TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)"

Transcripción

1 TODO ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

2 NOTA IMPORTANTE - Estas notas son complementarias a las notas de clase del primer semestre correspondientes a los temas de Regresión lineal con dos variables y Regresión lineal múltiple. - El objetivo es recopilar los conceptos aprendidos durante el primer semestre para repasar de forma ordenada la asignatura de forma que podamos ir relacionando de forma lógica los nuevos temas que veremos durante el segundo semestre. - Estas notas dan una visión general de toda la asignatura ya que representan el esquema lógico del pensamiento en econometría. - Entender los contenidos de este tema y dominarlos con soltura es condición necesaria (pero no suficiente) para superar la asignatura y abordar el resto del temario sin dificultad.

3 0. INTRODUCCIÓN GENERAL A LOS MODELOS ECONOMÉTRICOS Un MODELO es una representación simplificada de la realidad. Los MODELOS ECONOMÉTRICOS son una clase particular de modelos que tienen por objeto cuantificar relaciones entre variables en base a unas leyes económicas que las sustenten En sentido amplio puede decirse que el análisis econométrico se ocupa de desarrollar medios a través de los cuales puedan VERIFICARSE HIPÓTESIS RELATIVAS A LOS SISTEMAS ECONÓMICOS. Instrumentos: - MATEMÁTICAS: soporte lingüístico - ESTADÍSTICA: técnicas de estimación y contraste

4 0. TIPOS DE DATOS DISPONIBLES PARA EL ANÁLISIS EMPÍRICO Datos de SECCION CRUZADA (Cross Section): diversos agentes económicos de naturaleza similar proporcionan la información referida a un mismo instante del tiempo: i= 1.n (agentes).característicos del análisis microeconómico. Datos de SERIES TEMPORALES (Time Series): proporcionan información sobre una unidad económica (país, empresa, etc.) a lo largo del tiempo: t= 1.T(periodos).Característicos del análisis macroeconómico). Datos de PANEL (Panel Data): proporcionan información sobre diversos agentes económicos a lo largo del tiempo. Son una combinación de sección cruzada y series de tiempo. Característicos del análisis microeconómico.

5 0. Modelo de relación genérico entre variables económicas Trata de explicar el comportamiento de una variable económica (Y) utilizando la información suministrada por un conjunto de K variables explicativas (X) observables y con significado económico y por una variable aleatoria (u) sin significado económico que nunca será conocida. La relación de dependencia entre Y,X viene dada por los parámetros b desconocidos y cuyo valor queremos estimar. Cuando la relación de dependencia entre Y,X sea lineal estaremos ante el MODELO LINEAL GENERAL (MLG): Datos de sección cruzada para i= 1.n

6 OBJETIVO MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Explicar el comportamiento de una variable dependiente utilizando la información proporcionada por los valores tomados de un conjunto de K variables explicativas. ESPECIFICACION FUNCIONAL Tamaño poblacional : i = 1...N (datos de corte transversal) u: Termino de error o perturbación: recoge otros posibles factores que influyen en la variable respuesta y que son desconocidos.=> Es variable aleatoria => Y es una variable aleatoria b: K + 1 Coeficientes del modelo (parámetros).denotan la magnitud del efecto parcial que cada variable explicativa (X) tiene sobre la variable respuesta.es desconocido y es lo que queremos estimar. b 0 b j j= 1 k (pendientes) 6

7 MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Tamaño poblacional : i = 1...N REPRESENTACION MATRICIAL Forma MATRICIAL COMPACTA 7

8 MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Problema que aborda Suponiendo que la relación entre la variable Y y el conjunto de variables X 1, X 2,, X k es como se ha descrito en el modelo, y que se dispone de un conjunto de N observaciones (poblacionales) para cada una de las variables, la endógena y las exógenas, Cómo pueden asignarse valores numéricos a los parámetros β 1, β 2,, β k basándonos en la información muestral?

9 MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) Modelo teórico (POBLACIÓN) Tamaño POBLACIONAL : i = 1...N Modelo ESTIMADO (MUESTRA) Tamaño MUESTRAL : i = 1...n RESIDUOS Permiten modelizar el comportamiento de la perturbación aleatoria (siempre desconocida)

10 1. ETAPAS DE ELABORACION DEL MODELO ESPECIFICACION (A) ESTIMACION (B) CONTRASTACION (C) DIAGNOSIS (D) NO SI PREDICCION OTRAS APLICACIONES DE LOS MODELOS DE REGRESION 10

11 1. 1*.ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO A. ESPECIFICACION : Es de las etapas más complicadas pues la econometría no dice nada acerca de las variables explicativas a introducir => Selección de las variables relevantes (Teoría ECONOMICA) Examen del marco teórico en el contexto de aplicación Selección de la muestra de análisis Selección de la forma funcional y especificación de las relaciones de causalidad* B. ESTIMACION (Teoría de la INFERENCIA) Elección del método de estimación: examen de propiedades y posibilidades TRAS APLICACIONES DE LOS MODELOS ECONOMETRICOS Obtención de estimación de parámetros y varianza de la perturbación aleatoria. 11

12 LA CAUSALIDAD EN LOS MODELOS ECONOMÉTRICOS* X causa Y si variaciones en X provocan variaciones en Y Las relaciones de causa efecto pueden ser simultáneas o desfasadas en el tiempo. La clasificación de las variables como endógenas y exógenas debe estar fundamentada en consideraciones teóricas y conocimientos a priori sobre el fenómeno objeto de estudio Concepto de causalidad propuesto por Granger: una variable x sólo puede ser causa de y si mejora la explicación que puede tenerse de y en función de sus propios valores anteriores Hay veces que la causalidad se produce en los dos sentidos (bidireccional): necesidad de utilizar modelos multiecuacionales donde se determinan simultáneamente varias variables endógenas

13 LA CAUSALIDAD EN LOS MODELOS ECONOMÉTRICOS (cont.)* La existencia de correlación estadística entre dos variables Implica la existencia de una relación causal entre ellas? LA EXISTENCIA DE CAUSALIDAD IMPLICA LA EXISTENCIA DE CORRELACIÓN PERO NO AL REVÉS El rechazo de un variable regresora como válida en los contrastes de hipótesis Implica que no existe relación entre la variable explicativa y la explicada? EN LOS CONTRASTES ESTADÍSTICOS TIENE MÁS FUERZA EL RECHAZO QUE LA ACEPTACIÓN

14 1.1*. ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO C. CONTRASTACION (Teoría de la INFERENCIA) Análisis de signos y cuantía Análisis de bondad de los parámetros Contrastes Individuales Contrastes Conjuntos Contraste de hipótesis básicas Estructurales Relativas a la Perturbación Aleatoria D. DIAGNOSIS (VALIDACIÓN DEL MODELO) (Teoría de la INFERENCIA) Análisis a priori Análisis a posteriori TRAS APLICACIONES DE 14

15 1.1* ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO APLICACIONES DE LOS MODELOS ECONOMÉTRICOS Análisis estructural o descriptivo cuantificación de la relación que durante el periodo analizado ha existido entre las variables implicadas. El conocimiento del signo y valor de los parámetros del modelo, suministra una base importante para la comprensión del fenómeno en estudio. Predicción o establecimiento de los valores futuros, de una cierta variable que tratamos de explicar, dados unos hipotéticos valores futuros para los factores que la condicionan. Evaluación de políticas o simulación de los efectos que tienen sobre la variable a explicar, diferentes estrategias que afectan a las variables explicativas TRAS APLICACIONES DE LOS MODELOS ECONOMETRICOS 15

16 1.1* ETAPAS DE ELABORACION DE UN MODELO ECONOMÉTRICO REQUISITOS PREVIOS A LA ELABORACION DE LOS MODELOS ECONOMÉTRICOS Adecuada formación teórica del fenómeno objeto de estudio. Conocimiento suficientemente preciso de la realidad a describir Análisis previo de modelos econométricos similares Conocimiento a priori de las limitaciones y posibilidades de la información estadística disponible Principio de parsimonia: un modelo nunca puede llegar a ser una descripción completamente exacta de la realidad, porque para ello se tendría que desarrollar un modelo tan complejo que no sería útil en la práctica => Mejor modelo cuantas menos variables TRAS APLICACIONES DE Sólo se puede hacer un LOS buen MODELOS modelo de aquello que se conoce con suficiente ECONOMETRICOS profundidad 16

17 2. ESPECIFICACION : HIPÓTESIS BÁSICAS DEL MBRL MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL) H.1. Modelo estocástico (por u) H.2. Causalidad unidireccional: X=> Y H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes El modelo verifica una serie de hipótesis (supuestos) básicas: A) ESTRUCTURALES B) Sobre la PERTURBACIÓN ALEATORIA H.9. E(u i )= 0 H.4 H.10. var (u i )= s 2 u i => HOMOCEDASTICIDAD H.11. Cov (u r,u s )=0 r s => NO AUTOCORRELACION. H.9 + H.10 + H.11= PERTURBACIONES ESFERICAS => E(uu )= s 2 u I H.12.NORMALIDAD: u N N N (0 N, s 2 u I N ) 17

18 3. ESTIMACION DEL MBRL (MCO) Métodos y criterios de estimación (Teoría de la inferencia) - Métodos de Estimación Método de ajuste a una recta (MCO) Método de máxima verosimilitud (MV) - Mínimos cuadrados ordinarios (MCO) => ajuste de una nube de puntos con el criterio de minimizar la suma de los residuos al cuadrado

19 3. ESTIMACION DEL MBRL (MCO) (cont.) CONDICIONES DE PRIMER ORDEN Sistema de k (+1) ecuaciones normales con k (+1) incógnitas:

20 3. ESTIMACION DEL MBRL (MCO) (cont.) Solo algunos ESTRUCTURALES Supuestos necesarios para OBTENER H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.8. Variables explicativas son linealmente independientes Los supuestos sobre el término de error no son necesarios para obtener Algunos de los supuestos sobre el término de error son necesarios para garantizar alguna propiedad del

21 4. PROPIEDADES DEL EN EL MBRL El MBRL verifica las 11 hipótesis ideales: 8 Estructurales (H.1 a H.8) + Perturbaciones no esféricas (H.9 a H.11) H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes P.1) LINEAL La divergencia entre el valor estimado y verdadero valor de beta puede expresarse en términos lineales. El error cometido en la estimación es exclusivamente una proporción fija W del error cometido en la especificación del modelo. Las propiedades del estimador serán una función lineal de las propiedades de la perturbación aleatoria.

22 4. PROPIEDADES DEL EN EL MBRL (cont.) H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes H.9. E(u i )= 0 H.4 P.2) INSESGADO Si calculásemos los coeficientes estimados para todo el espacio muestral (e.d. en todas las muestras posibles de la población), el valor de dichas estimaciones coincidiría en media con el verdadero valor del coeficiente poblacional (desconocido)

23 4. PROPIEDADES DEL EN EL MBRL (cont.) H.3. Linealidad en los coeficientes H.4. Especificación correcta H.5. Coeficientes constantes (estables en la muestra) H.6.Suficientes grados de libertad para poder estimar => n >> k+1 H.7. Variables explicativas son deterministas => Cov (X kt,u s )=0 k,s H.8. Variables explicativas son linealmente independientes H.9. E(u i )= 0 H.4 H.10. var (u i )= s 2 u i => HOMOCEDASTICIDAD H.11. Cov (u r,u s )=0 r s => NO AUTOCORRELACION. P.3)EFICIENTE H.9-H.11 Dado que el estimador es insesgado, la varianza mínima del estimador implica un mínimo alejamiento (error) entre el estimador y el verdadero valor del coeficiente poblacional desconocido

24 4. PROPIEDADES DEL EN EL MBRL (cont.) Teorema de Gauss-Markov: El estimador MCO de es el estimador lineal e insesgado de mínimo varianza,(elio) en el sentido de que cualquier otro estimador lineal e insesgado de tiene una varianza mayor P.2) INSESGADO P.3)EFICIENTE H.9-H.11 H.12.NORMALIDAD PERTURBACIONES P.4) DISTRIBUCIÓN DE LOS ESTIMADORES

25 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Una vez que hemos estimado nuestro modelo teórico a partir de la muestra, necesitamos medir la capacidad explicativa de la función de regresión muestral Queremos cuantificar la capacidad explicativa de las variables independientes (X) para explicar la variabilidad de la variable dependiente (Y) a partir de los valores estimados de los coeficientes del modelo Modelo TEÓRICO: i = 1...N Modelo ESTIMADO: i = 1...n RESIDUOS

26 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Suma TOTAL (ST) Es lo que se quiere explicar da idea de la dispersión de Y en la muestra) Suma EXPLICADA (SE) Fluctuación que el modelo es capaz de explicar => da idea de la dispersión de en la muestra Suma RESIDUAL (SR) Fluctuación que el modelo NO es capaz de explicar => nivel de error del modelo en su intento de explicar las fluctuaciones

27 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Si el modelo tiene TERMINO CONSTANTE: A) ESTIMADOR INSESGADO DE LA VARIANZA DEL ERROR Buscamos un estimador insesgado de var (u i ) H.12.NORMALIDAD PERTURBACIONES

28 5. ESTIMACIÓN INSEGADA DE LA VARIANZA DE LAS PERTURBACIONES Y BONDAD DE AJUSTE Si el modelo tiene TERMINO CONSTANTE: B) MEDIDAS DE BONDAD DE AJUSTE COEFICIENTE DE DETERMINACIÓN R 2 Es la fracción de la variación de la varianza muestral de Y que es explicada por X COEFICIENTE DE DETERMINACIÓN AJUSTADO en g.d.l Permite comparar modelos anidados

29 PRINCIPALES IDEAS DE ESTE TEMA 1. ETAPAS DE ELABORACION DE REGRESION LINEAL 2. ESPECIFICACION: HIPÓTESIS BÁSICAS DEL MBRL 3. ESTIMACIÓN POR MCO Y PROPIEDADES - Criterio de estimación MCO => - HIPÓTESIS BÁSICAS del MBRL => 4. ESTIMADOR INSESGADO DE LA VARIANZA DEL ERROR Y BONDAD DE AJUSTE 29

30 ECONOMETRIA TEMA 1: MODELO BASICO DE REGRESIÓN LINEAL MULTIPLE (MBRL)

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

La econometría : una mirada de pájaro

La econometría : una mirada de pájaro La econometría : una mirada de pájaro Contenido Objetivo Definición de Econometría Modelos determinista y estocástico Metodología de la econometría Propiedades de un modelo econométrico Supuestos de un

Más detalles

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo Carta descriptiva Datos de identificación Programa Nombre de la asignatura Tipo de Asignatura Maestría en Economía Aplicada Econometría I Ciclo Primer semestre Obligatoria Optativa Extracurricular Curso

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo

Más detalles

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

T1. Modelos econométricos

T1. Modelos econométricos T1. Modelos econométricos Rigoberto Pérez y Ana J. López Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 16 Índice 1 La modelización econométrica 2 Construcción de modelos

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

UNIVERSIDAD NACIONAL DE PIURA ESCUELA DE POSTGRADO PROGRAMA DE MAESTRÍA EN CIENCIAS ECONÓMICAS

UNIVERSIDAD NACIONAL DE PIURA ESCUELA DE POSTGRADO PROGRAMA DE MAESTRÍA EN CIENCIAS ECONÓMICAS UNIVERSIDAD NACIONAL DE PIURA ESCUELA DE POSTGRADO PROGRAMA DE MAESTRÍA EN CIENCIAS ECONÓMICAS CURSO: MÉTODOS CUANTITATIVOS TÓPICO 5: ECONOMETRÍA: MODELO DE REGRESIÓN LINEAL GENERAL Econ. SEGUNDO A. CALLE

Más detalles

(3620) ECONOMETRÍA (3620)

(3620) ECONOMETRÍA (3620) Programa de la asignatura Curso: 2013 / 2014 (3620) ECONOMETRÍA (3620) PROFESORADO Profesor/es: MARIA ISABEL LANDALUCE CALVO - correo-e: iland@ubu.es FICHA TÉCNICA Titulación: LICENCIATURA EN ADMINISTRACIÓN

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

El Modelo de Regresión Lineal

El Modelo de Regresión Lineal ECONOMETRÍA I El Modelo de Regresión Lineal Dante A. Urbina CONTENIDOS 1. Regresión Lineal Simple 2. Regresión Lineal Múltiple 3. Multicolinealidad 4. Heterocedasticidad 5. Autocorrelación 6. Variables

Más detalles

Estadística para la Economía y la Gestión IN 3401

Estadística para la Economía y la Gestión IN 3401 Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1

Lectura No. 7. Contextualización. Nombre: Métodos de Análisis ANÁLISIS FINANCIERO 1 Análisis financiero ANÁLISIS FINANCIERO 1 Lectura No. 7 Nombre: Métodos de Análisis Contextualización Los diferentes métodos de análisis que se pueden utilizar para evaluar y, en su defecto, emitir un

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

TEMA 5: Especificación y Predicción en el MRL

TEMA 5: Especificación y Predicción en el MRL EMA 5: Especificación y Predicción en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) ema 5: Especificación y Predicción Curso

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

El Modelo de Regresión Lineal General Estimación

El Modelo de Regresión Lineal General Estimación Tema 5 El Modelo de Regresión Lineal General Estimación Pilar González y Susan Orbe Dpto Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Tema 5 MRLG: Estimación 1

Más detalles

Lección 3. Análisis conjunto de dos variables

Lección 3. Análisis conjunto de dos variables Lección 3. Análisis conjunto de dos variables Estadística Descriptiva Parcialmente financiado a través del PIE13-04 (UMA) GARCÍA TEMA 3. ANÁLII CONJUNTO DE DO VARIABLE 3.1 COVARIANZA COEFICIENTE DE CORRELACIÓN

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 3.1 Colinealidad Exacta 3.2 Los efectos de la multicolinealidad Del

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA GUÍA DOCENTE 2012-2013 ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1. Denominación de la asignatura: ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA Titulación GRADO EN FINANZAS Y CONTABILIDAD Código 5592

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López

Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Diplomado en Econometría Coordinadora académica: M.F. Esperanza Sainz López Brindar al alumno los conocimientos de los métodos econométricos fundamentales y de los conceptos estadísticos que éstos requieren,

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

Mínimos Cuadrados Generalizados

Mínimos Cuadrados Generalizados Mínimos Cuadrados Generalizados Román Salmerón Gómez Los dos últimos temas de la asignatura han estado enfocados en estudiar por separado la relajación de las hipótesis de que las perturbaciones estén

Más detalles

peso edad grasas Regresión lineal simple Los datos

peso edad grasas Regresión lineal simple Los datos Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos

Más detalles

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

EXAMEN ECONOMETRÍA I GRUPO 53 - DADE 8 de septiembre de 2005 Prof. Rafael de Arce

EXAMEN ECONOMETRÍA I GRUPO 53 - DADE 8 de septiembre de 2005 Prof. Rafael de Arce EXAMEN ECONOMETRÍA I GRUPO 53 - DADE 8 de septiembre de 005 Prof. Rafael de Arce NOMBRE: DNI: PARTE I.- TEST 1. La hipótesis de rango pleno en el MBRL supone: Que las variables explicativas no tengan ninguna

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

Errores de especificación

Errores de especificación CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta

Más detalles

Prácticas Tema 5. Ampliaciones del Modelo lineal básico

Prácticas Tema 5. Ampliaciones del Modelo lineal básico Prácticas Tema 5. Ampliaciones del Modelo lineal básico Ana J. López y Rigoberto Pérez Dpto. Economía Aplicada, Universidad de Oviedo PRÁCTICA 5.1. Se ha examinado la evolución reciente de las ventas de

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ECONOMÍA SISTEMA UNIVERSIDAD ABIERTA PROGRAMA DE INTRODUCCIÓN A LA ECONOMETRÍA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ECONOMÍA SISTEMA UNIVERSIDAD ABIERTA PROGRAMA DE INTRODUCCIÓN A LA ECONOMETRÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ECONOMÍA SISTEMA UNIVERSIDAD ABIERTA PROGRAMA DE INTRODUCCIÓN A LA ECONOMETRÍA Área: Métodos Cuantitativos QUINTO SEMESTRE Carácter: Obligatorio HORA/SEMANA/SEMESTRE

Más detalles

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16

Regresión Lineal. Rodrigo A. Alfaro. Rodrigo A. Alfaro (BCCh) Regresión Lineal / 16 Regresión Lineal Rodrigo A. Alfaro 2009 Rodrigo A. Alfaro (BCCh) Regresión Lineal 2009 1 / 16 Contenidos 1 Regresiones Lineales Regresión Clásica Paquetes estadísticos 2 Estadísticos de Ajuste Global 3

Más detalles

MÓDULO: MÉTODOS CUANTITATIVOS

MÓDULO: MÉTODOS CUANTITATIVOS MÓDULO: MÉTODOS CUANTITATIVOS 1.- Nombre del módulo y las asignaturas: Métodos Cuantitativos Econometría Avanzada Econometría Financiera 2.-Número de créditos ECTS: Econometría Avanzada: 6 ECTS. Econometría

Más detalles

Econometría II. Hoja de Problemas 1

Econometría II. Hoja de Problemas 1 Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli

Más detalles

TEMA 3: PROPIEDADES DEL ESTIMADOR MCO

TEMA 3: PROPIEDADES DEL ESTIMADOR MCO TEMA 3: PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

PROGRAMA DE ASIGNATURA Prosecución de estudios en Economía Segundo semestre de 2016

PROGRAMA DE ASIGNATURA Prosecución de estudios en Economía Segundo semestre de 2016 PROGRAMA DE ASIGNATURA Prosecución de estudios en Economía Segundo semestre de 2016 ECONOMETRIA I Asignatura Carrera Ingeniería Comercial Código 351472 Créditos 7 SCT Tbjo. Directo: 6 hrs. pedag. Tbjo.

Más detalles

CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE

CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE El objetivo de este curso es la presentación de las técnicas econométricas básicas, tanto clásicas como modernas, y su tratamiento con las herramientas más adecuadas

Más detalles

PROPIEDADES DEL ESTIMADOR MCO

PROPIEDADES DEL ESTIMADOR MCO TEMA 3 PROPIEDADES DEL ESTIMADOR MCO S. Álvarez, A. Beyaert, M. Camacho, M. González, A. Quesada Departamento de Métodos Cuantitativos para la Economía y la Empresa Econometría (3º GADE) Lo que estudiaremos

Más detalles

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal

Estadística Inferencial. Sesión No. 9 Regresión y correlación lineal Estadística Inferencial Sesión No. 9 Regresión y correlación lineal Contextualización En la administración, las decisiones suelen basarse en la relación entre dos o más variables. En esta sesión se estudia

Más detalles

Plan General del Curso. Análisis Econométrico con EViews. Instituto Científico del Pacífico

Plan General del Curso. Análisis Econométrico con EViews. Instituto Científico del Pacífico Plan General del Curso Análisis Econométrico con EViews Introducción El presente curso se basa en la teoría económica, en este curso se podrá realizar el análisis de las diversas variables económicas.

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN

TEMA 4 CUESTIONARIO DE AUTOEVALUACIÓN 4.5.- En cuál de los siguientes casos se podría utilizar la varianza residual en lugar del coeficiente de determinación para medir la calidad del ajuste? Con el mismo conjunto de datos y dos ajustes distintos.

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

TEMA 2: Propiedades de los estimadores MCO

TEMA 2: Propiedades de los estimadores MCO TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

3 CAPÍTULO III TRABAJO EMPÍRICO. Para toda evaluación cuantitativa generalmente se tiene uno que basar en

3 CAPÍTULO III TRABAJO EMPÍRICO. Para toda evaluación cuantitativa generalmente se tiene uno que basar en 3 CAPÍTULO III TRABAJO EMPÍRICO. 3.1 Modelo Econométrico Para toda evaluación cuantitativa generalmente se tiene uno que basar en experiencias anteriores (Allard, 1980, p. 1). Las experiencias anteriores

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) PROCEDIMIENTOS ESTADISTICOS CONSTRUCCION DE MODELOS DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS Cada procedimiento es aplicable a un

Más detalles

Tema 1. Introducción a la Econometría

Tema 1. Introducción a la Econometría Tema 1. Introducción a la Econometría Qué es la Econometría? Objetivos. Tipos de datos y variables. Modelo Econométrico: elementos y ejemplo. Tipos de modelos Etapas en la elaboración de un modelo econométrico.

Más detalles

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA LICENCIATURA: ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS CURSO: CUARTO

Más detalles

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto

Tema 6. Multicolinealidad. Contenido Multicolinealidad perfecta Multicolinealidad de grado alto Tema 6 Multicolinealidad Contenido 6.1. Multicolinealidad perfecta...................... 108 6.. Multicolinealidad de grado alto................... 110 108 Tema 6. Multicolinealidad A la hora de estimar

Más detalles

Estimación del modelo lineal con dos variables

Estimación del modelo lineal con dos variables Estimación del modelo lineal con dos variables el método de mínimos cuadrados ordinarios (MCO) Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni Estimación del modelo lineal por MCO 1

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

La línea recta: Serie1

La línea recta: Serie1 La línea recta: En una línea recta tenemos una relación entre dos variables, la independiente (x) y la dependiente (y). La forma en que se relacionan dependerá de la función que describa dicha relación.

Más detalles

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II

GRADO : ADE ASIGNATURA: ECONOMETRÍA I. Curso: 2 Cuatrimestre: 2 Asignaturas que se recomienda tener superadas: Estadística I y II FICHA DESCRIPTIVA DE LA ASIGNATURA GUIA DOCENTE Curso Académico 2012/2013 GRADO : ADE ASIGNATURA: ECONOMETRÍA I Módulo Materia Ampliaciones de Métodos Cuantitativos Econometría Créditos 6 Ubicación Carácter

Más detalles

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE

7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE ESCUELA UNIVERSITARIA DE ENFERMERIA DE TERUEL 1 er CURSO DE GRADO DE ENFERMERIA Estadística en Ciencias de la Salud 7. ANÁLISIS DE VARIABLES CUANTITATIVAS: REGRESIÓN LINEAL SIMPLE PROFESOR Dr. Santiago

Más detalles

EL FENÓMENO ECONÓMICO. ANÁLISIS Y CUANTIFICACIÓN.

EL FENÓMENO ECONÓMICO. ANÁLISIS Y CUANTIFICACIÓN. EL FENÓMENO ECONÓMICO. ANÁLISIS Y CUANTIFICACIÓN. EMILIO COSTA REPARAZ MONTSERRAT DÍAZ FERNÁNDEZ Mª DEL MAR LLORENTE MARRÓN Universidad de Oviedo RESUMEN El objeto de la ciencia económica en un sentido

Más detalles

Ejercicio Heterocedasticidad_2

Ejercicio Heterocedasticidad_2 Ejercicio heterocedasticidad 2. 1 Ejercicio Heterocedasticidad_2 Tengamos los siguientes datos de los beneficios (B i ) y ventas (V i ) de 20 empresas: obs B V 1 13,2 61 2 15 78 3 22,2 158 4 15,2 110 5

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

Capítulo 6 Multicolinealidad Luis Quintana Romero. Econometría Aplicada Utilizando R

Capítulo 6 Multicolinealidad Luis Quintana Romero. Econometría Aplicada Utilizando R Capítulo 6 Multicolinealidad Luis Quintana Romero Objetivo Identificar la multicolinealidad en un modelo econométrico, así como las pruebas de detección de la multicolinealidad y correcciones. Introducción

Más detalles

Créditos: 12. Curso: 1º Periodo de impartición: Anual. Carácter: Troncal

Créditos: 12. Curso: 1º Periodo de impartición: Anual. Carácter: Troncal Titulación: L.C.A.F. Departamento: Estadística e Invest. Operativa II (Métodos de Decisión) Curso académico: Plan: 2001 Nombre de asignatura: Estadística Actuarial I Código: 204 Curso: 1º Periodo de impartición:

Más detalles

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE.

GUIÓN TEMA 2. PROPIEDADES DE LOS ESTIMADORES MCO 2.1 PROPIEDADES ESTADÍSTICAS DEL ES- TIMADOR MCO DE. ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA. PROPIEDADES DE LOS ESTIMADORES MCO Bibliografía apartados.1,. y.3: Greene, 6.6.1, 6.6.3

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

T6. Modelos multiecuacionales

T6. Modelos multiecuacionales T6. Modelos multiecuacionales Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 41 Índice 1 Los modelos multiecuacionales: SUR y SEM 2 Modelos

Más detalles

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos)

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) PROBLEMA 1 Se quiere comparar la cantidad de energía necesaria para realizar 3 ejercicios o actividades: andar, correr y montar en bici.

Más detalles

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros.

CALIFICACION: - P C: precio medio de los productos sustitutivos existentes en el mercado en euros. 6 + 10 + 3 = 19 CALIFICACION: Ventasgdt Una empresa que produce una marca de detergente líquido desea contar con un modelo para planificar su producción, estimar las necesidades de materias primas y de

Más detalles

estimadores-estadística estadística inferencial-.

estimadores-estadística estadística inferencial-. UNIVERSIDAD NACIONAL DE PIURA FACULTAD DE ECONOMÍA PROGRAMA DE ACTUALIZACIÓN PARA LA TITULACIÓN PROFESIONAL PAPTPRO XXII TÉCNICAS DE MEDICIÓN ECONÓMICA PARTE II: TÓPICOS DE ECONOMETRÍA MODELOS DE PANEL

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Planeación experimental

Planeación experimental Planeación experimental Diseño de Experimentos Diseño de Experimentos Ventajas Identifica uno o más factores influyen dentro de la variable de respuesta. Permite establecer la combinación adecuada de tratamientos

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1 MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA

Más detalles

Centro Universitario de Tonalá

Centro Universitario de Tonalá Presentación Este curso de estadística y evaluación de datos se encuentra diseñado para los estudiantes del Doctorado en Agua y Energía del Centro Universitario de Tonalá. Competencias genéricas de la

Más detalles

Ejemplo 7.1. Heterocedasticidad. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 7.1. Heterocedasticidad. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 7.1 Heterocedasticidad Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 7.1. Heterocedásticidad 1 / 22 Enunciado.

Más detalles

CUERPO TÉCNICO, OPCION ESTADISTICA

CUERPO TÉCNICO, OPCION ESTADISTICA CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

Qué es Econometría? Introducción. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial

Qué es Econometría? Introducción. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Introducción Qué es Econometría? Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.

Más detalles