Práctica nº 1. En esta práctica los alumnos deberán afianzar los conocimientos sobre el cálculo de errores.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica nº 1. En esta práctica los alumnos deberán afianzar los conocimientos sobre el cálculo de errores."

Transcripción

1 Práctica nº 1 El objetivo de esta práctica es que los alumnos aprendan a utilizar los conceptos de teoría de errores adquiridos en el tema 2 relativos a medidas pesadas y ponderadas. En esta práctica los alumnos deberán afianzar los conocimientos sobre el cálculo de errores. Media ponderada y peso Como sabemos, la media es el valor más probable de una serie de medidas siempre que hayan sido realizadas con la misma precisión. Sin embargo, en el caso de que las medidas se realicen con distintas precisiones, a consecuencia de utilizar diferentes aparatos, habrá que aplicar la media ponderada. En el primer caso, el valor más probable será: Mientras que en el segundo es: VMP = ( m i ) / n VMP = ( p i mi) / p i Siendo p i el peso de cada valor m i, sabiendo que los pesos son inversamente proporcionales a los cuadrados de la desviación estándar de la media s m. Ejemplo 1 Calcular la media ponderada de un ángulo medido con diferentes aparatos sabiendo que los resultados obtenidos son los siguientes: Solución Aparato Medidas realizadas Valores obtenidos e m c = s A 5 144º 22 57,9 ± 2 B 4 144º 22 58,8 ± 4 C º 22 59,4 ± 3 La desviación estándar de la media y sus respectivos pesos serían: Aparato s m Peso Peso = 1* A 2 / (5) 0,5 = 0,894 1 / (s ma ) 2 = 5 / 4 4 (5 / 4) = 5** B 4 / (4) 0,5 = 2 1 / (s mb ) 2 = 1 / 4 4 (1 / 4) = 1 C 3 / (15) 0,5 = 0,775 1 / (s mc ) 2 = 5 / 3 4 (5 / 3) = 6,7*** Nota: * = Igualamos uno de los pesos a 1; ** = El aparato A es 5 veces más preciso que el B; *** = El aparato C es 6,7 veces más preciso que el B.

2 El valor pedido de la media ponderada correspondiente a los segundos de cada valor angular, a consecuencia de ser iguales los grados y los minutos, es: VMP = [{(57,9 5) + (58,8) 1 + (59,4) 6,7} / { ,7}] = 58,8 O lo que es lo mismo: VMP = 144º 22 58,8 Ejemplo 2 (ejercicio del examen final del primer parcial realizado el 02/07/2012) Mediante técnicas fotogramétricas, y sobre fotografías aéreas, se ha podido determinar la diferencia de altura entre picos de una cadena de montañas, obteniéndose los siguientes resultados: Diferencia de altura (m) Peso de la medida Desde Pico A al Pico B 43,2 1 Desde Pico B al Pico C 31,7 1 Desde Pico C al Pico D 25,9 1 Desde Pico D al Pico A -100,4 1 Desde Pico B al Pico D 56,8 2 Sabiendo que la altura real del Pico A es de 1.343,1 metros, calcular la altura de los restantes Picos que conforman la cadena de montañas si debe cumplirse que: Solución F = Peso i (residuo i ) 2 sea un mínimo; con i = 1, 2, 3, 4, 5. Analizando el enunciado observamos varias cosas interesantes. En primer lugar, en cuanto al número de variables se refiere, vemos que tenemos un total de dos, a saber, altura real (que indicaremos con letra mayúscula) y diferencia de altura (que denotaremos con letra minúscula). Según esto, y dado que nos dan como dato la altura real al punto A, así como la diferencia de altitud a éste u otro punto, podemos escribir: A = A + a que, a consecuencia de que la diferencia de altura de A a A es cero, queda como A = A. B = A + b // C = A + c // D = A + d // A = D d // D = B + c - b. En segundo lugar, y mediante la aplicación de la teoría de errores, sabemos que el residuo e i o r i es igual a la diferencia entre el valor más probable de la medida VMP i y el propio valor de la medida m i, esto es: e i = r i = VMP i - m i. Sin embargo observamos en la tabla de datos expuesta al principio del problema, que sólo tenemos una medida de diferencia de altura cada dos puntos, motivo éste que hace que tengamos que considerar cada uno de dichos valores como el VMP de cada uno de

3 los diferentes residuos existentes. Es por ello que el valor a calcular, en primera instancia, será el correspondiente al incremento de altitud (que coincide con el valor de m i de cada residuo). Dicho valor m i, con i = 1,.., 5 (ya que tengo cinco filas de datos), vendrá expresado de la siguiente forma: m 1 = b a como a = 0 m 1 = b. m 2 = c b // m 3 = d c // m 5 = d b. m 4 = a d como el incremento de altitud es negativo, y con el fin de que todos los valores calculados salgan positivos, es equivalente a decir m 4 = d a = d. De esta manera, en este tipo de ejercicios, bastará con plantear las ecuaciones de los residuos, las cuales quedarían como sigue teniendo presente lo indicado líneas arriba: r 1 = 43,2 b // r 2 = 31,7 (c b) // r 3 = 25,9 (d c) // r 4 = 100,4 d // r 5 = 56,8 (d b) Posteriormente, y con el fin de facilitar el cálculo, se realiza una simple tabla con los datos procedentes de las ecuaciones de residuos, así como con el peso correspondiente a cada valor de incremento de altitud: Peso b c d Término ind , , , , ,8 Llegados a este punto se obtienen las ecuaciones normales siguiendo los pasos especificados a continuación: 1) Para cada incógnita (b, c y d en nuestro caso) y siempre por filas, se multiplica el peso y el coeficiente de dicha incógnita por cada uno de los valores de la fila distintos de cero. En el presente ejercicio, la incógnita b aparece tres veces con valores no nulos, por lo que: 1 (-1) (-1) b + 1 (-1) 43,2 = 0 para la primera fila b (-1) c ,7 = 0 para la segunda fila b (-1) d ,8 = 0 para la tercera fila. 2) Se suman las ecuaciones obtenidas para la incógnita especificada, siendo el resultado del paso anterior, tras simplificar, el que sigue: 4b c 2d + 102,1 = 0 esta es la primera ecuación normal.

4 3) Se hace lo mismo para el resto de las incógnitas, obteniéndose las otras dos ecuaciones normales: - b + 2c d 5,8 = 0 esta es la segunda ecuación normal. -2b c + 4d 239,9 =0 esta es la tercera ecuación normal. Una vez obtenidas las ecuaciones normales, procederemos a resolver el sistema de ecuaciones: 1ª ecuación 4b c 2d + 102,1 = 0 2ª ecuación - b + 2c d 5,8 = 0 3ª ecuación -2b c + 4d 239,9 =0 Para su resolución, podemos despejar b de la 2ª ecuación: b = 2c d 5,8 Sustituyendo dicho término en la 1ª y 3ª ecuación obtenemos: 1ª ecuación 8c 4d - 23,2 c 2d + 102,1 = 0 = 7c 6d + 78,9 3ª ecuación -4c + 2d + 11,6 c + 4d 239,9 = 0 = -5c + 6d 228,3 Si restamos ambas ecuaciones nos queda: 0 = 2c 149,4 c = 74,7 m. Sustituyendo ahora dicho valor en la 1ª ecuación: 0 = 7c 6d + 78,9 0 = -6d + 601,8 d = 100,3 m. Y, por último, sustituyendo c y d en b = 2c d 5,8 : b = 149,4 100,3 5,8 b = 43,3 m. Según esto, las alturas reales de cada uno de los puntos serán, mediante la aplicación de las ecuaciones expuestas al principio del ejercicio, las siguientes: A = A = 1.343,1 m. (dato). B = A + b = 1.343,1 + 43,3 = 1.386,4 m. C = A + c = 1.343,1 + 74,7 = 1.417,8 m. RESULTADO D = A + d = 1.343, ,3 = 1.443,4 m. A = D d = 1.443,4 100,3 = 1.343,1 m. (dato). D = B + c b = 1.386,4 + 74,7 43,3 = 1.417,8 m.

5 Además, en este momento, y no antes (ya que teníamos que calcular el valor de cada diferencia de altitud), podemos calcular los residuos correspondientes a cada una de las cinco medidas realizadas, y que como podemos observar son, en este caso, distintos de cero: r 1 = 43,2 b = 43,2 43,3 = -0,1 m. r 2 = 31,7 (c b) = 31,7 (74,7 43,3) = 0,3 m. r 3 = 25,9 (d c) = 25,9 (100,3 74,7) = 0,3 m. r 4 = 100,4 d = 100,4 100,3 = 0,1 m. r 5 = 56,8 (d b) = 56,8 (100,3 43,3) = -0,2 m. Tras finalizar el ejercicio, y tal como se ha visto en clase de teoría, podemos llegar a las siguientes conclusiones: a) En topografía es muy difícil obtener el valor exacto de una medida a consecuencia de los errores presentes en los propios instrumentos topográficos. Lógicamente éstos se pueden ver incrementados por otros tipos de errores, motivo por lo que habrá que tomar las medidas oportunas para que la medición se realice en aquellas condiciones que los minimicen. b) A consecuencia de lo anterior podemos decir que el residuo de una medida no tiene por qué ser cero, pudiendo ser una barbaridad realizar tal consideración en función, entre otros motivos, del tipo de instrumento utilizado para medir. En el caso que nos ocupa, si se hubiese considerado que los residuos son nulos, sin tener además presente la precisión de la medida efectuada a través del peso, los resultados hubieran sido: r 1 = 43,2 b = 0 b = 43,2 m. B = A + b = 1.386,4 m. r 2 = 31,7 (c b) = 0 c = 74,9 m. C = A + c = m. r 3 = 25,9 (d c) = 0 d = 100,8 m. D = A + d = 1443,9 m. aparentemente correctos, pero lógicamente carentes de precisión (pudiéndose pensar incluso que se podido producir una manipulación de los datos), sobre todo si se nos encarga su cálculo de cara a la realización de grandes obras civiles. Las personas que hagan esta consideración bien no han comprendido la teoría de errores explicada en la clase de teoría, o bien no se la han leído. La diferencia entre precisión y exactitud, especificada en clase, es muy importante en el presente problema. Por último hay que especificar, y hacer especial hincapié, en la gran diferencia que existe entre éste tipo de ejercicios en los que tengo sólo una medida (VMP) procedente de un trabajo anterior, y para poder calcular el residuo necesito aplicar pesos en función de la precisión de cada una de las medidas efectuadas (a mayor precisión más peso) con el fin de obtener el valor propio de la medida, y, el tipo de ejercicio a realizar en la práctica nº 2, en donde, sin tener ninguna medida, se miden (de forma directa o indirecta) varias veces cada uno de los valores

6 pertenecientes a una misma alineación o ángulo, se calcula su VMP y, a posteriori, el residuo a través de la ecuación e i = r i = VMP i - m i. Bibliografía para saber más (ambos libros en biblioteca de la ETSIA) Chueca Pazos, M.; Herráez, J.; Verné Valero, J.L. (1996). Tratado de topografía. Tomo I: teoría de errores e instrumentación. Ediciones Paraninfo S.A. Wolf, P.R.; Ghilani, C.D. (2006). Elementary Surveying: An Introduction to Geomatics. Eleventh edition. Pearson Prentice Hall, New Jersey.

SISTEMAS DE ECUACIONES LINEALES TRABAJO PRÁCTICO Nº 3

SISTEMAS DE ECUACIONES LINEALES TRABAJO PRÁCTICO Nº 3 BLOQUE I: SISTEMAS DE ECUACIONES LINEALES TRABAJO PRÁCTICO Nº 3 Los sistemas de ecuaciones lineales con dos incógnitas pueden ser: única solución infinitas soluciones no tienen solución rectas que se cortan

Más detalles

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta. Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

TEOREMA DE PITÁGORAS. INTRODUCCIÓN

TEOREMA DE PITÁGORAS. INTRODUCCIÓN TEOREMA DE PITÁGORAS. INTRODUCCIÓN Pitágoras es muy conocido, a pesar de que no publicó ningún escrito durante su vida. Lo que sabemos de Pitágoras ha llegado a través de otros filósofos e historiadores.

Más detalles

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,

Más detalles

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I Sistemas de Ecuaciones Lineales, Método de Gauss Parte I Ecuación lineal con n incógnita ES cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,

Más detalles

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores). Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

Más detalles

Ejercicio 3 de la Opción A del modelo 1 de 2008.

Ejercicio 3 de la Opción A del modelo 1 de 2008. Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

27/01/2011 TRIGONOMETRÍA Página 1 de 7

27/01/2011 TRIGONOMETRÍA Página 1 de 7 β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tema 1 Sistemas de ecuaciones lineales 11 Definiciones Sea K un cuerpo Una ECUACIÓN LINEAL CON COEFICIENTES EN K es una expresión del tipo a 1 x 1 + + a n x n = b, en la que n es un número natural y a

Más detalles

CRITERIOS DE EVALUACIÓN

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Recuperación de Matemáticas. 2º de E.S.O. CRITERIOS DE EVALUACIÓN RESOLUCIÓN DE PROBLEMAS

Más detalles

1. Resolver los siguientes sistemas de ecuaciones de 1 er grado por el método de sustitución, y comprobar

1. Resolver los siguientes sistemas de ecuaciones de 1 er grado por el método de sustitución, y comprobar FICHA 3: 83 sistemas de ecuaciones de 1 er grado EJERCICIOS de ECUACIONES y SISTEMAS 3º ESO 1. Resolver los siguientes sistemas de ecuaciones de 1 er grado por el método de sustitución, y comprobar mentalmente:

Más detalles

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

PRÁCTICA 1 BALANCEO DE UN ROTOR RÍGIDO

PRÁCTICA 1 BALANCEO DE UN ROTOR RÍGIDO Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 1.1. Objetivo PRÁCTICA 1 BALANCEO DE UN ROTOR RÍGIDO Balancear un rotor rígido

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución

Más detalles

Definiciones I. Definiciones II

Definiciones I. Definiciones II Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. Esta igualdad es una

Más detalles

TEMA 3 SISTEMAS DE ECUACIONES LINEALES

TEMA 3 SISTEMAS DE ECUACIONES LINEALES TEM SISTEMS DE ECUCIONES LINELES. Sistemas de ecuaciones lineales. Epresión matricial. Ejemplo Epresa en forma matricial los siguientes sistemas de ecuaciones lineales: 9 5, Solution is: 9, 9 Se trata

Más detalles

ELECTRICIDAD Y MAGNETISMO TRABAJO PRÁCTICO Nº 11 "INSTRUMENTAL Y MEDICIONES ELECTRICAS"

ELECTRICIDAD Y MAGNETISMO TRABAJO PRÁCTICO Nº 11 INSTRUMENTAL Y MEDICIONES ELECTRICAS ELECTRICIDAD Y MAGNETISMO TRABAJO PRÁCTICO Nº 11 "INSTRUMENTAL Y MEDICIONES ELECTRICAS" CONTENIDOS Conceptos básicos de mediciones eléctricas. Tipos de instrumentos de medición. Descripción y Uso de los

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría accés a la universitat dels majors de 25 anys acceso a la universidad de los mayores de 25 años UNIDAD DIDÁCTICA 6: Trigonometría ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4.

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - 3º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

MÉTODO DE DETERMINANTES. Es una notación matemática formada por una tabla cuadrada de números y está formada por una Matriz Cuadrada.

MÉTODO DE DETERMINANTES. Es una notación matemática formada por una tabla cuadrada de números y está formada por una Matriz Cuadrada. MÉTODO DE DETERMINANTES Es una notación matemática formada por una tabla cuadrada de números y está formada por una Matriz Cuadrada. El orden de una determinante cuadrada es el número de elementos de cada

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales.

Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales. REGLA DE TRES SIMPLE La regla de tres simple es una herramienta muy útil y a la vez muy fácil de usar. La utilizamos diariamente, por ejemplo, cuando deseamos saber cuánto costarán 3 kg de naranjas, si

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES Ecuación es una igualdad que contiene por lo menos una incógnita, que se representa por medio de una letra, cuyo valor se debe averiguar. Por ejemplo: 3x + 2 = 4 donde debemos calcular

Más detalles

Observa que las figuras no están hechas a medida. Cuando dos lados son iguales se marcan con dos barras paralelas. x + 2m + 7x + 3p 2p

Observa que las figuras no están hechas a medida. Cuando dos lados son iguales se marcan con dos barras paralelas. x + 2m + 7x + 3p 2p Ángulos a) Para cada uno de las siguientes figuras, utiliza las letras que dan las medidas de los ángulos y escribe una ecuación que los relacione, En cada caso, justifica la ecuación con las propiedades

Más detalles

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12.

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12. ERRORES OBJETIVOS Identificar las causas de errores en las medidas.. lasificar los errores según sus causas. Expresar matemáticamente el error de una medida. Determinar el error del resultado de una operación

Más detalles

1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO.

1 Resolución de ecuaciones de 2º grado y ecuaciones bicuadradas. 4ºESO. 1 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación parece,

Más detalles

CORRECCIÓN PRUEBA 2ª EVALUACIÓN

CORRECCIÓN PRUEBA 2ª EVALUACIÓN CORRECCIÓN PRUEBA ª EVALUACIÓN OPCIÓN A EJERCICIO nº Sea la matriz 0 0 A a 0 b a) Cuándo el determinante de A es el seno de algún número real? b) Calcula la inversa de A cuando exista. c) Determina todos

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: Consejería de Educación, PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 Apellidos Nombre Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS

Más detalles

Titulo: ÁREA DE UNA REGION PLANA Año escolar: MATEMATICA Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.2.1 Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas

Más detalles

SECRETARÍA ACADÉMICA AREA INGRESO

SECRETARÍA ACADÉMICA AREA INGRESO SECRETARÍA ACADÉMICA AREA INGRESO ECUACIONES Ecuación lineal y ecuación cuadrática - Setiembre de 010 - SECRETARÍA ACADÉMICA AREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 1341 000 Rosario - Argentina

Más detalles

4º ESO opción B Ejercicios Geometría Analítica

4º ESO opción B Ejercicios Geometría Analítica Geometría Analítica 1) Las coordenadas de un punto A son (3,1) y las del vector AB son (3,4). Cuáles son las coordenadas de punto B? Determina otro punto C de modo que el vector AC tenga el mismo módulo

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. 1 ENUNCIADOS 1 Piensa, tantea y encuentra una solución para estas ecuaciones: a) 5 5 b) 5 1 c) 1 4 d) 1 e) 1 f ) 6 1 Despeja la incógnita y encuentra la solución: a) 6 b) 4 c) 7 d) 7 4 Resuelve las

Más detalles

EJERCICIOS REPASO 2ª EVALUACIÓN

EJERCICIOS REPASO 2ª EVALUACIÓN MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:

Más detalles

Sistemas de Ecuaciones

Sistemas de Ecuaciones 3. Métodos de resolución Resolver un sistema por el método de reducción consiste en encontrar otro sistema, con las mismas soluciones, que tenga los coeficientes de una misma incógnita iguales o de signo

Más detalles

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al

Más detalles

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS

MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones

Más detalles

Una igualdad algebraica está formada por dos expresiones algebraicas separadas por el signo igual (=). Las igualdades algebraicas son de dos tipos:

Una igualdad algebraica está formada por dos expresiones algebraicas separadas por el signo igual (=). Las igualdades algebraicas son de dos tipos: 7. Ecuaciones y sistemas de primer grado 1. Ecuaciones 1.1. Ecuaciones de primer grado 1.2. Transposición de términos 2. Sistemas de ecuaciones lineales 2.1. Ecuaciones lineales con dos incógnitas. 2.2.

Más detalles

25 ANIVERSARIO 2ª PRUEBA. 21 de febrero de Subvenciona: Departamento de Educación, Universidad, Cultura y Deporte

25 ANIVERSARIO 2ª PRUEBA. 21 de febrero de Subvenciona: Departamento de Educación, Universidad, Cultura y Deporte 2ª PRUEBA 2 de febrero de 204 Subvenciona: Departamento de Educación, Universidad, Cultura y Deporte PROBLEMA EXPERIMENTAL. Caída de una bolita en un fluido. En la figura se muestra una fotografía, con

Más detalles

E IDENTIFICAR ECUACIONES E IDENTIDADES

E IDENTIFICAR ECUACIONES E IDENTIDADES DISTINGUIR OBJETIVO E IDENTIFICAR ECUACIONES E IDENTIDADES NOMBRE: CURSO: FECHA: IDENTIDADES Y ECUACIONES Una igualdad algebraica está formada por dos epresiones algebraicas separadas por el signo igual

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA

CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA En Bolivia la cartografía topográfica oficial (Escalas 1: 250 000, 1: 100 000 y 1: 50 000) se edita en el sistema de proyección cartográfica UTM

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones . Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal con dos incógnitas es una igualdad algebraica del tipo:

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES CONCEPTOS Un sistema de m ecuaciones con n incógnitas es un conjunto de m ecuaciones que se pueden escribir de la forma: f1( x1, x,..., xn) = 0 f( x1, x,..., xn) = 0... fm( x1, x,...,

Más detalles

Sistemas de Ecuaciones Lineales. Método de Reducción.

Sistemas de Ecuaciones Lineales. Método de Reducción. Sistemas de Ecuaciones Lineales. Método de Reducción. 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Introducción a los Sistemas de Ecuaciones Lineales... 4 1.1 Tipos de sistemas

Más detalles

ax 2 + bx + c = 0, con a 0

ax 2 + bx + c = 0, con a 0 RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO Las ecuaciones de segundo grado son de la forma: a + bx + c = 0, con a 0 1. Identificación de coeficientes: Al empezar con las ecuaciones de segundo grado, resulta

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

Titulo: MULTIPLICACION Y DIVISIÓN DE POLINOMIOS Año escolar: 3ER: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Cinemática del sólido rígido, ejercicios comentados

Cinemática del sólido rígido, ejercicios comentados Ejercicio 4, pag.1 Planteamiento Se sueldan tres varillas a una rótula para formar la pieza de la Figura 1. El extremo de la varilla OA se mueve sobre el plano inclinado perpendicular al plano xy mientras

Más detalles

PRIMERA PRUEBA. 28 DE AGOSTO DE 1999 PROBLEMAS

PRIMERA PRUEBA. 28 DE AGOSTO DE 1999 PROBLEMAS PRIMERA PRUEBA. 8 DE AGOSTO DE 1999 PROBLEMAS 1. Fíjate en la primera estrella, la cual está formada por 1 triángulos equiláteros. Cada número indica cuántos triángulos negros tienen vértice allí. a. Copia

Más detalles

Tema 3: Ecuaciones. 1.- Ecuaciones de primer y segundo grado. 2.- Ecuaciones del tipo.

Tema 3: Ecuaciones. 1.- Ecuaciones de primer y segundo grado. 2.- Ecuaciones del tipo. Tema 3: Ecuaciones. En este tema, estudiaremos las denominadas ecuaciones, que no son más que igualdades entre expresiones algebraicas, junto con una incógnita que debemos encontrar. Empezaremos dando

Más detalles

a) x + 7 = 2 x = 2 7 Solución: x = 5

a) x + 7 = 2 x = 2 7 Solución: x = 5 º ESO REFUERZO DE MATEMÁTICAS UNIDAD.- ECUACIONES Y SISTEMAS CURSO 0/0 Objetivo.- Usar las reglas de equivalencia para despejar variables en fórmulas Reglas de equivalencia. Para despejar una letra en

Más detalles

Cálculos matemáticos POR EL MÉTODO DE DIAGONALES

Cálculos matemáticos POR EL MÉTODO DE DIAGONALES Cálculos matemáticos POR EL MÉTODO DE DIAGONALES Para realizar este cálculo es necesario contar con el croquis dibujado en la hoja de registro y trazado, con los promedios de las mediciones recabadas durante

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Transformada Z. Función de transferencia discreta. Modelado de sistemas discretos. PROBLEMA 1. Sistema discreto

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE DE 2013 Resolución de 02/04/2013, de la Viceconsejería de Educación, Universidades e Investigación

Más detalles

Ejercicio 2 opción A, modelo 5 Septiembre 2010

Ejercicio 2 opción A, modelo 5 Septiembre 2010 Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1

Más detalles

UNIDAD DE APRENDIZAJE VI

UNIDAD DE APRENDIZAJE VI UNIDAD DE APRENDIZAJE VI Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Relaciona la ecuación algebraica de segundo grado

Más detalles

COLEGIO INTERNACIONAL SEK ALBORÁN. Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO

COLEGIO INTERNACIONAL SEK ALBORÁN. Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO COLEGIO INTERNACIONAL SEK ALBORÁN Departamento de MATEMÁTICAS Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO 2012-2013 2º ESO Apuntes de estadística y probabilidad 3. ESTADÍSTICA.

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

OPCIÓN A. 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que 2 x y determínala mediante un intervalo.

OPCIÓN A. 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que 2 x y determínala mediante un intervalo. EXAMEN: TEMAS 1 y BCT 1º 30/11/010 OPCIÓN A 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que x 1 3 1 y determínala mediante un intervalo. En primer lugar, desarrollamos

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

4 Ecuaciones e inecuaciones

4 Ecuaciones e inecuaciones Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,

Más detalles

La desviación típica y otras medidas de dispersión

La desviación típica y otras medidas de dispersión La desviación típica y otras medidas de dispersión DISPERSIÓN O VARIACIÓN La dispersión o variación de los datos intenta dar una idea de cuan esparcidos se encuentran éstos. Hay varias medidas de tal dispersión,

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO DE 2013 Resolución de 02/04/2013, de la Viceconsejería de Educación, Universidades e Investigación (DOCM

Más detalles

Unidad 1: Sistemas de Ecuaciones lineales. Método de Gauss.

Unidad 1: Sistemas de Ecuaciones lineales. Método de Gauss. Unidad : Sistemas de cuaciones lineales. Método de Gauss. Sistemas de ecuaciones lineales: Una ecuación lineal tiene la forma: a b c dt n,,, t son las incógnitas, a, b, c, d son los coeficientes, n es

Más detalles

Integrantes: Angie Torres, Daniela Gualdron, Felipe Martinez, Mahira Prieto. Práctica 1: Medición directa de una pared.

Integrantes: Angie Torres, Daniela Gualdron, Felipe Martinez, Mahira Prieto. Práctica 1: Medición directa de una pared. Integrantes: Angie Torres, Daniela Gualdron, Felipe Martinez, Mahira Prieto. Práctica 1: Medición directa de una pared. Práctica 1 Método Matemático Se utilizan métodos trigonométricos para hallar la distancia

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta cinco de los seis ejercicios propuestos.

Más detalles

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS

IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS OBJETIVO 1 IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS NOMBRE: CURSO: FECHA: Un sistema de dos ecuaciones lineales con dos incógnitas es un conjunto de dos ecuaciones de las que se busca una solución

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

TEMA 6 SISTEMAS DE ECUACIONES

TEMA 6 SISTEMAS DE ECUACIONES TEMA 6 SISTEMAS DE ECUACIONES 6.1 Ecuaciones con dos incógnitas. Soluciones. Actividades página 11 1. Comprueba si cada uno de los pares de valores siguientes es solución de la ecuación 4x y 1 c) x 0,

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

EXPRESIONES ALGEBRAICAS.

EXPRESIONES ALGEBRAICAS. EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión

Más detalles

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones)

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones) TEMA 2.- SISTEMAS DE ECUACIONES 1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS La ecuación 2x 3 5 tiene un término en x (el término 2x), otro en y (el término -3y) y un término independiente (el 5) Este

Más detalles

IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO

IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO OBJETIVO Una ecuación de segundo grado con una incógnita es una ecuación que se epresa de la forma: a + b + c = 0 donde a, b y c son números reales y

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Ma1010 Departamento de Matemáticas ITESM Álgebra - p. 1/31 En este apartado se introduce uno de los conceptos más importantes del curso: el de combinación lineal entre vectores. Se establece la

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

2.- Ecuaciones de primer grado

2.- Ecuaciones de primer grado 3º ESO E UNIDAD 8.- ECUACIONES. SISTEMAS DE ECUACIONES PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------

Más detalles

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Lección 12: Sistemas de ecuaciones lineales

Lección 12: Sistemas de ecuaciones lineales LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro) (tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles