Funciones: Límites y continuidad.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones: Límites y continuidad."

Transcripción

1 Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma abreviada r cuando para cadúmero real ϵ> un número natural n tal que r <ϵ para cad n # Ejemplo.- La sucesión de término general = 2n n+ tiene por límite 2, ya que para cadúmero real ϵ> un número natural n tal que r <ϵ para cad n Por ejemplo, si tomamos ϵ=,, resolviendo la inecuación 2 n n+ 2 <ϵ n+ 2 <ϵ 2 n+ <ϵ n> 2 ϵ+ =999 Luego, para cualquier n > 999 se cumple la desigualdad r <, En la mayoría de las sucesiones de límites finitos, de forma intuitiva podemos calcular el límite de una sucesión estudiando su comportamiento mediante una tabla de valores. # Ejemplo, en la sucesión dada en el ejemplo, se cumplirá n + = 2n n+,88...,982, , # Ejemplo.- El límite de la sucesión c n = 3 +4 =, para ello basta con que hagamos una tabla de valores, de la cual se deduce que c n = n + c n = 2n n+,6,288,3,..., Si y b n son dos sucesiones de números reales tal que =P y b n =Q, entonces se cumplen las siguientes propiedades aritméticas de los límites: lím n ( +b n )=P+Q lím n ( b n )=P Q lím n (. b n )=P.Q

2 Funciones: límites y continuidad Matemáticas I 2 Si Q ;lím n( b n) = P Q Para el cálculo de límites de muchas sucesiones son útiles las propiedades aritméticas de los límites, que el el caso de que el término general sea una fracción algebraica de variable n, es decir de la forma = P(n) Q(n) n h ( h=mínimo( grado P, grado Q) ) ( P y Q polinomios ), dividiendo el numerador y el denominador por # Ejemplo.- Para calcular el límite de la sucesión = 4 n2 +n +, si dividimos por, el numerador y el denominador del término de la sucesión, utilizando las propiedades epuestas anteriormente, tenemos = 4 +n + 4 n 2 n + n 2 = + Limites más y menos infinitos de una sucesión definición 4+ n = + = =4 El límite de una sucesión, también puede ser + y, mediante la siguiente + Decimos que una sucesión numérica ( ) n= tiene por límite + y se escribe =+ o de forma abreviada + cuando para cadúmero real positivo K un número natural n tal que >K para cad n + Decimos que una sucesión numérica ( ) n= tiene por límite y se escribe = o de forma abreviada cuando para cadúmero real positivo K un número natural n tal que <K para cad n Sin embargo, como sucede con las sucesiones de límites finitos, en la mayoría de las sucesiones de límites infinitos, de forma intuitiva podemos calcular el límite de una sucesión estudiando su comportamiento mediante una tabla de valores. También, para el cálculo de límites son útiles las propiedades aritméticas de los límites.

3 Funciones: límites y continuidad Matemáticas I 3 # Ejemplo.- El límite de la sucesión =5. =+, para ello basta con que hagamos una tabla de valores, de la cual se deduce que = n + = # Ejemplo.- Para calcular el límite de la sucesión = 4n3 +n +, el numerador, tenemos, si dividimos por = 4 n 3 +n + 4 n 3 n + n 2 = + Límites finitos para un valor finito de una función 4n+ n = + = Si I es un intervalo de la recta real, tal que ni ni + sean etremos de I, c es un punto del intervalo I (o de sus etremos) y sea f : I R es una función real. Decimos que el límite de (finito), cuando tiende c, y se escribe lim c f ( )=L f tiene a L si para cualquier intervalo abierto (entorno) H f ( I ), eiste un intervalo (entorno) I, f ( ) f (I ) Utilizando notación matemática: J I, tal lim c f = L cuando tal que: f L c # Ejemplo.- Si f =2. 3 se cumple que lim 2 2 3= puesto tal que f = 2 3 = 2 4, como se cumplirá 2 +4<ϵ y 2 4<ϵ será 2 2 = definición Luego, si tomamos = 2, se cumple la

4 Funciones: límites y continuidad Matemáticas I 4 Sin embargo, en muchas ocasiones de forma intuitiva (dando valores a cercanos al punto c) podemos deducir el lim c f ( ) # Ejemplo.- El lim 2 2 =4, ya que, para ello basta con que hagamos una tabla de valores y tomemos valores de próimos a 2 ( deduce dicho límite por la izquierda y por la derecha ) de la cual se,9,99,999, ,6 3,96 3,996 3, , 2, 2, 2, ,4 4,4 4,4 4, La definición de límite se puede etender al infinito, si tomamos ó o si tomamos L= ó L=, y teniendo en cuenta que en el infinito los intervalos son de la forma (, r) o (r,+ ), podemos definir de forma general lim c f = L tal y como se resume en la siguiente tabla lim c f = L L= L R L= c= c R c= t R, s R / f t s t R, / f t c t R, s R /, s R / f L s, / f L c, s R / t R, s R / f t s t R, / f t c t R, s R / f t s f L s f t s # Ejemplo.- La función f = tiene lim =, puesto que tal que f = cumple la definición. =, será =s. Luego, si tomamos s= se

5 Funciones: límites y continuidad Matemáticas I 5 Sin embargo, al igual que pasa con los límites finitos, en muchas ocasiones de forma intuitiva podemos deducir el lim c f ( ) # Ejemplo.- El lim 2 =+, ya que si tomamos una tabla de valores y observamos su comportamiento cuando Luego, lim 2 =+ Otra posible definición, utilizando sucesiones es la siguiente Una función f tiene por límite L en =u, si para toda sucesión de valores n u, del dominio de f, que tenga por límite u, la sucesión de los valores correspondientes f n tiene por límite L. Teniendo en cuenta que u puede ser un número real, o, y también puede ser L un número real, o. Esta última definición, la podemos utilizar para calcular los límites laterales de f en un punto c, cuando nos aproimamos a c por la izquierda y por la derechas respectivamente, y que denominamos lim c - f y lim c + f # Ejemplo.- Dada la función f = 2, para calcular los límites laterales en =2, podemos definir las sucesiones que tienden a 2, por la izquierda y derecha respectivamente dadas por,9;,99;,999;,9999; 2,; 2,; 2,; 2, ; Y podemos obtener Límite por la izquierda Límite por la derecha,9,99,999, , 2, 2, 2,... f(),9 2,99 2,999 2, f(),9 2,99 2,999 2, Que se observa que en ambos caso f() tiende a 4, cuando tiende a 2 Si L=lim c f, se cumple lim c - f =L=lim c + f. Luego, este resultado lo podemos utilizar para ver que una función f, no tiene límite en un punto c, si encontramos dos límites laterales distintos.

6 Límites indeterminados. Decimos que lim c Funciones: límites y continuidad Matemáticas I 6 f es un límite indeterminado, si al intentar calcular el límite como operación o composición de límites obtenemos en términos de límites epresiones de la forma ; ;. ; ; ; ; En el caso de límites indeterminados si eisten, no se pueden calcular directamente, si no que se debe de transformar la epresión previamente. # Ejemplo.- Para que valores el límite de la función f = 4 2 indeterminado?. Calcula lim f. es un límite El límite es indeterminado para los valores en los que se anula el denominador, es decir para = y =, ya que en estos casos se obtiene un límite de la forma lim f =lim 4 2 =lim f =lim 4 2 = lim f =lim 4 2 =lim f =lim 4 2 =, por ser Sin embargo, a pesar de ser lim f para = un límite indeterminado, como Se cumple 4 2 = 2. 2 = 2 2 lim f =lim 4 2 =lim 2 = 2 =2 Límites polinomios, funciones racionales y funciones irracionales En el caso de los polinomios de la forma P ()= n + n + +a a +a para cualquier c R, se cumple lim c P( )= c n + c n + +a a c+a Si >, se cumplirá lim P( )= { si n es impar + si n es par } lim + P( )=+ Si <, se cumplirá lim P( )= { + si n es impar si n es par } lim + P( )=

7 Funciones: límites y continuidad Matemáticas I 7 # Ejemplo.- lim 2 3 +=2( ) 3 ( )+= En el caso de fracciones algebraicas de la forma polinomios de grado m y n respectivamente. f ()= P () Q( ) con P() y Q() dos Los puntos en los que se anule el denominador, serán puntos en los que no eiste el límite o puntos de indeterminación del límite, salvo que la fracción se pueda simplificar y se pueda calcular el límite. Y en el caso de límites de la forma, dividiendo el numerador y denominador por min(m,n) posiblemente indeterminación. (aplicando las propiedades algebraicas de los límites) desaparecerá la # Ejemplos.- Como lim es de la forma. Teniendo en cuenta que lim - lim = y lim + =+, no eiste Como lim f ( )=lim 4 2 es de la forma, pero como 4 2 = 2. 2 = 2, se cumple lim 2 f ( )=lim 2 += 2 +=2 Como lim f ( )=lim es de la forma + +, dividiendo el numerador y el denominador por 2, se cumple lim f ( )=lim =4 En el caso de funciones irracionales la forma f ()= P( ) con P() un polinomio, las indeterminaciones de la forma o, se suele multiplicar por la epresión radical conjugada, y en ocasiones desaparece la indeterminación.y en el caso de límites de la forma, en funciones de la forma f ()= P( ) Q( ) con grado P=m y gradoq=n, dividiendo el

8 numerador y denominador por los límites) desaparecerá la indeterminación. Funciones: límites y continuidad Matemáticas I 8 # Ejemplo lim + =lim + min ( m 2, n ) posiblemente (aplicando las propiedades algebraicas de = Funciones equivalentes. Límites de funciones trigonométricas. Teniendo en cuenta que las funciones trigonométricas son periódicas, epondremos algunos ejemplos de límites de funciones trigonométricas que nos pueden ser útiles para el cálculo de otros límites o de funciones derivadas sen # Ejemplo.- lim =, ya que teniendo en cuenta que en un entorno de, se cumple ( ver figura ) sen <<tg < sen < tg sen > sen >cos Y teniendo en cuenta que Se cumplirá lim cos = sen lim >lim >lim cos = Luego sen lim = Diremos que dos funciones f () y g() son equivalentes en un punto =u si lim f ( ) g ( ) = # Ejemplos.- sen sen y son equivalentes en =, ya que lim = Utilizando las funciones equivalentes en un punto podemos resolver algunas indeterminaciones, pues por ejemplo como sen 6 6 en =, se cumplirá lim =lim 6 6 =6 sen 6 y 6 son funciones equivalentes

9 # Ejemplo.- lim cos Continuidad en un punto Funciones: límites y continuidad Matemáticas I 9 2( 2 sen =lim 2) = 2 = lim sen( 2) ( 2) sen =lim 2( 2)( 2) = lim 2 Decimos que la función f es continua en un punto c, cuando eiste lim c f y se cumple lim c f = f c. = # Ejemplo.- La función f =, no es continua en =, ya que en este punto ni está definido f, ni eiste el límite. Continuidad lateral. Continuidad en un intervalo. Continuidad lateral. Decimos que la función f es continua por la izquierda en el punto c, cuando eiste lim c - f y se cumple. lim c - f = f c Decimos que la función f es continua por la derecha en el punto c, cuando eiste lim c + f y se cumple. lim c + f = f c # Ejemplo.- La función f =[ ] (parte entera de ), es continua por la derecha en =, pero discontinua por la izquierda, ya lim - f = f = lim + f = f =

10 Funciones: límites y continuidad Matemáticas I Continuidad en un intervalo. Decimos que la función f es continua en un intervalo a, b si lo es en cada uno de sus puntos. Y decimos que la función f es continua en un intervalo [a, b] si lo es en cada uno de sus puntos de a, b, y además, es continua por la derecha en a y por la izquierda en b. # Ejemplo.- Si observamos las gráficas de las funciones f = 2, g =, h=[ ], vemos que f es continua en cualquier intervalo real, g no es continua en [,], ya que g no está definida en =, y la función h tampoco es continua en el intervalo [,2], puesto que es discontinua en =. f g h Discontinuidades. Teniendo en cuenta, que si una función f está definida en el entorno simétrico de un punto c, entonces f es continua en =c lim c f = f c. Una función es discontinua en un punto =c cuando se cumple una de las dos condiciones siguientes lim c f f c o lim c - f lim c + f Discontinuidad evitable. Decimos que la función f tiene una discontinuidad evitable en =c, cuando eiste lim c f y lim c f f c. Al valor lim c f, lo denominamos valor verdadero de la función en =c. # Ejemplo.- La función f ={ 2 si tiene una discontinuidad evitable en si =} =, de valor verdadero lim f = Discontinuidad inevitable. Decimos que la función f tiene una discontinuidad inevitable en =c, cuando eisten lim c - f ;lim c + f y se cumple lim c - f lim c + f. Al valor

11 infinito. Funciones: límites y continuidad Matemáticas I lim c + f lim c - f se le denomina salto de la función f en el punto =c, y puede ser finito o si # Ejemplo.- La función f si = ={ si } inevitable en =. El salto de la función en = es 2. es una función de discontinuidad # Ejemplo.- La función es f = es una función de discontinuidad inevitable en =. El salto de la función = es.

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

TEMA 6 LÍMITE Y CONTINUIDAD

TEMA 6 LÍMITE Y CONTINUIDAD TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O FUNDACIÓN VEDRUNA S E V I L L A COLEGIO SANTA JOAQUINA DE VEDRUNA MATEMÁTICAS I LÍMITES Y CONTINUIDAD DE FUNCIONES Límite finito de una función en un

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Aproximación intuitiva al concepto de límite de una función en un punto

Aproximación intuitiva al concepto de límite de una función en un punto Aproimación intuitiva al concepto de límite de una función en un punto ) Consideremos el siguiente gráfico Cuando los valores de se aproiman a 8 por la derecha, las imágenes de se acercan a 4 Cuando los

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

Limites: Definición: lim

Limites: Definición: lim Limites: Definición: El concepto de límite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Por ejemplo: Consideremos la función yy

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Límites y continuidad

Límites y continuidad 9 Matemáticas I : Cálculo diferencial en IR Tema 9 Límites y continuidad 9. Límite y continuidad de una función en un punto Definición 9.- Un punto IR se dice punto de acumulación de un conjunto A si,

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

Límite de una función

Límite de una función CAPÍTULO 3 Límite de una función OBJETIVOS PARTICULARES. Comprender el concepto de límite de una función en un punto. 2. Calcular, en caso de que eista, el límite de una función mediante la aplicación

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Continuidad, límites y asíntotas

Continuidad, límites y asíntotas 9 Continuidad, ites y asíntotas. Funciones especiales Piensa y calcula Completa la siguiente tabla: Parte entera de Parte decimal de Valor absoluto de 0,3 0,3,8,8 2,4 2,4 3,9 Ent () Dec () 3,9 0,3 0,3,8,8

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

Identificación de inecuaciones lineales en los números reales

Identificación de inecuaciones lineales en los números reales Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

Límite de una función en una variable

Límite de una función en una variable MATERIA : MATEMÁTICA I CURSO: Ier AÑO EJE ESTRUCTURA : III - ÍMITE Y CONTINUIDAD GRUPOS CONCEPTUAES: ro ímite funcional do Continuidad TEMARIO: - TEMA : ímite - TEMA : Asíntotas - TEMA : Continuidad. Introducción

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

Límites y continuidad

Límites y continuidad Límite funcional 6 6. Límite funcional 79 6.2 Límites infinitos y en el infinito 8 6.3 Cálculo de límites 83 6.4 Continuidad 84 6.5 Teorema del valor intermedio 87 6.6 Monotonía 89 6.7 Ejercicios 9 La

Más detalles

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones. 10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

6 EXPRESIONES FRACCIONARIAS Y RADICALES

6 EXPRESIONES FRACCIONARIAS Y RADICALES EJERCICIOS PROPUESTOS. Halla el valor numérico de la fracción 7 0 para los valores, 0 y. 8 Para : Para 0: 0 0 Para : 7 0 0. Valor indeterminado. 8 0 7 0 0 0 5 0 8 8. 7 0. No eiste valor numérico. 8 0.

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Límite y continuidad de una función

Límite y continuidad de una función UNIDAD Límite y continuidad de una función E n esta Unidad, de forma descriptiva, sin usar un aparato matemático ecesivamente riguroso, aunque manejando la notación habitual, se introduce el cálculo infinitesimal:

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

Límite de una función

Límite de una función CAPÍTULO Límite de una función Álgebra de ites Es bastante claro intuitivamente lo siguiente: Si eisten f / y g/ entonces: Œf / C g/ f / C g/ Œf / g/ f / g/ Œf / g/ f / g/ Œf /=g/ f /= g/ si g/ 0 Esto

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

Universidad de Sonora

Universidad de Sonora Universidad de Sonora Departamento de Matemáticas. Notas: Límites y Continuidad Dr. José Luis Díaz Gómez 2003 Límites y Continuidad de funciones 1. EL PROCESO DEL LÍMITE Mediante gráficos y tablas de valores

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014

Departamento de Matemáticas. 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 IES SAN BENITO Departamento de Matemáticas 1º BACHILLERATO Ciencias y Tecnología CONVOCATORIA EXTRAORDINARIA DE SEPTIEMBRE 2014 PRUEBA EXTAORDINAORIA: La Prueba de septiembre será únicamente de contenidos

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

LÍMITES Y CONTINUIDAD (asíntotas) Tema 6. Matemáticas Aplicadas CS I 1

LÍMITES Y CONTINUIDAD (asíntotas) Tema 6. Matemáticas Aplicadas CS I 1 LÍMITES Y CONTINUIDAD (asíntotas) Tema 6 Matemáticas Aplicadas CS I 1 FUNCIONES DE PROPORCIONALIDAD INVERSA Tema * 1º BCS Matemáticas Aplicadas CS I 2 FUNCIÓN DE PROPORCIONALIDAD INVERSA LA FUNCIÓN DE

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

José Vicente Ugarte Susaeta. Profesor de la Universidad Comercial de Deusto

José Vicente Ugarte Susaeta. Profesor de la Universidad Comercial de Deusto MATEMÁTICAS PARA ECONOMÍA Y EMPRESA CÁLCULO DE UNA VARIABLE José Vicente Ugarte Susaeta Profesor de la Universidad Comercial de Deusto Con la colaboración de Miguel Ángel Larrinaga Ojanguren Profesor de

Más detalles

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + :

2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + : LÍMITES LECCIÓN 6 Índice: Cálculo de ites en el infinito. Epresión indeterminada -. Epresión indeterminada /. Epresión indeterminada 0. Epresión indeterminada ±. Límites de sucesiones. Cálculo de ites

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------

Más detalles

Continuidad, límites y asíntotas. Funciones

Continuidad, límites y asíntotas. Funciones 9 Continuidad, ites y asíntotas Funciones Introducción El estudio de la continuidad de una función se inicia desde el análisis de la gráfica de la función. Este análisis, intuitivo y fácil, pero insuficiente

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN La gráfica de una función elemental puede presentar ninguna una o varias asíntotas verticales y además puede presentar a lo sumo una asíntota horizontal o una asíntota

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

Información importante

Información importante Coordinación de Matemática I (MAT01) 1 er Semestre de 010 Semana 7: Lunes 3 viernes 7 de Mayo Información importante El proceso de apelación del primer certamen comienza esta semana. Los cuadernillos los

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a 3 Derivación 3.. La derivada La derivada de una función en punto a de su dominio está dada por la fórmula f (a) = lím a f() f(a) a El cociente f() f(a) a es la pendiente de la recta secante a la función

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles