Problemas de I.O. con mas de dos variables

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas de I.O. con mas de dos variables"

Transcripción

1 UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Curso de Investigación de Operaciones I Problemas de I.O. con mas de dos variables M.C. Ing. Julio Rito Vargas Avilés 1

2 1. Orsini. Fabrica tres tipos de zapatos. Qué cantidad de cada estilo debe fabricar durante el mes con el objeto de maximizar las utilidades? Sujeto a: No deben asignarse más de 1,200 horas de tiempo de producción. Todos los costos de producción, de materiales y costos fijos deben cubrirse con el efectivo disponible durante el mes que es de $16,560. Satisfacer ciertos compromisos de demanda: 30 estilo 1, 55 estilo 2 y 32 estilo 3. 2

3 Variables de decisión X 1 = Número de pares de zapatos estilo 1 que deben fabricarse durante el mes. X 2 = Número de pares de zapatos estilo 2 que deben fabricarse durante el mes. X 3 = Número de pares de zapatos estilo 3 que deben fabricarse durante el mes. 3

4 Función objetivo Max. Z = C 1 X 1 + C 2 X 2 + C 3 X 3 $ = ($/par de zap. estilo 1) x (pares de zap. estilo 1) + ($/par de zap. estilo 2) x (pares de zap. estilo 2) + ($/par de zap. estilo 3) x (pares de zap. estilo 3) Cálculo de C 1 (3.5 horas/par) x ($10/hora) = $35/par (3.25 U. piel/par) x ($4/U. piel) = $13/par $48/par 4

5 C 1 = $60/par - $48/par = $12/par de zap. estilo 1 de forma similar, C 2 = $64/par - $43/par = $21/par de zap. estilo 2 C 3 = $50/par - $28/par = $22/par de zap. estilo 3 Max. Z = 12X X 2 +22X 3 5

6 Restricción de producción 3.5X 1 es el total de horas que se requieren para fabricar el estilo 1 2.5X 2 es el total de horas que se requieren para fabricar el estilo 2 2.0X 3 es el total de horas que se requieren para fabricar el estilo 3 3.5X X X 3 1,200 6

7 Restricción de efectivo Costo fijo = $3,000 Existen disponibles $16,560 - $3,000 = $13,560 para cubrir los costos variables. 48X X X 3 13,560 Compromisos de demanda X 1 pares de zap. estilo 1 30 pares de zap. estilo 1 X 2 pares de zap. estilo 2 55 pares de zap. estilo 2 X 3 pares de zap. estilo 3 32 pares de zap. estilo 3 7

8 Max. Z = 12X X 2 +22X 3 Sujeto a: 3.5X X X 3 1,200 48X X X 3 13,560 X 1 30 X 2 55 X 3 32 No se necesitan las condiciones de no negatividad puesto que existen restricciones de demanda para todas las variables. 8

9 Solución 9

10 2. Fertimex Qué cantidad de cada fertilizante fabricar durante el mes con el objeto de maximizar las utilidades? Sujeto a: No asignar más de 1,100 toneladas de nitrato, 1,800 toneladas de fosfato y 2,000 toneladas de potasio. 10

11 Variables de decisión X 1 = Toneladas del fertilizante que deben fabricarse. X 2 = Toneladas del fertilizante que deben fabricarse. Función objetivo Max. Z = C 1 X 1 + C 2 X 2 $ = ($/ton. de f ) x (tons. de f ) + ($/ton. de f ) x (tons. de f ) 11

12 Cálculo de C 1 Precio de venta del f /ton. = $71.50 Costo del f /ton. Costo del nitrato/ton. (0.05)($200/ton.) = $10.00 Costo del fosfato/ton. (0.05)($80/ton.) = 4.00 Costo del potasio/ton. (0.10)($160/ton.) = Costo del barro/ton. (0.80)($10/ton.) = 8.00 Costo del mezclado/ton. = Costo total = $

13 C 1 = $71.50/ton. - $53.00/ton. = $18.50/ton. de forma similar, C 2 = $69.00/ton. - $49.00/ton. = $20.00/ton. Max. Z = 18.5X X 2 13

14 Restricción de nitrato 0.05X 1 es el uso de nitrato en X 1 tons. de f X 2 es el uso de nitrato en X 2 tons. de f X X 2 1,100 Restricción de fosfato 0.05X X 2 1,800 Restricción de potasio 0.10X X 2 2,000 14

15 Max. Z = 18.5X X 2 Sujeto a: 0.05X X 2 1, X X 2 1, X X 2 2,000 X 1, X

16 3. Ruedas Redondas. Qué cantidad de cada tipo de rim fabricar con el objeto de maximizar las utilidades? Sujeto a: No programar más de 1,500 rims tipo 2 ó 750 rims tipo 1 ó cualquier combinación de ellos en el acabado, diariamente. No programar más de 700 rims tipo 2 ó 400 rims tipo 1 ó cualquier combinación de ellos en el tratamiento especial, diariamente. No programar más de 600 rims de cualquier tipo en el acabado final, diariamente. 16

17 Variables de decisión X 1 = Cantidad de rims tipo 1 a fabricar X 2 = Cantidad de rims tipo 2 a fabricar Función objetivo Max. Z = C 1 X 1 + C 2 X 2 Max. Z = 30X X 2 17

18 Restricción en el acabado 2X 1 + X 2 1,500 Restricción en el tratamiento 7X 1 + 4X 2 2,800 Restricción en el acabado final X 1 + X

19 Max. Z = 30X X 2 Sujeto a: 2X 1 + X 2 1,500 7X 1 + 4X 2 2,800 X 1 + X X 1, X

20 4. Constructora. Qué cantidad de grava enviar de cada distribuidor a cada proyecto con el objeto de minimizar los costos totales? Sujeto a: No enviar más de 150 tons. del distribuidor 1, 175 tons. del distribuidor 2 y 275 tons. del distribuidor 3. Enviar 200 tons. al proyecto 1, 100 tons. al proyecto 2 y 300 tons. al proyecto 3. 20

21 Variables de decisión X IJ = Número de toneladas a enviar del distribuidor I al proyecto J. Función objetivo Min. Z = 6X X X X X X X X X 33 21

22 Restricciónes de disponibilidad X 11 + X 12 + X X 21 + X 22 + X X 31 + X 32 + X Restricciónes de requerimientos X 11 + X 21 + X 31 = 200 X 12 + X 22 + X 32 = 100 X 13 + X 23 + X 33 =

23 Min. Z = 6X X X X X X X X X 33 Sujeto a: X 11 + X 12 + X X 21 + X 22 + X X 31 + X 32 + X X 11 + X 21 + X 31 = 200 X 12 + X 22 + X 32 = 100 X 13 + X 23 + X 33 = 300 X 11, X 12, X X

24 5. Mezcla de minerales. Qué porcentaje de la composición del nuevo producto provendrá de cada una de las cuatro minas con el objeto de minimizar su costo. Sujeto a: El contenido del elemento básico A en el nuevo producto no sea menor de 5 lb s/ton. El contenido del elemento básico B en el nuevo producto no sea menor de 100 lb s/ton. El contenido del elemento básico C en el nuevo producto no sea menor de 30 lb s/ton. 24

25 Variables de decisión X 1 = porcentaje que provendrá de la mina 1 X 2 = porcentaje que provendrá de la mina 2 X 3 = porcentaje que provendrá de la mina 3 X 4 = porcentaje que provendrá de la mina 4 25

26 Función objetivo Min. Z = C 1 X 1 + C 2 X 2 + C 3 X 3 + C 4 X 4 $ = ($/ton. mina 1) x (% de la mina 1) + ($/ton. mina 2) x (% de la mina 2) + ($/ton. mina 3) x (% de la mina 3) + ($/ton. mina 4) x (% de la mina 4) Min. Z = 800X X X X 4 26

27 Restricción de elemento básico A 10X 1 + 3X 2 + 8X 3 + 2X 4 5 Restricción de elemento básico B 90X X X X Restricción de elemento básico C 45X X X X

28 Min. Z = 800X X X X 4 Sujeto a: 10X 1 + 3X 2 + 8X 3 + 2X X X X X X X X X 4 30 X 1 + X 2 + X 3 + X 4 = 1 X 1, X 2, X 3, X

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo IV Unidad UnidadIV Análisis Dualidad de

Más detalles

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés.

El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. Universidad Nacional de Ingeniería Sede: UNI-Norte II Semestre 2008 Investigación de Operaciones I El Problema del Transporte M.C. Ing. Julio Rito Vargas Avilés. martes, 21 de octubre de 2008 El Problema

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Investigación de Operaciones 1

Investigación de Operaciones 1 Investigación de Operaciones 1 Clase 4 Pablo Andrés Maya Mayo, 2014 Pablo Andrés Maya () Investigación de Operaciones 1 Mayo, 2014 1 / 10 Problema de portafolio La Universidad dispone de un presupuesto

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

Introducción a la IO Formulaciones de programación lineal Resolución por ordenador (Excel)

Introducción a la IO Formulaciones de programación lineal Resolución por ordenador (Excel) Introducción a la IO Formulaciones de programación lineal Resolución por ordenador (Excel) Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Investigación operativa

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA PROBLEMAS RESUELTOS DE PROGRAMACIÒN LINEAL POR METODO GRAFICO CON POM-QM. Profesor: MSc. Julio Rito Vargas Avilés Elaborado por: Yucep Gutiérrez Baltodano. Carlos Reynaldo Guevara.

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Considere el siguiente modelo de programación lineal y su solución óptima. Tabla simplex Final

EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Considere el siguiente modelo de programación lineal y su solución óptima. Tabla simplex Final EJERCICIOS DE PROGRAMACIÓN LINEAL Y SU SOLUCIÓN ÓPTIMA. Ejercicio 1 X j : Número de horas destinadas a realizar el proceso j; j= 1,2 Máx Z = 1X 1 + 11X 2 (Funcion de Ganancia, $) 1X 1 + 1X 2 12 (Disponibilidad

Más detalles

LP Problems. M. En C. Eduardo Bustos Farías

LP Problems. M. En C. Eduardo Bustos Farías LP Problems M. En C. Eduardo Bustos Farías 2 Solution Decision Variables 4 Objective function 5 Constraints onstraint 3. Amount of raw material purchased determines the amount of Brute and hanelle that

Más detalles

5 de mayo de Evaluación 1 PETROLEO MUNDIAL C.A. El Constructor. Gasolina. Fábrica de calzados. calzados. Analisis de Sensibilidad

5 de mayo de Evaluación 1 PETROLEO MUNDIAL C.A. El Constructor. Gasolina. Fábrica de calzados. calzados. Analisis de Sensibilidad - INSTITUTO TECNOLOGICO METROPOLITANO INGENIERIA DE PRODUCCCION Investigacion de operaciones I sensibilidad-teoria de la Wbaldo Londoño 5 de mayo de 206 Contenido - 2 3 4 5 6 7-8 - La empresa puede comprar

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Universidad de Managua Al más alto nivel

Universidad de Managua Al más alto nivel Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

2) Existen limitaciones o restricciones sobre las variables de la función objetivo.

2) Existen limitaciones o restricciones sobre las variables de la función objetivo. 1 Introducción La programación lineal es un método de resolución de problemas que se ha desarrollado para ayudar a profesionales de distintos ambitos a tomar mejores decisiones Desde su aparición a finales

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010 Programación Lineal Departamento de Matemáticas, CSI/ITESM 28 de abril de 2010 Índice 16.1.Introducción............................................... 1 16.2.Ejemplo 1................................................

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0 Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 31 de agosto de 2010 SOLUCIÓN 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año. Un acre

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas

- Contenido UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI. Carrera: Ingeniería de Sistemas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE SEDE ESTELI Carrera: Ingeniería de Sistemas Nombre de la asignatura: Investigación de Operaciones I Año académico: Tercer año Semestre: Sexto - Contenido I-

Más detalles

Visión de la Minería Chilena

Visión de la Minería Chilena Visión de la Minería Chilena Presentación en Curso de Minería para Periodistas 2014 Alberto Salas Muñoz Presidente Sociedad Nacional de Minería Santiago, 16 de Octubre de 2014 Sociedad Nacional de Minería

Más detalles

Dirección de operaciones. SESIÓN # 2: Programación lineal

Dirección de operaciones. SESIÓN # 2: Programación lineal Dirección de operaciones SESIÓN # 2: Programación lineal Contextualización Dentro de la sesión anterior conocimos el concepto y alcance de la administración de operaciones, dicho de otro modo el qué, ahora

Más detalles

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías

ANÁLISIS DE DUALIDAD. M. En C. Eduardo Bustos Farías ANÁLISIS DE DUALIDAD M. En C. Eduardo Bustos Farías 1 LA TEORÍA DE LA DUALIDAD El método simplex además de resolver un problema de PL llegando a una solución óptima nos ofrece más y mejores elementos para

Más detalles

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U.

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. Nº: FIRMA: Ejercicios: 1) Que es la I.O.? 2) Realice una síntesis histórica

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

R E S O L U C I Ó N. a) Lo primero que hacemos es dibujar el recinto y calcular los vértices del mismo

R E S O L U C I Ó N. a) Lo primero que hacemos es dibujar el recinto y calcular los vértices del mismo Sea el sistema de inecuaciones siguiente: x + y 12;3 y x; x 1; y 1 a) Represente gráficamente la región factible y calcule sus vértices b) En qué punto de esa región, F( x, y) = 25x + 2 y alcanza el máximo?

Más detalles

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.

Más detalles

Suscripciones Administración Reclamos Formule un modelo de programación lineal.

Suscripciones Administración Reclamos Formule un modelo de programación lineal. EJERCICIOS DE APLICACIÓN 1) Par, Inc. es un pequeño fabricante de equipo y material de golf. El distribuidor de Par cree que existe un mercado tanto para una bolsa de golf de precio moderado, llamada modelo

Más detalles

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250

10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones

Más detalles

GASOLINA TURBOSINA QUEROSENO Crudo ligero Crudo pesado

GASOLINA TURBOSINA QUEROSENO Crudo ligero Crudo pesado World Oil Company puede comprar dos tipos de petróleo crudo: crudo ligero a un costo de $25 por barril y petróleo pesado a $22 por barril. Cada barril de petróleo crudo, ya refinado, produce tres productos:

Más detalles

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización.

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. PROGRAMACION LINEAL [Introducción] Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. Sirve para asignar

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

z(x) = x 1. Solucion optima. x 2

z(x) = x 1. Solucion optima. x 2 CAPÍTULO FORMULACIÓN DE PROBLEMAS LINEALES Programación Lineal (PL) es un modelo de optimización de un problema de la vida real, en el cual una función objetivo es optimizada sujeta a un conjunto de restricciones.

Más detalles

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías

Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Práctico No 7 Programación Dinámica

Práctico No 7 Programación Dinámica U.N.C.P.B.A FACULTAD DE INGENIERÍA PROCESOS QUÍMICOS II Práctico No 7 Programación Dinámica Planteo n 1: Supondremos un proceso en tres etapas para cada una de las cuales está definida una función objetivo,

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1 Ejercicios de Dualidad y Análisis de Sensibilidad 1. Radioco fabrica dos tipos de radios. El único recurso escaso que se necesita para producir los radios es la mano de obra. Actualmente, la compañía tiene

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son:

Más detalles

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN 15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN Problema 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Solución 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. Una empresa fabrica dos tipos de juguetes de

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

Investigación de Operaciones I. Problemas de Asignación

Investigación de Operaciones I. Problemas de Asignación Investigación de Operaciones I Problemas de Asignación MSc. Ing. Julio Rito Vargas II cuatrimestre Introducción Los problemas de asignación incluyen aplicaciones tales como asignar personas a tareas. Aunque

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta

Más detalles

Ejercicios Propuestos

Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 1 Modelación Matemática. Programación

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

POTENCIAL DE LOS RECURSOS NO METÁLICOS SALINOS

POTENCIAL DE LOS RECURSOS NO METÁLICOS SALINOS POTENCIAL DE LOS RECURSOS NO METÁLICOS SALINOS Patricio Contesse G. Gerente General SQM S.A. Agenda Descripción de SQM Estadísticas Básicas Principales Productos Requerimientos Tecnológicos Conclusiones

Más detalles

Universidad de Managua Al más alto nivel Facultad de Ciencias Económicas y Administrativas. Curso de Programación Unidad IV Lineal Tema.

Universidad de Managua Al más alto nivel Facultad de Ciencias Económicas y Administrativas. Curso de Programación Unidad IV Lineal Tema. Universidad de Managua Al más alto nivel Facultad de Ciencias Económicas y Administrativas Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: F.C.E.A Curso de Programación Unidad IV Lineal Tema Análisis

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 AVISO Traer para la siguiente clase laptop para desarrollar ejercicios con winqsb, tora, qsb, y otros. Investigación de Operaciones

Más detalles

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX.

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. 1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición,

Más detalles

TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES.

TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. TOMA DE DECISIONES EN LA EMPRESA DE PRODUCTOS LÁCTEOS DE COLÓN CON APOYO DE LA INVESTIGACIÓN DE OPERACIONES. Ing. Manuel Domínguez Alejo 1, MSc. Adriana Delgado Landa 2. 1. Universidad de Matanzas Sede

Más detalles

TEORÍA DE LA DECISIÓN. Teoría básica en el desarrollo de la Estadística Prof. J. Eugenio Martínez Falero

TEORÍA DE LA DECISIÓN. Teoría básica en el desarrollo de la Estadística Prof. J. Eugenio Martínez Falero TEORÍA DE LA DECISIÓN Teoría básica en el desarrollo de la Estadística Prof. J. Eugenio Martínez Falero Definición La toma de decisiones es un proceso durante el cual la persona debe escoger entre dos

Más detalles

El análisis de costo-volumen-utilidad (punto de equilibrio) es un modelo que estudia como reaccionan los beneficios frente a cambios en los niveles

El análisis de costo-volumen-utilidad (punto de equilibrio) es un modelo que estudia como reaccionan los beneficios frente a cambios en los niveles El análisis de costo-volumen-utilidad (punto de equilibrio) es un modelo que estudia como reaccionan los beneficios frente a cambios en los niveles de actividad y considerando una determinada estructura

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

TRANSPORTE Y TRANSBORDO

TRANSPORTE Y TRANSBORDO TRANSPORTE Y TRANSBORDO En ésta semana estudiaremos un modelo particular de problema de programación lineal, uno en el cual su resolución a través del método simplex es dispendioso, pero que debido a sus

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 3 de junio de 2014 Problemas Resueltos 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año.

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Fundamentos de Investigación de Operaciones Certamen # 1

Fundamentos de Investigación de Operaciones Certamen # 1 Instrucciones: Fundamentos de Investigación de Operaciones Certamen # Profesores: Carlos Castro & Esteban Sáez 30 de abril de 2004 Responda cada pregunta en una hoja separada identificada con nombre y

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD)

PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD) (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 120 euros cada uno. La capacidad máxima diaria de fabricación es de 1000 relojes,

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

Curso ON LINE "Tema 06"

Curso ON LINE Tema 06 033 034 035 036 Una copistería de reciente apertura ofrece al público dos tipos de fotocopias: en blanco y negro y en color. Cada fotocopia le supone un cierto coste: 1 PTA por copia para las de blanco

Más detalles

Programación Lineal con Matlab

Programación Lineal con Matlab Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22 Contenido 1 Programación Lineal Método gráfico

Más detalles

Investigación de Operaciones I Certamen # 2

Investigación de Operaciones I Certamen # 2 Investigación de Operaciones I Certamen # 2 Profesores: Carlos Castro & María Cristina Riff 2 de noviembre de 2001 1. Un estudiante mantiene almacenadas copias de sus cinco archivos de trabajo en diez

Más detalles

Estado de Fuentes y Usos

Estado de Fuentes y Usos Estado de Usos y Fuentes Punto de equilibrio Universidad Tecnológica de Bolívar Ignacio Vélez Ingeniería Económica Estado de Fuentes y Usos Unas de las preguntas que se hace cualquier gerente es de dónde

Más detalles

RESOLUCIÓN DE EJERCICIOS. b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El conjunto solución de la inecuación

RESOLUCIÓN DE EJERCICIOS. b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El conjunto solución de la inecuación RESOLUCIÓN DE EJERCICIOS Ejercicio 1. x a) Resuelva: 2 + x 5 x 4 Solución: 6x + 4x 60 x 10x + x 60 1x 60 X 60 1 b) Determine el valor de verdad de la siguiente proposición. Justifique su respuesta. El

Más detalles

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos)

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos) EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II UNIDAD: PROGRAMACIÓN LINEAL 1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima:

Más detalles

Relación de Ejercicios: Programación Lineal. Modelos para la Prueba de Selectividad de a

Relación de Ejercicios: Programación Lineal. Modelos para la Prueba de Selectividad de a Relación de Ejercicios: Programación Lineal. Modelos para la Prueba de Selectividad de 2 005 a 2 008. EJERCICIO 1.- (3 puntos) Un pastelero dispone de 150 kg de harina, 22 kg de azúcar y 26 kg de mantequilla

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura

Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura UNIDAD III. ANÁLISIS DE REDES OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Modelos de transporte

Más detalles

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA

TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N

Más detalles

FOLLETO DE PRODUCTOS DE UK NUTRITION LIMITED

FOLLETO DE PRODUCTOS DE UK NUTRITION LIMITED FOLLETO DE PRODUCTOS DE UK NUTRITION LIMITED Los productos UK Nutrition se pueden mezclar en un tanque con la mayoría de los pesticidas y los fertilizantes de análisis bajo para la aplicación foliar o

Más detalles