TEMA 3: EL DESCUENTO SIMPLE Y EQUIVALENCIA DE CAPITALES 1.- INTRODUCCIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 3: EL DESCUENTO SIMPLE Y EQUIVALENCIA DE CAPITALES 1.- INTRODUCCIÓN"

Transcripción

1 TEMA 3: EL ESCUENTO SIMPLE Y EQUIVALENCIA E CAPITALES 1.- INTROUCCIÓN El escueto es ua opeació fiaciea muy utilizaa e el ámbito mecatil. Las empesas cuao se ve co ificultaes e liquiez puee acui al escueto e efectos comeciales. Los efectos que fecuetemete so objeto e escueto so la leta e cambio y el pagaé. Estas opeacioes so ealizaas po las etiaes fiacieas. Los bacos aboa el impote el efecto comecial meos cieta catia e cocepto e iteés y gastos ivesos. El baco coba espués el efecto el ía e su vecimieto. Las etiaes fiacieas o puee aplica u tipo e escueto abitaio, sio el fijao po el poe público; e uesto caso, el Baco e España. Los bacos poseeoes e efectos, que peviamete ha escotao a sus clietes, peo que aú o ha vecio, puee acui al Baco e España paa que éste, a su vez, les aticipe el impote, pevia etega e los efectos. A esta opeació se la eomia eescueto. 2.-EL ESCUENTO So opeacioes e escueto aquellas e las que coocio u capital que vece e el futuo tatamos e calcula su capital equivalete, e acueo a ua ley fiaciea, e u mometo ateio. A ese capital futuo le llamamos e estas opeacioes omial (N), y al capital equivalete e el mometo ateio efectivo (E) E < N y la ifeecia se llama catia escotaa o escueto (), e foma que: = N E Po tato: E =N - E las opeacioes e escueto se suele cooce el omial y lo que iteesa es calcula o la catia escotaa o el efectivo a paga Gestió Fiaciea 1 Reyes F.F.

2 3.- ESCUENTO SIMPLE COMERCIAL O BANCARIO Es aquel e el que la catia escotaa se calcula sobe el omial e la opeació: E esta expesió: c : es la catia escotaa comecialmete N: es el omial e la opeació c : tato e escueto comecial e tato po uo : uació e la opeació Como vemos, e este tipo e opeacioes los iteeses se calcula sobe el capital futuo. E ellas se suele cooce el omial y lo que iteesa es calcula: La catia escotaa (impote el escueto c ) El efectivo a paga E El efectivo e la opeació seá 1 EJEMPLOS RESUELTOS: 1. Calcula el c e u efecto e ,30 al que se aplica u tipo e escueto comecial el 8% aual y que vece eto e 60 ías , ,08 966, ,30 966, ,86 2. Sabieo que el escueto comecial e u efecto fue e 508,03, que falta 45 ías (año civil) paa el vecimieto y que se aplicó el 9% aual e escueto comecial, a cuáto asceió el omial? 508,03 508, ,419 Gestió Fiaciea 2 Reyes F.F.

3 3. Calcula el efectivo esultate e aplica a u omial e ,44, que vece el 27 e septiembe, u escueto comecial el 7% aual. El escueto se efectúa el 31 e mazo: (31) (30) (31) (30) (31) (31) (30) MARZ ABR MAY JUN JUL AG SEP TOTAL= 180 ías , , , ESCUENTO SIMPLE RACIONAL O MATEMÁTICO: Recibe este ombe aquel escueto simple e el que los iteeses a escota se calcula sobe el efectivo y o sobe el omial, como hemos visto ates, e ahí el ombe e acioal (paece más lógico que los iteeses se calcule sobe el efectivo que sobe la catia futua C, que, a efectos e escueto llamamos omial. Poemos eci, po tato, que el escueto simple coicie cuatitativamete co el iteés simple. Al igual que ocuía co el escueto comecial: = N E (1) Y po tato: e oe Y simplificao, e escueto acioal: 1 Si lo que queemos cooce es el efectivo, sólo hemos e espejalo e la expesió ateio: 1 Gestió Fiaciea 3 Reyes F.F.

4 Si e la expesió (1) sustituimos E po su valo, poemos calcula el valo el escueto matemático e fució el omial: 1 : 1 Que simplificao: 5.- RELACIÓN ENTRE EL ESCUENTO COMERCIAL Y EL RACIONAL C = N c = N 1+. Obsevao ambas expesioes, es eviete que c > poque: Poemos eci, po tato, que el valo efectivo obteio, teieo e cueta el escueto comecial es meo que el obteio teieo e cueta el acioal. Veamos ahoa la elació que existe ete el escueto comecial y el acioal, compaáolos po: Cociete ifeecia RELACIÓN POR IFERENCIA: Si aplicamos el mismo tato e escueto, la elació po ifeecia ete ambos tipos e escueto seá: c = N N 1 + = N ( 1+ ) 1+ N = N + N N 1+ (2) Gestió Fiaciea 4 Reyes F.F.

5 Gestió Fiaciea 5 Reyes F.F. La ifeecia e escuetos es igual a os cosas, segú coloquemos la expesió ateio: N c + = 1. N c + = RELACIÓN POR COCIENTE: Tal como ates, seguimos aplicao el mismo tato e escueto e ambos escuetos, acioal y comecial. ( ) N N N N c + = + = 1 1 e foma que: c + = 1 Poemos eci, po tato que: ) 1 ( c + = y c = 1+ 1 Es eci, la ifeecia e escuetos es igual al escueto acioal el escueto comecial: Es eci, la ifeecia e escuetos es igual al escueto comecial el escueto acioal:

6 5.1.- RELACIÓN POR PROUCTO: 1 1 Si mias la expesió úmeo (2), e la elació po ifeecia, veás que es lo mismo que tiees aquí Po tato poemos eci que: Lo cual os es útil paa calcula el valo el omial, coocios los os escuetos: Lo cual esulta útil paa calcula el omial, ua vez coocios ambos escuetos, el acioal y el comecial. EJEMPLOS RESUELTOS: 1. RELACIÓN POR IFERENCIA: La ifeecia ete el escueto comecial y acioal e u efecto es e 12,22. Cuál es el escueto comecial, si el peioo e escueto es e 90 ías y el tipo e escueto aplicao es u 7,7% aual? (año civil) Si evisamos la elació po ifeecia ete los escuetos comecial y acioal: ,22,, 655,84 Gestió Fiaciea 6 Reyes F.F.

7 2. RELACIÓN POR COCIENTE: Calcula el c que coespoe a u e El efecto vece el 7 e julio y se aplica u escueto aual e 5,72%. Fecha e escueto el 7 e mayo ese 07/05 hasta 07/07, va 61 ías Si obsevamos el apatao el la elació po cociete: , , CAPITALES EQUIVALENTES Cualquie opeació fiaciea implica uas pestacioes y uas cotapestacioes, que seá peciso compaa. Así, po ejemplo, e u péstamo, se compaa el capital que ecibe el pestataio, co el motate que teá que etega al pestamista o, e ua opeació e compa-veta se puee compaa el impote e la opeació al cotao co el impote e la opeació a plazos. Como omalmete se tataá e pestacioes y cotapestacioes e cuatías y vecimietos ifeetes, habá que valoalos toos e u mismo mometo y a u mismo tipo e iteés, paa poelos compaa. Cuao el valo actual e u capital es igual al valo actual e oto u otos capitales, iemos que so equivaletes fiacieamete. EJEMPLO: ao u capital e u.m., que vece eto e 3 años, y oto e , que vece eto e 5 años, compoba que so equivaletes e el mometo ceo, si teemos e cueta u tipo e valoació el 10% Gestió Fiaciea 7 Reyes F.F.

8 Si actualizamos, teemos: , , Como el valo e ceo, e ambos casos, es iético, poemos eci que ambos capitales: e el mometo 3 y , e el mometo 5, so equivaletes e ceo. Peo sólo e ese mometo., si hacéis la compobació paa el mometo 2 e luga e ceo, po ejemplo, veéis que o existe equivalecia. Vamos a compoba si estos os capitales sigue sieo equivaletes e MOMENTO 2: , , , ,46. E capitalizació simple, cuao os capitales so equivaletes e u mometo, o so equivaletes e igú oto. Si e luga e os capitales, hablamos e u cojuto e capitales que queemos sustitui po oto cojuto co istitos vecimietos a los pimeos, ebeemos tee e cueta lo siguiete: Paa que ua seie e capitales C 1, C 2, C t, co sus espectivos vecimietos e 1, 2,, t, sea equivalete a oto cojuto e capitales C 1, C 2,, C t, co vecimietos e 1, 2,, t, ebeá ocui que la suma e los valoes actuales el pime cojuto sea igual que la suma e los valoes actuales el seguo cojuto. Gestió Fiaciea 8 Reyes F.F.

9 GRAFICAMENTE: C 0t. C 02 C 01 C 0t. C 02 C 01 C 1 C 2 C t C 1 C 2 C t t t Si llamamos C 0t al valo actual (e el mometo ceo) el capital C t Si llamamos C 0t al valo actual (e el mometo ceo) el capital C t La equivalecia e los os cojutos e capitales implica que:. Es eci: (3) E la páctica mecatil, paa hace los cálculos e equivalecia se utiliza el escueto comecial. Es po ello que poemos eci que se ha e pouci iguala e los valoes efectivos e ambas popuestas. EJEMPLO: Compoba si los capitales e cuatía 100 y 200, co vecimieto eto e 60 y 80 ías espectivamete, so equivaletes a los capitales 80 y 223, que vece hoy y eto e 139 ías, si se egocia a u tato e escueto el 12% aual. Usaemos el año comecial paa efectua los cálculos Recuea que hemos icho que vamos a usa el escueto comecial paa efectua los cálculos, segú el cual el valo efectivo o actual (e el mometo el escueto) seía: Gestió Fiaciea 9 Reyes F.F.

10 1 VALOR ACTUAL EL PRIMER CONJUNTO E CAPITALES: , , , VALOR ACTUAL EL SEGUNO CONJUNTO E CAPITALES , , Como ambos cojutos e capitales tiee el mismo valo e el mometo ceo, poemos eci que ambas popuestas so equivaletes. Cuao se ha efectuao ua opeació e compa-veta y se ha acoao ua foma e pago puee ocui que el compao popoga al veeo el cambio e las letas o pagos peietes po ota u otas e vecimietos y cuatías ifeetes. El veeo sólo aceptaá el cambio si fiacieamete la pimea opció e pago es equivalete a la segua. Esa equivalecia se a cuao la suma e los valoes efectivos e la pimea opció es igual a la suma e los valoes efectivos e la segua, tal y como expesa el gáfico e la págia 7 y la expesió (3) Sea C 1, C 2... C t los omiales e las letas co vecimietos e 1, 2... t Queemos sustituilas po otas e omial C 1, C 2... C t, y vecimietos 1, 2.. t Paa que ambas popuestas sea equivaletes, ebeá ocui que la suma e los valoes actuales (efectivos) e los pimeos capitales sea igual a la suma e los e la segua popuesta, como ya se explicó e la págia ateio: Gestió Fiaciea 10 Reyes F.F.

11 . Paa hace la expesió ateio u poco más fácil, poemos tabaja co el iviso fijo, tal y como hemos apeio e la uia ateio. Usao el iviso fijo, la expesió ateio queaía e la siguiete foma:. Patieo e esa iguala se puee solucioa muchos casos, como: a. Busca el impote e u capital que sustituye a u cojuto e ellos b. Busca el vecimieto e u uevo pago, coocieo el esto e las vaiables. c. Calcula la cuatía e algú pago coceto.. Busca el tato que hace equivaletes las os opcioes SUSTITUCIÓN E UN CONJUNTO E CAPITALES POR UN ÚNICO CAPITAL: Tal y como hemos icho ateiomete, ebeá cumplise que el capital a sustitui sea equivalete al cojuto e capitales sustituios, paa lo cual sus valoes e el mometo actual (valoes efectivos pues ecoemos que vamos a utiliza el escueto mecatil paa este tipo e cálculos), ebeá se iguales, es eci: El valo efectivo el capital sustituto, ha e se igual a la suma e los valoes efectivos e los capitales sustituios Que usao el iviso fijo, tal y como hemos visto ateiomete: Gestió Fiaciea 11 Reyes F.F.

12 1 1 1 EJEMPLO: eseamos sustitui el pago e 4 capitales e 1.500, 2.000, 750 y euos, co vecimieto los ías 24 e mayo, 15 e juio, 12 e julio y 25 e agosto, po uo úico el ía 30 e juio. Cuál seá el valo e ese úico pago que sustituye a los 4, si se aplica el tipo e escueto el 5% a la opeació y la fecha e la opeació es el ía 1 e mayo? (año civil) EPOCA? /05 15/06 12/07 25/08 01/05 30/06 Lo pimeo que ebemos hace es cota los ías que meia ete la fecha e la opeació (EPOCA) y las fechas e vecimieto e los espectivos capitales. MY (31) EP: 01/05 JN (30) JL (31) AG (31) TOTAL IAS 1º L/C º L/C º L/C º L/C L/C a sustitui Gestió Fiaciea 12 Reyes F.F.

13 A cotiuació plateamos la iguala e valoes efectivos ete las os opcioes popuestas: a. Cuato letas e istitos impotes co vecimietos e mayo, juio, julio y agosto b. Ua úica leta co vecimieto el 30 e juio y cuyo omial escoocemos y es lo que ebemos calcula 1 0, , , ,05 0, , ,81 á 4 ó Clao que si pefiees apee la fómula e memoia, e luga e etee y aplica el cocepto e equivalecia e capitales, tambié poías habe hecho: ,81 Cosa que poía hace cualquiea que tuviea esa fómula aotaa, auque o tuviea i la más emota iea e lo sigifica la equivalecia e capitales. Se memoiza mejo aquello que se COMPRENE. Compee es explicase la lógica e po qué ua cosa es así y o e ota maea, es eci, qué setio tiee. Si compee, memoiza es más ifícil Gestió Fiaciea 13 Reyes F.F.

14 6.2.- VENCIMIENTO COMÚN El vecimieto comú se efie como el mometo e que u capital es equivalete a oto cojuto e capitales. Paa que ese cambio sea posible, ebeá cumplise: Aú poemos simplifica la expesió ateio, e la siguiete foma: Gestió Fiaciea 14 Reyes F.F.

15 EJEMPLO: Los ías 28 e los meses e abil, mayo y juio vece 3 efectos e omial euos caa uo. Si queemos sustituilos po u úico pago e ,16 euos, e qué fecha lo haíamos?. ebes tee e cueta que usamos año civil y el tipo e escueto aplicao es el 4,25% aual. La opeació se ealiza el 1 e abil: EPOCA /04 08/05 28/06 01/04? Lo pimeo que hacemos seá calcula los ías ese la fecha e que se ealiza la opeació (época) hasta el vecimieto e caa efecto AB (30) MY (31) JN (30) TOTAL ÍAS 1º L/C º L/C º L/C , , , , ,16 17, , , , , ,53 66,99 67 í 17, ías a pati el ía 1 e abil es el 7 e juio Gestió Fiaciea 15 Reyes F.F.

16 6.2.- VENCIMIENTO MEIO: Se tata e u caso especial el vecimieto comú, que se a cuao: El vecimieto comú etemia el mometo e que ebe sustituise los efectos,,,,.., po oto e omial, cuao El vecimieto meio es u caso especial el vecimieto comú, paa cuao sucee que: Pues bie, teieo e cueta TOO lo icho, si tomamos la expesió que os pemite calcula el vecimieto comú y tabajamos sobe ella, sustituyeo po su valo, teemos: 0 e too esto poemos euci e este caso paticula el vecimieto comú, que es el vecimieto meio, el tiempo : 1. Es iepeiete e el tato e iteés 2. La suma e los úmeos comeciales a sustitui es igual a la el uevo úmeo comecial: Gestió Fiaciea 16 Reyes F.F.

17 EJEMPLO: Queao 4 letas paa coclui el pago e ua máquia ueva e 1.000, 2.000, y euos, co vecimietos a 45, 65, 78 y 100 ías espectivamete, se esea sustitui po ua úica cuyo impote sea igual a la suma e los omiales, e qué fecha ebeía hacese, si la opeació se ealiza el 8% e escueto aual? ,9 í Cuao, aemás sucee que TOOS los capitales sea e igual cuatía, ocuiá: Gestió Fiaciea 17 Reyes F.F.

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE 1 OBJETIVOS Defiir escueto y valor actual. Distiguir las actualizacioes simples y compuestas. Ietificar los istitos tipos e escuetos. Demostrar fórmulas pricipales y erivaas. Resolver situacioes problemáticas.

Más detalles

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Maste de Cotabilidad, Auditoía y Cotol de Gestió INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Cuso 007/008 Cuso 007/008 Maste de Cotabilidad, Auditoía y Cotol de Riesgos DEPÓSITO FORWARD-FORWARD Acuedo

Más detalles

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES TEMA 2 ARITMÉTICA MERCANTIL MATEMÁTICAS CCSSI - 1º Bach. 1 TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la

Más detalles

U N I V E R S I D A D SAN MARTIN DE PORRES PROGRAMA LA UNIVERSIDAD INTERNA 2012 VALOR DEL DINERO EN ELTIEMPO

U N I V E R S I D A D SAN MARTIN DE PORRES PROGRAMA LA UNIVERSIDAD INTERNA 2012 VALOR DEL DINERO EN ELTIEMPO U N I V E R S I D A D D E SAN MARTIN DE PORRES PROGRAMA LA UNIVERSIDAD INTERNA 2012 Tema: VALOR DEL DINERO EN ELTIEMPO D. JORGE L. PASTOR PAREDES 1 INTERES SIMPLE El capital que geea los iteeses pemaece

Más detalles

4. PRÉSTAMOS. Préstamos 1 4.1. INTRODUCCIÓN. 4.1.1. Definición

4. PRÉSTAMOS. Préstamos 1 4.1. INTRODUCCIÓN. 4.1.1. Definición PRÉSTAMOS ae Badía, Hotèsia Fotaals, Meche Galisteo, José Mª Lecia, Mª Agels Pos, Teesa Peixes, Dídac Raíez, F. Javie Saasí y Aa Mª Sucaats DEPARTAMENTO DE MATEMÁTA EONÓMA, FNANERA Y ATUARAL Divisió de

Más detalles

±. C inicial = C inicial. Índice de variación

±. C inicial = C inicial. Índice de variación Aitmética mecatil: coteidos 2.1 Aumetos y dismiucioes pocetuales 2.2 Iteeses bacaios 2.3 Tasa aual equivalete ( T.A.E.) 2.4 Amotizació de péstamos 2.5 Pogesioes geométicas 2.6 Aualidades Pocetajes: C fial

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

TEMA 2 MATEMÁTICAS FINANCIERAS

TEMA 2 MATEMÁTICAS FINANCIERAS Tema Matemáticas fiacieas 1 TEMA MATEMÁTICAS FINANCIERAS EJERCICIO 1 : Po u atículo que estaba ebajado u 1% hemos pagado, euos. Cuáto costaba ates de la ebaja? 1 Solució: El ídice de vaiació es: IV = 1

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES

ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la catidad iicial paa obtee la catidad fial se llama ídice de vaiació.

Más detalles

LAZOS DE AMARRE DE FASE

LAZOS DE AMARRE DE FASE LAZOS DE AMARRE DE FASE Maco Atoio Péez Ciseos *, Mak Readma * Divisió de Electóica Computació, CUCEI, Uivesidad de Guadalajaa, México. Cosulto Cotol Sstems Piciples RESUMEN: Este atículo peteece a la

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES Mg. Mrco Atoio Plz Viurre LA TASA E ITERÉS ATICIPAA Y SUS APLICACIOES L ts e iterés veci es quell que se utiliz e u operció ficier cuy liquició se efectú l fil el u perioo y l ts e iterés ticip, ifereci

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Dos estrategias ganadoras para la opción Banxico

Dos estrategias ganadoras para la opción Banxico Dos estategias gaadoas paa la opció Baxico Begoña Feádez,* Mauel Galá** y Paticia Saaveda*** Fecha de ecepció: 7 de mayo de 00; fecha de aceptació: 6 de febeo de 003 Resume: Duate el peíodo de agosto de

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

APUNTES PARA LA MATERIA DE MATEMÁTICAS DISCRETAS

APUNTES PARA LA MATERIA DE MATEMÁTICAS DISCRETAS UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DEPARTAMENTO DE MATEMÁTICAS APUNTES PARA LA MATERIA DE MATEMÁTICAS DISCRETAS P R E S E N T A M.S.I. JOSÉ FRANCISCO VILLALPANDO

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

20: MEDIDA DEL CAMPO MAGNÉTICO CREADO POR CONDUCTORES

20: MEDIDA DEL CAMPO MAGNÉTICO CREADO POR CONDUCTORES áctica : MEDIDA DEL CAMO MAGNÉTICO CREADO OR CONDUCTORES OJETIVO Obseva la elació existete ete coietes elécticas y campos magéticos. Medi y aaliza el campo magético ceado e el exteio de distitos coductoes

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Facultad de iencias Económicas onvocatoia de Junio Pimea Semana Mateial Auxilia: alculadoa financiea MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 2 de Mayo de 202 hoas Duación: 2 hoas. Péstamos a) Teoía:

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

MODULO: MÉTODOS CUANTITATIVOS CURSO: 2011-2012

MODULO: MÉTODOS CUANTITATIVOS CURSO: 2011-2012 TEMA 2: La Tabla de otalidad: La otalidad coo feóeo disceto. Ideedecia, hoogeeidad, estacioaiedad. La tabla de otalidad y sus eleetos. Relació ete los eleetos de ua tabla de otalidad. Tios de seguo: Cálculo

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

GRAFICANDO EN COORDENADAS POLARES

GRAFICANDO EN COORDENADAS POLARES GRAFICANDO EN COORDENADAS POLARES Maía Guadalupe Amado Moeno, Ángel Gacía Velázquez Instituto Tecnológico de Meicali, Baja Califonia, Méico lupitaamado@hotmail.com, angel.g0@hotmail.com RESUMEN El tabajo

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Matemática Financiera Tasas de Interés y Descuento

Matemática Financiera Tasas de Interés y Descuento Matemática Fiaciera Tasas de Iterés y Descueto 3 Qué apredemos Noció fiaciera y matemática de las tasas de iterés y descueto. Iterpretació práctica. Distitos tipos de tasas: proporcioales, omiales, equivaletes

Más detalles

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera LAS FRACCIONES - Las fraccioes como parte de u todo - Nuestros amigos prueba su máquia del tiempo. Egipto les espera Despegamos! E la evolució del pesamieto humao, 000 años a. C., los egipcios comieza

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

6 PROPORCIONALIDAD DIRECTA E INVERSA

6 PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA EJERCICIOS PROPUESTOS. Completa la siguiente tabla paa que las magnitudes A y B sean diectamente popocionales. La azón de popocionalidad es: 0,25 A 3 0 23, 2 B 2,,75

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

OPTIMIZACIÓN PARA INGENIEROS (Notas de clase) Instructores: Luis Zerpa Juan Colmenares

OPTIMIZACIÓN PARA INGENIEROS (Notas de clase) Instructores: Luis Zerpa Juan Colmenares OPTIMIZACIÓN PARA INGENIEROS (Notas de clase) Istuctoes: Luis Zepa Jua Colmeaes Eeo 4 Ídice Geeal. OPTIMIZACIÓN...3. Mathematical Optimizatio Poblem o Mathematical Pogam...4.. Fomulació Geeal de u Poblema

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

DIRECCIÓN FINANCIERA I

DIRECCIÓN FINANCIERA I DIRECCIÓN FINNCIER I GRDO EN DMINISTRCIÓN DIRECCIÓN DE EMPRESS UNIVERSIDD DE VLLDOLID Este documeto ha sido elaboado po Susaa loso Bois, Pablo de dés loso, Valetí zofa Palezuela, José Maía Fotua Lido,

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones)

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones) Tema 2 (Pate II) Financiación n extena (Acciones y Obligaciones) 2.1. La financiación extena y el sistema financieo 2.2. Emisión de activos financieos negociables 2.3. Las acciones y su valoación 2.4.

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

Anova un factor y Kruskal-Wallis

Anova un factor y Kruskal-Wallis Aova u facto y Kuskal-Wallis Itoducció El aálisis de la vaiaza (Aova) se debe al estadístico-geético Si oald Ayle Fishe (890-96), auto del libo "Statistics Methods fo eseach Wokes" publicado e 95 y pioeo

Más detalles

Flotamiento de esferas

Flotamiento de esferas Flotamiento e esfeas M. C. José Antonio Meina Henánez Depatamento e Matemáticas y Física Univesia Autónoma e Aguascalientes Aquímies fue un científico giego nacio el año 287 a.c. en Siacusa (Sicilia),

Más detalles

Soluciones Actividades Tema 1

Soluciones Actividades Tema 1 Soluciones Actividades Tema 1 Actividades Unidad 1.- Busca infomación y discimina ente ciencia o falsa ciencia. a) Mal de ojo y amuletos. b) Astología: ceencia en los hoóscopos. c) Astonomía y viajes planetaios.

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio TÉCNICAS DE COMERCIO EXTERIOR Tema 7: El Mecado de divisas y la cobetua del iesgo de cambio 7..- Intoducción al mecado de cambios. Convetibilidad : Existe un mecado libe que define su pecio. Resticciones

Más detalles

INSTALACIONES DE PUESTA A TIERRA EN CENTROS DE TRANSFORMACIÓN

INSTALACIONES DE PUESTA A TIERRA EN CENTROS DE TRANSFORMACIÓN JUN MORENO CEMENTE D. geieo ustil NSTCONES DE PUEST TERR EN CENTROS DE TRNSFORMCÓN Segu Eició totlmete efom PTROCND POR SOCCÓN DE BSTECMENTOS DE GU Y SNEMENTOS DE NDUC.S.. Málg, 99 NDCE NTRODUCCÓN... 5

Más detalles

La Ley de la Gravitación Universal

La Ley de la Gravitación Universal Capítulo 7 La Ley de la Gavitación Univesal 7.1 La Ley Amónica de Keple La ley que Keple había encontado no elacionaba los adios con los cinco poliedos egulaes, peo ea igualmente simple y bella: Ley Amónica:

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte.

Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte. ROAMIENOS RIGIOS E OLAS Este tipo e oamientos son e uso geneal, ya que pueen absobe caga aial y axial en ambos sentios, así como las fuezas esultantes e estas cagas combinaas; a su vez, pueen opea a elevaas

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

El modelo ahorro-inversión Función de consumo: Función de inversión:

El modelo ahorro-inversión Función de consumo: Función de inversión: Capítulo 4 El lago plazo: el modelo ahoo-invesión con pleno empleo En este capítulo se estudia el equilibio ingeso-gasto en el modelo clásico de pecios flexibles y el equilibio ahoo-invesión. Asimismo,

Más detalles

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora)

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora) limpiaa e Física e la Región e Mucia 011 ARTE I (tiempo: 1 hoa) 1. Tio e tes! Vamos a escibi los tios a canasta meiante la cinemática el tio paabólico. Despeciaemos la esistencia con el aie. α h Situamos

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

La volatilidad implícita

La volatilidad implícita La volatilidad implícita Los mercados de opcioes ha evolucioado bastate desde los años setetas, época e la que ue publicada la órmula de Black Scholes (BS). Dicha órmula quedó ta arraigada e la mete de

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 Valuaió de u boo e ua feha etre uoes E lo que hemos isto hasta aquí sobre la determiaió del reio de u boo o uó hemos osiderado eriodos omletos, es deir, el úmero

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED CAPÍTULO 1 LA VALORACIÓN FINANCIERO-ACTUARIAL Y SU APLICACIÓN A LOS PLANES DE PENSIONES ANDRÉS DE PABLO LÓPEZ Catedático de Economía Financiea UNED RESUMEN En este tabajo se analiza la poblemática que

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

TEMA III: MATEMÁTICA FINANCIERA.

TEMA III: MATEMÁTICA FINANCIERA. TEMA III: MATEMÁTICA FINANCIERA. Sucesioes: Ua sucesió de úmeos eales es u cojuo odeado de úmeos eales: a, a2, a3, a4,....a cada uo de los úmeos que foma la sucesió se le llama émio de la sucesió. El émio

Más detalles

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0 TEMA 4: MODELO DE DETERMINACIÓN DE LA RENTA NACIONAL: EL SECTOR MONETARIO En el modelo de deteminación de la enta nacional desaollado hasta ahoa no hemos hablado de la cantidad de dineo ni de los tipos

Más detalles

Raimundo Giménez González * Junio de 2000

Raimundo Giménez González * Junio de 2000 INTERRELACIÓN DINÁMICA EN EL INTRADÍA ENTRE MERCADOS SPOT DE VALORES: UNA APLICACIÓN VAR SOBRE LA TRANSMISIÓN DE RENTABILIDAD MINUTO A MINUTO ENTRE LA BOLSA NORTEAMERICANA Y EL MERCADO CONTINUO ESPAÑOL

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA DEFINICIONES: CRÉDITO A LA MICROEMPRESA: So aquellos créditos que se otorga a persoas aturales y jurídicas que realiza algua actividad ecoómica por

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

APLICACION DE LAS VENTAJAS COMPARATIVAS RELATIVAS A LAS OPERACIONES SWAP.

APLICACION DE LAS VENTAJAS COMPARATIVAS RELATIVAS A LAS OPERACIONES SWAP. PLICCION DE LS VENTJS COMPRTIVS RELTIVS LS OPERCIONES SWP. Tinidad Sancho Fenando Espinosa Catedática de Escuela Univesitaia de Economía Financiea Contabilidad. Pofeso inteino. Depatamento de Matemática

Más detalles

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector Apénice D D-1 Apénice D. Estimación e os efectos capacitivos e inuctivos ente e inyecto y e etecto E acopamiento capacitivo e inuctivo ente e sistema inyecto y e etecto puee povoca eoes en a tensión etectaa.

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles