionan la información referida a un mismo instante del tiempo: i= 1.n (agentes).característicos del análisis microeconómico. Datos de SERIES TEMPORALES (Time Series): proporcionan información sobre una unidad económica (país, empresa, etc.) a lo largo del tiempo: t= 1.T(periodos).Característicos del análisis macroeconómico). Datos de PANEL (Panel Data): proporcionan información sobre diversos agentes económicos a lo largo del tiempo. Son una combinación de sección cruzada y series de tiempo. Característicos del análisis microeconómico.

5 0. Modelo de relación genérico entre variables económicas Trata de explicar el comportamiento de una variable económica (Y) utilizando la información suministrada por un conjunto de K variables explicativas (X) observables y con significado económico y por una variable aleatoria (u) sin significado económico que nunca será conocida. La relación de dependencia entre Y,X viene dada por los parámetros b desconocidos y cuyo valor queremos estimar. Cuando la relación de dependencia entre Y,X sea lineal estaremos ante el MODELO LINEAL GENERAL (MLG): Datos de sección cruzada para i= 1.n

6 OBJETIVO MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Explicar el comportamiento de una variable dependiente utilizando la información proporcionada por los valores tomados de un conjunto de K variables explicativas. ESPECIFICACION FUNCIONAL Tamaño poblacional : i = 1...N (datos de corte transversal) u: Termino de error o perturbación: recoge otros posibles factores que influyen en la variable respuesta y que son desconocidos.=> Es variable aleatoria => Y es una variable aleatoria b: K + 1 Coeficientes del modelo (parámetros).denotan la magnitud del efecto parcial que cada variable explicativa (X) tiene sobre la variable respuesta.es desconocido y es lo que queremos estimar. b 0 b j j= 1 k (pendientes) 6

7 MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Tamaño poblacional : i = 1...N REPRESENTACION MATRICIAL Forma MATRICIAL COMPACTA 7

8 MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Problema que aborda Suponiendo que la relación entre la variable Y y el conjunto de variables X 1, X 2,, X k es como se ha descrito en el modelo, y que se dispone de un conjunto de N observaciones (poblacionales) para cada una de las variables, la endógena y las exógenas, Cómo pueden asignarse valores numéricos a los parámetros β 1, β 2,, β k basándonos en la información muestral?

9 MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Modelo teórico (POBLACIÓN) Tamaño POBLACIONAL : i = 1...N Modelo ESTIMADO (MUESTRA) Tamaño MUESTRAL : i = 1...n RESIDUOS Permiten modelizar el comportamiento de la perturbación aleatoria (siempre desconocida)

10 1. ETAPAS DE ELABORACION DEL MODELO ESPECIFICACION (A) ESTIMACION (B) CONTRASTACION (C) DIAGNOSIS (D) NO SI PREDICCION OTRAS APLICACIONES DE LOS MODELOS DE REGRESION 10

11 1. 1*.ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO A. ESPECIFICACION : Es de las etapas más complicadas pues la econometría no dice nada acerca de las variables explicativas a introducir => Selección de las variables relevantes (Teoría ECONOMICA) Examen del marco teórico en el contexto de aplicación Selección de la muestra de análisis Selección de la forma funcional y especificación de las relaciones de causalidad* B. ESTIMACION (Teoría de la INFERENCIA) Elección del método de estimación: examen de propiedades y posibilidades TRAS APLICACIONES DE LOS MODELOS ECONOMETRICOS Obtención de estimación de parámetros y varianza de la perturbación aleatoria. 11

12 LA CAUSALIDAD EN LOS MODELOS ECONOMÉTRICOS* X causa Y si variaciones en X provocan variaciones en Y Las relaciones de causa efecto pueden ser simultáneas o desfasadas en el tiempo. La clasificación de las variables como endógenas y exógenas debe estar fundamentada en consideraciones teóricas y conocimientos a priori sobre el fenómeno objeto de estudio Concepto de causalidad propuesto por Granger: una variable x sólo puede ser causa de y si mejora la explicación que puede tenerse de y en función de sus propios valores anteriores Hay veces que la causalidad se produce en los dos sentidos (bidireccional): necesidad de utilizar modelos multiecuacionales donde se determinan simultáneamente varias variables endógenas

13 LA CAUSALIDAD EN LOS MODELOS ECONOMÉTRICOS (cont.)* La existencia de correlación estadística entre dos variables Implica la existencia de una relación causal entre ellas? LA EXISTENCIA DE CAUSALIDAD IMPLICA LA EXISTENCIA DE CORRELACIÓN PERO NO AL REVÉS El rechazo de un variable regresora como válida en los contrastes de hipótesis Implica que no existe relación entre la variable explicativa y la explicada? EN LOS CONTRASTES ESTADÍSTICOS TIENE MÁS FUERZA EL RECHAZO QUE LA ACEPTACIÓN

14 1.1*. ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO C. CONTRASTACION (Teoría de la INFERENCIA) Análisis de signos y cuantía Análisis de bondad de los parámetros Contrastes Individuales Contrastes Conjuntos Contraste de hipótesis básicas Estructurales Relativas a la Perturbación Aleatoria D. DIAGNOSIS (VALIDACIÓN DEL MODELO) (Teoría de la INFERENCIA) Análisis a priori Análisis a posteriori TRAS APLICACIONES DE 14

15 1.1* ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO APLICACIONES DE LOS MODELOS ECONOMÉTRICOS Análisis estructural o descriptivo cuantificación de la relación que durante el periodo analizado ha existido entre las variables implicadas. El conocimiento del signo y valor de los parámetros del modelo, suministra una base importante para la comprensión del fenómeno en estudio. Predicción o establecimiento de los valores futuros, de una cierta variable que tratamos de explicar, dados unos hipotéticos valores futuros para los factores que la condicionan. Evaluación de políticas o simulación de los efectos que tienen sobre la variable a explicar, diferentes estrategias que afectan a las variables explicativas TRAS APLICACIONES DE LOS MODELOS ECONOMETRICOS 15

16 1.1* ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO REQUISITOS PREVIOS A LA ELABORACION DE LOS MODELOS ECONOMÉTRICOS Adecuada formación teórica del fenómeno objeto de estudio. Conocimiento suficientemente preciso de la realidad a describir Análisis previo de modelos econométricos similares Conocimiento a priori de las limitaciones y posibilidades de la información estadística disponible Principio de parsimonia: un modelo nunca puede llegar a ser una descripción completamente exacta de la realidad, porque para ello se tendría que desarrollar un modelo tan complejo que no sería útil en la práctica => Mejor modelo cuantas menos variables TRAS APLICACIONES DE Sólo se puede hacer un LOS buen MODELOS modelo de aquello que se conoce con suficiente ECONOMETRICOS profundidad 16

17 2. ESPECIFICACION : HIPÓTESIS BÁSICAS DEL MBRL MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) H.1. Modelo estocástico (por u) H.2. Causalidad unidireccional: X=> Y H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes El modelo verifica una serie de hipótesis (supuestos) básicas: A) ESTRUCTURALES B) Sobre la PERTURBACIÓN ALEATORIA H.9. E(u i )= 0 H.4 H.10. var (u i )= s 2 u i => HOMOCEDASTICIDAD H.11. Cov (u r,u s )=0 r s => NO AUTOCORRELACION. H.9 + H.10 + H.11= PERTURBACIONES ESFERICAS => E(uu )= s 2 u I H.12.NORMALIDAD: u N N N (0 N, s 2 u I N ) 17

18 3. ESTIMACION DEL MBRL (MCO) Métodos y criterios de estimación (Teoría de la inferencia) - Métodos de Estimación Método de ajuste a una recta (MCO) Método de máxima verosimilitud (MV) - Mínimos cuadrados ordinarios (MCO) => ajuste de una nube de puntos con el criterio de minimizar la suma de los residuos al cuadrado

19 3. ESTIMACION DEL MBRL (MCO) (cont.) CONDICIONES DE PRIMER ORDEN Sistema de k (+1) ecuaciones normales con k (+1) incógnitas:

20 3. ESTIMACION DEL MBRL (MCO) (cont.) Solo algunos ESTRUCTURALES Supuestos necesarios para OBTENER H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.8. Variables explicativas son linealmente independientes Los supuestos sobre el término de error no son necesarios para obtener Algunos de los supuestos sobre el término de error son necesarios para garantizar alguna propiedad del

21 4. PROPIEDADES DEL EN EL MBRL El MBRL verifica las 11 hipótesis ideales: 8 Estructurales (H.1 a H.8) + Perturbaciones no esféricas (H.9 a H.11) H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes P.1) LINEAL La divergencia entre el valor estimado y verdadero valor de beta puede expresarse en términos lineales. El error cometido en la estimación es exclusivamente una proporción fija W del error cometido en la especificación del modelo. Las propiedades del estimador serán una función lineal de las propiedades de la perturbación aleatoria.

22 4. PROPIEDADES DEL EN EL MBRL (cont.) H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes H.9. E(u i )= 0 H.4 P.2) INSESGADO Si calculásemos los coeficientes estimados para todo el espacio muestral (e.d. en todas las muestras posibles de la población), el valor de dichas estimaciones coincidiría en media con el verdadero valor del coeficiente poblacional (desconocido)

23 4. PROPIEDADES DEL EN EL MBRL (cont.) H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes H.9. E(u i )= 0 H.4 H.10. var (u i )= s 2 u i => HOMOCEDASTICIDAD H.11. Cov (u r,u s )=0 r s => NO AUTOCORRELACION. P.3)EFICIENTE H.9-H.11 Dado que el estimador es insesgado, la varianza mínima del estimador implica un mínimo alejamiento (error) entre el estimador y el verdadero valor del coeficiente poblacional desconocido

24 4. PROPIEDADES DEL EN EL MBRL (cont.) Teorema de Gauss-Markov: El estimador MCO de es el estimador lineal e insesgado de mínimo varianza,(elio) en el sentido de que cualquier otro estimador lineal e insesgado de tiene una varianza mayor P.2) INSESGADO P.3)EFICIENTE H.9-H.11 H.12.NORMALIDAD PERTURBACIONES P.4) DISTRIBUCIÓN DE LOS ESTIMADORES

25 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Una vez que hemos estimado nuestro modelo teórico a partir de la muestra, necesitamos medir la capacidad explicativa de la función de regresión muestral Queremos cuantificar la capacidad explicativa de las variables independientes (X) para explicar la variabilidad de la variable dependiente (Y) a partir de los valores estimados de los coeficientes del modelo Modelo TEÓRICO: i = 1...N Modelo ESTIMADO: i = 1...n RESIDUOS

26 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Suma TOTAL (ST) Es lo que se quiere explicar da idea de la dispersión de Y en la muestra) Suma EXPLICADA (SE) Fluctuación que el modelo es capaz de explicar => da idea de la dispersión de en la muestra Suma RESIDUAL (SR) Fluctuación que el modelo NO es capaz de explicar => nivel de error del modelo en su intento de explicar las fluctuaciones

27 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Si el modelo tiene TERMINO CONSTANTE: A) ESTIMADOR INSESGADO DE LA VARIANZA DEL ERROR Buscamos un estimador insesgado de var (u i ) H.12.NORMALIDAD PERTURBACIONES

28 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Si el modelo tiene TERMINO CONSTANTE: B) MEDIDAS DE BONDAD DE AJUSTE COEFICIENTE DE DETERMINACIÓN R 2 Es la fracción de la variación de la varianza muestral de Y que es explicada por X COEFICIENTE DE DETERMINACIÓN AJUSTADO en g.d.l Permite comparar modelos anidados

29 PRINCIPALES IDEAS DE ESTE TEMA 1. ETAPAS DE ELABORACION DE REGRESION LINEAL 2. ESPECIFICACION: HIPÓTESIS BÁSICAS DEL MBRL 3. ESTIMACIÓN POR MCO Y PROPIEDADES - Criterio de estimación MCO => - HIPÓTESIS BÁSICAS del MBRL => 4. ESTIMADOR INSESGADO DE LA VARIANZA DEL ERROR Y BONDAD DE AJUSTE 29

30 ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Teléfono:

Teléfono: Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

CARTA DESCRIPTIVA. Clave: ECO Créditos: 8. Conocimientos: Probabilidad y estadística. Algebra lineal. Econometría I.

CARTA DESCRIPTIVA. Clave: ECO Créditos: 8. Conocimientos: Probabilidad y estadística. Algebra lineal. Econometría I. I. Identificadores de la asignatura CARTA DESCRIPTIVA Clave: ECO121600 Créditos: 8 Materia: Econometría II Departamento: Ciencias Sociales Instituto: Ciencias Sociales Modalidad: Presencial Programa: Licenciatura

Más detalles

GRADO EN ECONOMIA SEGUNDO CURSO

GRADO EN ECONOMIA SEGUNDO CURSO GRADO EN ECONOMIA SEGUNDO CURSO Asignatura Estadística II Código 802354 Módulo Métodos cuantitativos Materia Carácter Obligatorio Presenciales 2,7 Créditos 6 No presenciales 3,3 Curso 2 Semestre 3 Estadística

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo José María Cara Carmona Adrián López Ibáñez MODELO ECONOMÉTRICO Explicación del desempleo Desarrollaremos un modelo econométrico para intentar predecir el desempleo. Trataremos los diversos problemas que

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de Documento PDF.

3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de Documento PDF. 3.1 Proyección de la Demanda. Fundación Bariloche. Noviembre de 2008. Documento PDF. 5. PROYECCIONES DE LA DEMANDA DE ENERGIA Estudio Prospectiva de la Demanda de Energía de República Dominicana Informe

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO 1: GESTIÓN DE CARTERAS TEST DE EVALUACIÓN 1 Una vez realizado el test de evaluación, cumplimenta la plantilla y envíala, por favor, antes del plazo fijado. En todas las preguntas sólo hay una respuesta

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos

4.1 CONTENIDOS PARA PRIMERO DE LA ESO. Conceptos 4.1 CONTENIDOS PARA PRIMERO DE LA ESO Conceptos I. Aritmética y álgebra. 1. Números naturales. _ Significado y uso en distintos contextos. _ El sistema de numeración decimal. 2. Operaciones con los números

Más detalles

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL.

UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. UN PROBLEMA DE OPTIMIZACIÓN CON CABRI: LA REGRESIÓN LINEAL. Benjamín R. Sarmiento Lugo. Universidad Pedagógica Nacional bsarmiento@pedagogica.edu.co Esta conferencia está basada en uno de los temas desarrollados

Más detalles

Cómo llevar a cabo un trabajo empírico

Cómo llevar a cabo un trabajo empírico Cómo llevar a cabo un trabajo empírico p. Cómo llevar a cabo un trabajo empírico Plantear una pregunta Revisar la literatura existente Recopilación de los datos Análisis econométrico Redactar los resultados

Más detalles

1. Caso no lineal: ajuste de una función potencial

1. Caso no lineal: ajuste de una función potencial 1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Elaboración de un modelo econométrico.

Elaboración de un modelo econométrico. 1 Elaboración de un modelo econométrico. Con este documento se presenta una guía que puede servir al alumno de las asignaturas de Econometría para elaborar un informe o proyecto en el que se recojan los

Más detalles

Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL. ISBN:

Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL.  ISBN: Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL www.argitalpenak.ehu.es ISBN: 978-84-9860-605-8 Prácticas para el Aprendizaje de la ECONOMETRÍA Pilar González Casimiro

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas

Contenidos mínimos Criterios de evaluación Ejemplos de preguntas Contenidos mínimos Criterios de evaluación Ejemplos de preguntas 1º ESO Números naturales, enteros y decimales: operaciones elementales. Fracciones: operaciones elementales. Potencias de exponente natural.

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

PROGRAMA DE ESTUDIOS. - Nombre de la asignatura : Taller de herramientas Estadísticas. - Pre requisitos : LCP 219 Estadística

PROGRAMA DE ESTUDIOS. - Nombre de la asignatura : Taller de herramientas Estadísticas. - Pre requisitos : LCP 219 Estadística PROGRAMA DE ESTUDIOS A. Antecedentes Generales. - Nombre de la asignatura : Taller de herramientas Estadísticas - Carácter de la asignatura (obligatoria/ electiva) : Obligatoria - Pre requisitos : LCP

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios

Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios Apellidos, nombre Chirivella González, Vicente (vchirive@eio.upv.es) Departamento Centro Estadística e Investigación Operativa

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual

2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

PATH ANALYSIS. Luis M. Carrascal Depto. Biodiversidad y Biología Evolutiva MUSEO NACIONAL DE CIENCIAS NATURALES

PATH ANALYSIS. Luis M. Carrascal Depto. Biodiversidad y Biología Evolutiva MUSEO NACIONAL DE CIENCIAS NATURALES Luis M. Carrascal Depto. Biodiversidad y Biología Evolutiva MUSEO NACIONAL DE CIENCIAS NATURALES Estructura de relaciones entre variables Matrices de correlaciones frente a modelos a priori de asociaciones

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

Datos de Panel. Guía para el uso de Eviews. Alfredo Baronio Ana Vianco

Datos de Panel. Guía para el uso de Eviews. Alfredo Baronio Ana Vianco Datos de Panel Guía para el uso de Eviews Alfredo Baronio Ana Vianco Departamento de Matemática y Estadística Facultad de Ciencias Económicas Universidad Nacional de Río Cuarto Noviembre de 2014 1 Contenido

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Matemáticas II. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas II Licenciatura en Informática IFM - 0424 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA DATOS BÁSICOS DE LA ASIGNATURA Nombre: Titulación: Centro: Tipo: Créditos: Curso: Prerrequisitos: Profesor: Dpto.: Estadística Aplicada. Licenciatura

Más detalles

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad PROGRAMACIÓN DIDÁCTICA Materia IV Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Geometría plana y figuras geométricas Créditos 3 (30 horas) Bloque II Créditos Ecuaciones y sistemas 2 (20

Más detalles

MICROECONOMÍA. EQUILIBRIO GENERAL Y ECONOMÍA DE LA INFORMACIÓN

MICROECONOMÍA. EQUILIBRIO GENERAL Y ECONOMÍA DE LA INFORMACIÓN Fernando Perera Tallo Olga María Rodríguez Rodríguez http://bit.ly/8l8ddu GUÍA DOCENTE DE LA ASIGNATURA: MICROECONOMÍA. EQUILIBRIO GENERAL Y ECONOMÍA DE LA INFORMACIÓN GRADO EN ECONOMÍA 1. Datos Descriptivos

Más detalles

1. QUÉ ES INVESTIGAR? 2. LA COMPLEJIDAD DE LA INVESTIGACIÓN CIENTÍFICA DEL TURISMO 3. EL PAPEL DE LA SOCIOLOGÍA EN LA INVESTIGACIÓN DEL TURISMO

1. QUÉ ES INVESTIGAR? 2. LA COMPLEJIDAD DE LA INVESTIGACIÓN CIENTÍFICA DEL TURISMO 3. EL PAPEL DE LA SOCIOLOGÍA EN LA INVESTIGACIÓN DEL TURISMO 1. EL PAPEL DE LA INVESTIGACIÓN CIENTÍFICA EN EL TURISMO 1. QUÉ ES INVESTIGAR? 2. LA COMPLEJIDAD DE LA INVESTIGACIÓN CIENTÍFICA DEL TURISMO 3. EL PAPEL DE LA SOCIOLOGÍA EN LA INVESTIGACIÓN DEL TURISMO

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

ELABORACIÓN DE INDICADORES ECONÓMICOS (EC-721K) Martes 7:00 pm a 10:00 pm

ELABORACIÓN DE INDICADORES ECONÓMICOS (EC-721K) Martes 7:00 pm a 10:00 pm UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Ingeniería Económica y Ciencias Sociales Escuela de Ingeniería Económica Semestre 2011-I Profesor: Mag. Renán Quispe Llanos ELABORACIÓN DE INDICADORES ECONÓMICOS

Más detalles

DIPLOMADO EN ESTADÍSTICA APLICADA

DIPLOMADO EN ESTADÍSTICA APLICADA DIPLOMADO EN ESTADÍSTICA APLICADA DIPLOMADO EN ESTADÍSTICA APLICADA FUNDAMENTACIÓN El Diplomado en Estadística Aplicada posibilitará la actualización profesional y el desarrollo de competencias específicas

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

Exactitud y Linearidad del Calibrador

Exactitud y Linearidad del Calibrador Exactitud y Linearidad del Calibrador Resumen El procedimiento Exactitud y Linearidad del Calibrador fue diseñado para estimar la exactitud del sistema de medición. En contraste con los procedimientos

Más detalles

Programa Analítico Plan de estudios Asignatura: Probabilidad y Estadística

Programa Analítico Plan de estudios Asignatura: Probabilidad y Estadística Programa Analítico Plan de estudios 2011 Asignatura: Probabilidad y Estadística CARRERA: LICENCIATURA LIC. CIENCIAS EN DE CIENCIAS LA COMPUTACIÓN-LIC. DE LA COMPUTACIÓN EN SISTEMAS DE INFORMACIÓN AÑO:

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

EXPORTACIONES ARGENTINAS: UN ESTUDIO ECONOMÉTRICO DE SUS DETERMINANTES EN RELACIÓN A PAÍSES VECINOS. X CONGRESO DE ECONOMÍA

EXPORTACIONES ARGENTINAS: UN ESTUDIO ECONOMÉTRICO DE SUS DETERMINANTES EN RELACIÓN A PAÍSES VECINOS. X CONGRESO DE ECONOMÍA EXPORTACIONES ARGENTINAS: UN ESTUDIO ECONOMÉTRICO DE SUS DETERMINANTES EN RELACIÓN A PAÍSES VECINOS. X CONGRESO DE ECONOMÍA AUTORES: DR. LE SERGIO GEVATSCHNAIDER DR. CP SERGIO GEVATSCHNAIDER DR. LA SERGIO

Más detalles

Como prerrequisitos son necesarios los conocimientos básicos de:

Como prerrequisitos son necesarios los conocimientos básicos de: Nombre de la asignatura: Mercadotecnia Créditos: 2-2 - 4 Aportación al perfil Identificar productos de alto valor agregado y contribuir a la creación de nuevas empresas basado en los principios de competitividad

Más detalles

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017.

Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Estándares de evaluación en la materia de MATEMÁTICAS de 1º de ESO. Curso 2016/2017. Bloque 1. Procesos, métodos y actitudes en matemáticas. Los criterios correspondientes a este bloque son los marcador

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Matemáticas aplicadas a las Ciencias Sociales I

Matemáticas aplicadas a las Ciencias Sociales I Matemáticas aplicadas a las Ciencias Sociales I OBJETIVOS - MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Aritmética y álgebra - Conocer y distinguir los distintos tipos de números reales. - Saber operar

Más detalles

ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE

ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE ANEXO: ESTRUCTURA DE LA GUÍA DOCENTE 1. TÉCNICAS DE INVESTIGACIÓN SOCIAL 1.1. Datos de la asignatura Tipo de estudios Titulación Nombre de la asignatura Carácter de la asignatura Licenciatura Investigación

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

Selección de fuentes de datos y calidad de datos

Selección de fuentes de datos y calidad de datos Selección de fuentes de datos y calidad de datos ESCUELA COMPLUTENSE DE VERANO 2014 MINERIA DE DATOS CON SAS E INTELIGENCIA DE NEGOCIO Juan F. Dorado José María Santiago . Valores atípicos. Valores faltantes.

Más detalles

PROGRAMA DE ESTUDIOS

PROGRAMA DE ESTUDIOS PROGRAMA DE ESTUDIOS Nombre: ESTADÍSTICA DESCRIPTIVA Carrera: Ingeniería Ambiental, Ecología y Biología Créditos: 6 Horas Teóricas a la semana: 2 Horas Prácticas a la semana: 2 PRESENTACION La necesidad

Más detalles