Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica"

Transcripción

1 Control Estadístico de la Calidad Gráficos de Control Estadistica Básica

2 Control de Calidad Calidad significa idoneidad de uso, Es la interacción de la calidad: Del diseño Nivel de desempeño, de confiabilidad y de servicio y de la conformidad Reducción de variabilidad y eliminación de defectos La mejora de calidad significa la eliminación de desperdicio

3 Clasificación de los métodos estadísticos de Control Calidad Métodos Estadísticos de Control de Calidad Control Estadístico de Procesos (gráficos de control) Muestreo de Aceptación (planes de muestreo) Atributos Variables Atributos Variables

4 Gráficos de Control Herramienta estadística utilizada para detectar variaciones de la calidad de un producto, durante un proceso de fabricación

5 Causas de las variaciones Causas no asignables o aleatorias: debidas al azar, no son identificables, no pueden ser reducidas o eliminadas Producen variaciones pequeñas Causas asignables: identificables y que deben ser eliminadas Producen variaciones grandes

6 Para qué sirve un gráfico de control? Permite identificar causas asignables y determinar si un proceso está bajo o fuera de control Bajo control: trabaja en presencia de variaciones aleatorias Fuera de control: hay variaciones debidas a causas asignables

7 Estructura de un gráfico de control Característica de calidad Límite inferior de control Límite superior de control Número de muestra Línea central

8 Gráfico de control Característica de calidad (longitud mm) Número de muestra Linea Central (LC): corresponde a la calidad promedio Dos líneas (límites de control) ubicadas una por encima de la LC LCS y la otra por debajo de la LC LCI Los límites de control se encuentran dentro de +/-3 desviaciones estándar del valor promedio

9 Gráficos de Control por variables Gráficos x - R Se utilizan cuando la característica de calidad que se desea controlar es una variable continua Se requieren N muestras de tamaño n Ejemplo: fábrica que produce piezas cilíndricas de madera La característica de calidad que se desea controlar es el diámetro

10 Se obtiene una tabla de datos de la siguiente forma: No muestra Mediciones

11 Construcción de los gráficos x -R Paso 1 Calcular media y rango para cada muestra No muestra Mediciones R x

12 Paso 2 Calcular la media de medias y la media de los rangos X = N X i R = N R i X i : media de la muestra i R i : cantidad de muestras N : número de muestras

13 Paso 3 Cálculo de los límites de control Límites de control para el gráfico x LSC = X + A 2 R Línea Central = X LIC = X A 2 R

14 Límites de control para el gráfico R LSC = D R 4 Línea Central = R LIC = D3 R

15 Gráfico R Gráfico de R R No de muestra Nº subgrupo

16 Gráfico x Gráfico de Xp x Xp No de muestra Nº subgrupo

17 Puntos a considerar para construir gráficos de control por variables Tamaño de la muestra y frecuencia del muestreo a)tomar muestras pequeñas (4, 5, 6 cada media hora) b) Tomar muestras grandes con una frecuencia menor (20 cada dos horas) Número de muestras (aprox 25 muestras, entre observaciones)

18 GRÁFICO DE RANGOS MÓVILES Se aplica cuando los datos sobre un proceso se obtienen luego de un intervalo prolongado o cuando el agrupamiento en subgrupos no resulta efectivo; cuando un lote se evalúa mediante una única medición Debe haber por lo menos 15 valores de medición Se calculan los rangos móviles calculando la diferencia entre el 1 y el 2 valor y así sucesivamente Se calcula el promedio de los datos ( x ) y el promedio de los rangos móviles Límites LC = LS = x x + 2,66 r LI = x - 2,66 r

19 Gráficos de control por atributos Se utilizan para controlar características de calidad que no pueden ser medidas, y que dan lugar a una clasificación del producto: defectuoso o no defectuoso Tipos: Gráfico p y np Gráfico c y u

20 Gráfico p Se usa para estudiar la variación de la proporción de artículos defectuosos p = nro de artículos defectuosos / n n: tamaño de la muestra (puede ser variable o constante)

21 Límites de control para el gráfico p LSC = LC = p p + 3 p(1 n p) LIC = p 3 p(1 n p)

22 Gráfico np Se usa para controlar el número de defectuosos en una muestra Límites de control LSC = np + 3 np(1 p) LC = np LIC = np 3 np(1 p)

23 Ejemplo de gráfico np Supongamos un proceso que fabrica tornillos Una manera de ensayar cada tornillo sería probarlo con una rosca calibrada Si el tornillo no entra en la rosca, se le considera defectuoso o disconforme Para controlar este proceso, se pueden tomar muestras de 50 tornillos y contar el número de defectuosos presentes en cada muestra

24 Se cuenta en cada muestra el Número de artículos defectuosos y se registra Se obtendría una Tabla como la siguiente: Muestra Nº Defectuosos Total defectos observados = 75 n=50 p N=25 p =006 = N i=1 D i N n

25 Gráfico np 12 Nº Disconformes Muestra

26 Gráfico c Debe establecerse una diferencia entre defecto y unidad defectuosa Se basa en el número de defectos por artículo Ejemplo: número de defectos por pieza de madera (manchas, grietas, torceduras) Se inspecciona una pieza y se cuenta cuantos defectos tiene

27 Construcción de un gráfico c Defecto: es la no conformidad con algún requisito Unidad defectuosa: un elemento que contiene uno ó más defectos Paso 1 Se seleccionan N muestras de tamaño n Paso 2 En cada muestra se cuentan el número de defectos presentes (suma de todos los defectos que tengan las piezas de la muestra) C i

28 Paso 3 Se calcula el promedio de defectos por muestra Ci C = N Paso 4 Se calculan los límites de control LSC = C + 3 C LC = C LIC = C 3 C

29 Gráfico U Una carta de control para u, cantidad de defectos por unidad, en una muestra es el equivalente a una carta de control c, en que el tamaño de la muestra puede ser variable Cuando las muestras no son de igual tamaño los límites de control superior e inferior se calculan por separado para cada tamaño, siendo: LIMITES LC = u (promedio) LS = u + 3 u/ n i LI = u - 3 u/ n i Donde n i es la cantidad de elementos de la muestra i

30 Interpretación de las gráficas de control 1) Verificar si los puntos caen dentro ó fuera de los límites de control 2) Tratar de identificar series Se denomina serie a la sucesión de puntos situados a un mismo lado de la linea central Se considera anormal (falta de aleatoriedad) a una serie de: 3) a) 7 ó más puntos b1) entre 11 puntos consecutivos, 10 aparecen del mismo lado de LC b2) entre 14 puntos consecutivos, 12 aparecen del mismo lado de LC b3) entre 20 puntos consecutivos, 16 aparecen del mismo lado de LC

31 3) Analizar si existe tendencia Es decir una serie continuamente creciente ó decreciente 7 puntos crecientes Violenta tendencia decreciente

32 7 puntos es anormal o 10 de 11 puntos consecutivos del mismo lado es anormal

33 4) Observar los puntos que se aproximan a los límites de control 3σ Si dos de 3 puntos aparecen fuera de la línea 2σ, se considera el caso como anormal Serie2 Serie3 Serie4 Serie1 Serie5 Serie6 Serie7

34 5) Si la mayor parte de los puntos se encuentran dentro de la faja central de las lineas 1,5σ Es un agrupamiento inadecuado de los subgrupos La aproximación a la linea central se trata de una mezcla de datos con diferentes poblaciones en cada subgrupo Es necesario cambiar la forma de subagrupamiento

35 6) Periodicidad La gráfica presenta una tendencia zigzagueante hacia ambos lados de la línea central

36 Límites de tolerancia ó límites de especificación Los fija el exportador o la empresa Determinan la Capacidad del proceso C p No se relacionan con los límites de control Capacidad del proceso: C p = (LS-LI)/ 6σ (donde σ es un dato histórico) Para considerar que un proceso es adecuado 1< C p 1,33 Mayor de 133 satisfactorio Menor de 1 insatisfactorio

37 Etapas del Control Estadístico de Procesos Etapa 1: Control estadístico Ajuste del proceso Etapa 2: Control del proceso

38 Etapa 1: Ajuste del proceso Se recogen unas mediciones y se realiza un gráfico de control a) Proceso bajo control: se adoptan los límites de control b) Pocos puntos fuera de control (2 o 3):se eliminan y se calculan nuevos límites c) Observaciones no siguen un patrón aleatorio, investigar, eliminar causas asignables y comenzar nuevamente el proceso de ajuste

39 Etapa 1: Ajuste del proceso Se recogen unas mediciones y se realiza un gráfico de control a) Proceso bajo control: se adoptan los límites de control b) Pocos puntos fuera de control (2 o 3):se eliminan y se calculan nuevos límites c) Observaciones no siguen un patrón aleatorio, investigar, eliminar causas asignables y comenzar nuevamente el proceso de ajuste

40 Etapa 2: Control del proceso Nuevas observaciones del proceso productivo, se registran en gráficos de control con los límites establecidos en la etapa 1 Si el proceso se sale de control, se detiene y se investigan las causas Eliminada la causa del problema se continua la producción

Unidad V. Control Estadístico de la Calidad

Unidad V. Control Estadístico de la Calidad UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ Unidad V. Control Estadístico de la Calidad Objetivos Reconocer los principios estadísticos del control de calidad. Explicar la forma

Más detalles

Aprender a construir gráficos X-S y conocer sus limitaciones.

Aprender a construir gráficos X-S y conocer sus limitaciones. Objetivos Aprender a construir gráficos X-R y conocer sus limitaciones. Aprender a construir gráficos X-S y conocer sus limitaciones. Comprender la relación entre los Gráficos de Control y el intervalo

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico

Más detalles

Los Gráficos de Control de Shewart

Los Gráficos de Control de Shewart Los Gráficos de Control de Shewart La idea tradicional de inspeccionar el producto final y eliminar las unidades que no cumplen con las especificaciones una vez terminado el proceso, se reemplaza por una

Más detalles

07/12/2009 CARACTERÍSTICAS PRINCIPALES GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN

07/12/2009 CARACTERÍSTICAS PRINCIPALES GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN Son Gráficos de Control basados en la observación de la presencia o ausencia de una determinada característica, o de cualquier tipo de defecto en el producto,

Más detalles

TEMA 3: Control Estadístico de la Calidad

TEMA 3: Control Estadístico de la Calidad TEMA 3: Control Estadístico de la Calidad 1. Introducción al control de la calidad. 2. Métodos de mejora de la calidad 3. Gráficos de control de Shewhart: Gráficos c Gráficos np Gráficos X y R 4. Interpretación

Más detalles

CARTAS DE CONTROL. Control Estadístico de la Calidad. Tuesday, August 5, 14

CARTAS DE CONTROL. Control Estadístico de la Calidad. Tuesday, August 5, 14 CARTAS DE CONTROL Control Estadístico de la Calidad PROCESOS PRODUCTIVOS Los procesos productivos son incapaces de producir dos unidades de producto exactamente iguales. Esto se debe a un sin número de

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Tercera parte Aplicaciones de la Probabilidad en la Industria Dr Enrique Villa Diharce CIMAT, Guanajuato, México Verano de probabilidad y estadística CIMAT Guanajuato,Gto Julio 2010 Cartas de control Carta

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL Total GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Por unidad Los gráficos p, 100p y u difieren de los gráficos

Más detalles

CONTROL ESTADISTICO DE LA CALIDAD

CONTROL ESTADISTICO DE LA CALIDAD CICLO 2012-II Módulo: Unidad: 4 Semana: 4 CONTROL ESTADISTICO DE LA CALIDAD Ing. Enrique Montenegro Marcelo GRAFICOS DE CONTROL ORIENTACIONES Al finalizar este capitulo el alumno deberá poder construir

Más detalles

LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD.

LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD. Procesos: Siempre tienen variabilidad LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD. Alfredo Serpell Ingeniero civil industrial UC Phd University of Texas

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Los gráficos p, 100p y u difieren de los gráficos np y c en que los

Más detalles

1. Los datos siguientes dan el número de ensambles de rodamiento y sello

1. Los datos siguientes dan el número de ensambles de rodamiento y sello 3 2 EJERCICIOS 55 3 2 Ejercicios 1. Los datos siguientes dan el número de ensambles de rodamiento y sello disconformes en muestras de tamaño 100. Construir una carta de control para la fracción disconforme

Más detalles

LOS GRÁFICOS DE CONTROL

LOS GRÁFICOS DE CONTROL CAPÍTULO IX LOS GRÁFICOS DE CONTROL 9.1 INTRODUCCIÓN En cualquier proceso de generación de productos o servicios, sin importar su buen diseño y/o mantenimiento cuidadoso, siempre existirá cierto grado

Más detalles

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-)

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD INGENIERIA DE TELECOMUNICACIONES TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) 1. Un proceso industrial fabrica

Más detalles

Control Estadístico de Procesos (SPC) para NO estadísticos.

Control Estadístico de Procesos (SPC) para NO estadísticos. Control Estadístico de Procesos (SPC) para NO estadísticos. - Sesión 3ª de 4 - Impartido por: Jaume Ramonet Fernández Ingeniero Industrial Superior PMP (PMI ) Consultoría y Formación Actitud requerida

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar

Más detalles

EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD

EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD GRÁFICAS DE CONTROL POR VARIABLES Ejemplo 1 Gráfica X Calculando la desviación estándar Para Gráfica x cuando se conoce s Límite superior de control (LSC)

Más detalles

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS Ing. Claudia Santo Directora de Metrología Científica e Industrial 17/05/2016 MEDELLÍN, COLOMBIA MEDIR Cómo sabemos que nuestras meciones son correctas?

Más detalles

IND-LAB-CAL Gráficos de Control Variables CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES

IND-LAB-CAL Gráficos de Control Variables CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES 1.- OBJETIVO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos

Más detalles

Unidad 5 Control Estadístico de la Calidad. Administración de Operaciones III

Unidad 5 Control Estadístico de la Calidad. Administración de Operaciones III Unidad 5 Control Estadístico de la Calidad Administración de Operaciones III 1 Contenido 1. Antecedentes del control estadístico de la calidad 2. Definición 3. Importancia y aplicación 4. Control estadístico

Más detalles

Control Estadístico de Procesos Capacidad de Proceso

Control Estadístico de Procesos Capacidad de Proceso Control Estadístico de Procesos Capacidad de Proceso Un proceso de fabricación es un conjunto de equipos, materiales, personas y métodos de trabajo que genera un producto fabricado. Maquinaria Métodos

Más detalles

Telos ISSN: Universidad Privada Dr. Rafael Belloso Chacín Venezuela

Telos ISSN: Universidad Privada Dr. Rafael Belloso Chacín Venezuela Telos ISSN: 1317-0570 wileidys.artigas@urbe.edu Universidad Privada Dr. Rafael Belloso Chacín Venezuela Orlandoni Merli, Giampaolo Gestión de la Calidad: Control Estadístico y Seis Sigma Telos, vol. 14,

Más detalles

LAS HERRAMIENTAS BÁSICAS DE CALIDAD MODULO CALIDAD EN SERIE

LAS HERRAMIENTAS BÁSICAS DE CALIDAD MODULO CALIDAD EN SERIE LAS HERRAMIENTAS BÁSICAS DE CALIDAD MODULO CALIDAD EN SERIE REGLAS DEL JUEGO Llegar a tiempo a la reunión Apagar o silenciar los celulares Respetar el uso de la palabra. Controlar el tiempo de las intervenciones.

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

(12249) TITULACIÓN LICENCIATURA EN A.D.E. TÉCNICAS ESTADÍSTICAS DE CONTROL DE CALIDAD. Mª Isabel López Rodríguez Dpto.

(12249) TITULACIÓN LICENCIATURA EN A.D.E. TÉCNICAS ESTADÍSTICAS DE CONTROL DE CALIDAD. Mª Isabel López Rodríguez Dpto. TITULACIÓN LICENCIATURA EN A.D.E. TÉCNICAS ESTADÍSTICAS DE CONTROL DE CALIDAD (149) Mª Isabel López Rodríguez Dpto. Economía Aplicada CURSO ACADÉMICO 013/014 TEMA 5: CONTROL DE PROCESOS POR VARIABLES.

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

EL PAPEL DE LA ESTADISTICA EN O Y M. Objetivo: Identificar índices estadísticos, y métodos más convenientes, para aplicarlos en el estudio de O y M.

EL PAPEL DE LA ESTADISTICA EN O Y M. Objetivo: Identificar índices estadísticos, y métodos más convenientes, para aplicarlos en el estudio de O y M. EL PAPEL DE LA ESTADISTICA EN O Y M Objetivo: Identificar índices estadísticos, y métodos más convenientes, para aplicarlos en el estudio de O y M. O y M necesita apoyarse en la estadística que en casos

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD

MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD 1 Parte I: Diseño de experimentos Parte II: Control estadístico de procesos Parte III: Control de productos terminados Diseño Producción Producto final

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k

1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k 1. Estadística Definición: La estadística es un ciencia inductiva que permite inferir características cualitativas y cuantitativas de un conjunto mediante los datos contenidos en un subconjunto del mismo.

Más detalles

MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS

MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: 3C ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS INTEGRANTES DEL EQUIPO: ELIZABETH GRIJALVA ROCHA KAREN LIZETH

Más detalles

Objetivos. Epígrafes 8-1. Francisco José García Álvarez

Objetivos. Epígrafes 8-1. Francisco José García Álvarez Objetivos Entender los fundamentos estadísticos del muestreo de aceptación por variables. Aprender los procedimientos más usados del muestreo de aceptación por variables: Norma militar 414 Epígrafes Introducción

Más detalles

MEDIR (Evaluación del sistema de medición) ING MARTA GABRIELA RIOS NAVA

MEDIR (Evaluación del sistema de medición) ING MARTA GABRIELA RIOS NAVA MEDIR (Evaluación del sistema de medición) ING MARTA GABRIELA RIOS NAVA 2 FLUJO DMAIC 1 D Definir el problema Eliminar causas especiales N Proceso estable? M Describir el problema S S Capaz? M Medición

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

Muestreo de aceptación para atributos. El muestreo es una herramienta de auditoría para conocer el estado de cada lote.

Muestreo de aceptación para atributos. El muestreo es una herramienta de auditoría para conocer el estado de cada lote. El muestreo es una herramienta de auditoría para conocer el estado de cada lote. DEFINICIONES Atributo Lote Muestra Aleatoriedad Homogeneidad Hay dos tipos de atributos : Aquellos casos cuando no es posible

Más detalles

Histograma y Grafico de Control

Histograma y Grafico de Control 2014 Histograma y Grafico de Control Sustentantes: Sabrina Silvestre 2011-0335 Juan Emmanuel Sierra Santos 2011-0367 Rosa Stefany Flech Mesón 2011-0436 Docente: Ing.MS Eliza N. González Universidad Central

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

DIAGRAMAS DE CONTROL TEORÍA GENERAL

DIAGRAMAS DE CONTROL TEORÍA GENERAL 1. DESARROLLO HISTÓRICO DIAGRAMAS DE CONTROL TEORÍA GENERAL 20 s Shewhart Primeros avances en el control estadístico de calidad. Segunda Guerra Mundial Se emplearon con mayor fuerza No se utilizaron Deming

Más detalles

1 PROPOSITO Establecer el procedimiento para el cálculo de límites de control por variables.

1 PROPOSITO Establecer el procedimiento para el cálculo de límites de control por variables. CALCULO DE LIMITES PAA LAS CATAS DE CONTOL PO VAIABLES Por S. Carpio 1 POPOSITO Establecer el procedimiento para el cálculo de límites de control por variables. 2 ALCANCE Aplicable a las cartas de control

Más detalles

El aseguramiento de la calidad en el entorno moderno de la gestión. Calidad Montgomery Douglas

El aseguramiento de la calidad en el entorno moderno de la gestión. Calidad Montgomery Douglas El aseguramiento de la calidad en el entorno moderno de la gestión Referencia: : Control Estadístico stico de Calidad Montgomery Douglas Significado de la calidad Es esencial que los productos satisfagan

Más detalles

DESCRIPCIÓN ESPECÍFICA. Nombre del Módulo: CONTROL ESTADISTICO DE LA CALIDAD Código: CSPN0075 Duración total: 60 HORAS.

DESCRIPCIÓN ESPECÍFICA. Nombre del Módulo: CONTROL ESTADISTICO DE LA CALIDAD Código: CSPN0075 Duración total: 60 HORAS. DESCRIPCIÓN ESPECÍFICA NÚCLEO: COMERCIO Y SERVICIO SUBSECTOR: PRODUCCION Y SALUD OCUPACIONAL Nombre del Módulo: CONTROL ESTADISTICO DE LA CALIDAD Código: CSPN0075 Duración total: 60 HORAS. Objetivo General:

Más detalles

ELABORACIÓN DE CARTAS DE CONTROL X BARRA S EN EL LABORATORIO DE METROLOGÍA DE VARIABLES ELÉCTRICAS DE LA UNIVERSIDAD TECNOLÓGICA DE PEREIRA

ELABORACIÓN DE CARTAS DE CONTROL X BARRA S EN EL LABORATORIO DE METROLOGÍA DE VARIABLES ELÉCTRICAS DE LA UNIVERSIDAD TECNOLÓGICA DE PEREIRA Scientia et Technica Año XV, No 41, Mayo de 2009.. ISSN 0122-1701 241 ELABORACIÓN DE CARTAS DE CONTROL X BARRA S EN EL LABORATORIO DE METROLOGÍA DE VARIABLES ELÉCTRICAS DE LA UNIVERSIDAD TECNOLÓGICA DE

Más detalles

GESTION DE CALIDAD CONTROL DE CALIDAD

GESTION DE CALIDAD CONTROL DE CALIDAD GESTION DE CALIDAD CONTROL DE CALIDAD Marcela R. Perez Bioquímica Responsable del Departamento Calidad IBC Instituto de Bioquimica Clinica - Rosario PROCESOS Etapa Pre Analítica: Conjunto de todas las

Más detalles

Muestreo de aceptación

Muestreo de aceptación Muestreo de aceptación Cuándo aplicar muestreo de aceptación? Se puede aplicar en cualquier relación cliente proveedor, ya sea en el interior de una empresa o entre diferentes empresas y se puede ver como

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

CONTROL DE LOS ESTÁNDARES DE CALIDAD

CONTROL DE LOS ESTÁNDARES DE CALIDAD CONTROL DE LOS ESTÁNDARES DE CALIDAD GESTIÓN DE LA CALIDAD Por: MIGUEL ÁNGEL SUÁREZ CABRERA www.laformacion.com www.libroelectronico.net Página 1 Índice 1. Justificación del Control de Calidad 2. Herramientas

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

El Control de los Estándares de Calidad.

El Control de los Estándares de Calidad. MÓDULO 5 El Control de los Estándares de Calidad. 5.1. El proceso de control de la calidad. 5.2. Gráficos del control de la calidad. 5.3. Medidas de la capacidad del proceso. 5.4. Seis Sigma. 5.5. Muestreo

Más detalles

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL Variable discreta.- Es aquella que casi siempre asume solamente un conjunto

Más detalles

PROBABILIDADES Y DISTRIBUCIONES

PROBABILIDADES Y DISTRIBUCIONES PROBABILIDADES Y DISTRIBUCIONES 1. Supongamos que se lanza una moneda cuyo peso ha sido alterado de manera que P (C) = 2/3 y P (S) = 1/3. Si aparece cara, entonces selecciona un número al azar del 1 al

Más detalles

UNIDAD III TEORÍA ELEMENTAL DEL MUESTREO

UNIDAD III TEORÍA ELEMENTAL DEL MUESTREO UNIDAD III TEORÍA ELEMENTAL DEL MUESTREO Por: Prof. Gastón A. Pérez Urdaneta (3.1) INTRODUCCIÓN AL MUESTREO: En las actividades de control de calidad es frecuente inspeccionar elementos tales como: Lotes

Más detalles

5.1.- Aplicación del Diagrama de Pareto en el proyecto de investigación. Se desea analizar cuales son los defectos más frecuentes que aparecen en las

5.1.- Aplicación del Diagrama de Pareto en el proyecto de investigación. Se desea analizar cuales son los defectos más frecuentes que aparecen en las CAPITULO V.- ANÁLISIS DEL PROYECTO 5.1.- Aplicación del Diagrama de Pareto en el proyecto de investigación Se desea analizar cuales son los defectos más frecuentes que aparecen en las unidades al salir

Más detalles

CARTAS DE CONTROL. FeGoSa

CARTAS DE CONTROL. FeGoSa Las empresas en general, ante la apertura comercial han venido reaccionando ante los cambios y situaciones adversas, reaccionan por ejemplo ante: Disminución de ventas Cancelación de pedidos Deterioro

Más detalles

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.

VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS. VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo

Más detalles

Ejercicios Introducción. Capítulo. Estos ejercicios fueron recopilados por los profesores Douglas Rivas, Luis Nava y. Ángel Zambrano.

Ejercicios Introducción. Capítulo. Estos ejercicios fueron recopilados por los profesores Douglas Rivas, Luis Nava y. Ángel Zambrano. Capítulo 1 Ejercicios Estos ejercicios fueron recopilados por los profesores Douglas Rivas, Luis Nava y Ángel Zambrano. 1.1. Introducción 1. Se realiza un estudio en el municipio Libertador del Estado

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

CARACTERÍSTICAS DE CALIDAD LIMITES DE ESPECIFICACIÓN gr gr gr

CARACTERÍSTICAS DE CALIDAD LIMITES DE ESPECIFICACIÓN gr gr gr Objetivo El objetivo del presente laboratorio es que el estudiante conozca y pueda establecer planes de inspección de características tipo variables. Se utilizará como norma base la MIL-STD 414 o su equivalente

Más detalles

SOLUCIÓN DE EJERCICIOS CAPÍTULO 7 LIBRO: CONTROL ESTADISTICO DE LA CALIDAD Y SEIS SIGMA

SOLUCIÓN DE EJERCICIOS CAPÍTULO 7 LIBRO: CONTROL ESTADISTICO DE LA CALIDAD Y SEIS SIGMA SOLUCIÓN DE EJERCICIOS CAPÍTULO LIBRO: CONTROL ESTADISTICO DE LA CALIDAD Y SEIS SIGMA 2. Con sus palabras, y de forma gráfica, conteste las siguientes preguntas: a) Como es un proceso estable o en control

Más detalles

ESTADISTICA DESCRIPTIVA. Mediante la presentación ordenada de los datos observados en tablas y gráficos estadísticos.

ESTADISTICA DESCRIPTIVA. Mediante la presentación ordenada de los datos observados en tablas y gráficos estadísticos. ESTADISTICA DESCRIPTIVA 1. DEFINICION La estadística es una ciencia que facilita la toma de decisiones: Mediante la presentación ordenada de los datos observados en tablas y gráficos estadísticos. Reduciendo

Más detalles

La inspección consiste en la evaluación de la calidad de alguna característica o parámetro en relación con las especificaciones.

La inspección consiste en la evaluación de la calidad de alguna característica o parámetro en relación con las especificaciones. La inspección consiste en la evaluación de la calidad de alguna característica o parámetro en relación con las especificaciones. 1. Interpretación de la especificación 2. Medición de la característica

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS 1) INTRODUCCIÓN Tanto la administración de calidad como la administración Seis Sigma utilizan una gran colección de herramientas estadísticas.

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.

Más detalles

NORMA DE COMPETENCIA LABORAL

NORMA DE COMPETENCIA LABORAL Página 1 de 5 VERSION VERSION AVALADA MESA SECTORIAL MESA SECTORIAL GESTIÓN DE PROCESOS PRODUCTIVOS REGIONAL BOGOTA CENTRO CENTRO DE GESTION INDUSTRIAL METODOLOGO ALEXANDRA JIMENEZ VILLEGAS VERSION 1 FECHA

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data

Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data Estadísticas Elemental Tema 3: Describir, Explorar, y Comparar Data (parte 2) Medidas de dispersión 3.1-1 Medidas de dispersión La variación entre los valores de un conjunto de datos se conoce como dispersión

Más detalles

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS Contenido: CARTAS DE CONTROL Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS TEST DE MEDIANAS CEL: 72488950 1 Antes de querer utilizar cualquier

Más detalles

Control Estadístico de Procesos Gráficos C y U

Control Estadístico de Procesos Gráficos C y U Control Estadístico de Procesos Gráficos C y U En algunos procesos interesa edir la cantidad de defectos que presentan las unidades de producto que se están fabricando. Por ejeplo, se fabrican teléfonos

Más detalles

PRINCIPIOS DE PSICOMETRIA. Universidad Intercontinental Facultad de Psicología Área de la Salud

PRINCIPIOS DE PSICOMETRIA. Universidad Intercontinental Facultad de Psicología Área de la Salud PRINCIPIOS DE PSICOMETRIA Universidad Intercontinental Facultad de Psicología Área de la Salud PRINCIPIOS DE PSICOMETRIA MEDICION La medición de habilidades cognitivas Prueba: muestra de una conducta particular.

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Cómo funciona el Diagrama de Control

Cómo funciona el Diagrama de Control Cómo funciona el Diagrama de Control Capítulo 4 Control Estadístico de Calidad Modelo del sistema de control de proceso ( con retroalimentación ) VOZ DEL PROCESO METODOS ESTADÍSTICOS Personal Equipo Materiales

Más detalles

IND-LAB-CAL INSPECCIÓN POR VARIABLES

IND-LAB-CAL INSPECCIÓN POR VARIABLES INSPECCIÓN POR VARIABLES 1.- OBJETIVO El objetivo del presente laboratorio es que el estudiante conozca y pueda establecer planes y procedimientos para la inspección por variables. Se utilizará como norma

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES

Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES Práctica 2 Estudios Descriptivos Bidimensionales Página 1 Métodos Estadísticos de la Ingeniería 2º I.T.I. Electricidad Curso 2010/2011 PRÁCTICA 2 ESTUDIOS DESCRIPTIVOS BIDIMENSIONALES En esta segunda práctica

Más detalles

Para controlar los procesos en tiempo real, la herramienta de base estadística, más significativa, es la carta de control.

Para controlar los procesos en tiempo real, la herramienta de base estadística, más significativa, es la carta de control. Control estadístico de los procesos Denominamos proceso a una serie de transformaciones destinadas a transformar entradas (materias primas, insumos, información, etc) en salidas (productos elaborados,

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

El Test de Rachas (Run Test)

El Test de Rachas (Run Test) Estadistica No Parametrica CLASE Pruebas de Rachas y Aleatoriedad JAIME MOSQUERA RESTREPO El Test de Rachas (Run Test) Para Llegar a una conclusión fundamentadose en lo observado en una muestra, es absolutamente

Más detalles

Herramientas estadísticas para la identificación de la causa raíz. Ing. Oscar Alvarez de la Cuadra López

Herramientas estadísticas para la identificación de la causa raíz. Ing. Oscar Alvarez de la Cuadra López Herramientas estadísticas para la identificación de la causa raíz Ing. Oscar Alvarez de la Cuadra López Los errores más frecuentes en la determinación de la causa raíz Confusión en conceptos: corrección

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO PROCESO ANALÍTICO Conjunto de operaciones analíticas intercaladas que se

Más detalles

MUESTREO PARA ACEPTACION

MUESTREO PARA ACEPTACION MUESTREO PARA ACEPTACION Inspección de Calidad Consiste en un procedimiento técnico que permite verificar si los materiales, el proceso de fabricación y los productos terminados cumplen con sus respectivas

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

Guía de Modelos Probabilísticos

Guía de Modelos Probabilísticos Guía de Modelos Probabilísticos 1. Distribución Binomial 1. Una máquina produce cierto tipo de piezas de las cuales el 5 % son defectuosas. Se seleccionan en forma independiente 5 piezas al azar. Calcule

Más detalles

HOMOGENEIDAD DE SERIES

HOMOGENEIDAD DE SERIES HOMOGENEIDAD DE SERIES Práctico 3 Climatología CONTROL DE CALIDAD PROBLEMAS EN SERIES DE DATOS Datos faltantes Valores sospechosos Comportamientos sospechosos CONTROL DE CALIDAD Ejemplo: MARCHA ANUAL TEMPERATURA

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

NORMA DE DISTRIBUCIÓN N.MA.22.04/0 PINTURA PARA GABINETES ELÉCTRICOS DE USO INTERIOR FECHA: 20/03/03

NORMA DE DISTRIBUCIÓN N.MA.22.04/0 PINTURA PARA GABINETES ELÉCTRICOS DE USO INTERIOR FECHA: 20/03/03 NORMA DE DISTRIBUCIÓN N.MA.22.04/0 PINTURA PARA GABINETES ELÉCTRICOS DE USO INTERIOR FECHA: 20/03/03 N.MA.22.04/0 20/03/03 I N D I C E 1. - OBJETO... 1 2. - CAMPO DE APLICACION... 1 3. - DEFINICIONES...

Más detalles

INSPECCIÓN DE LA RECEPCIÓN DE LA MATERIA PRIMA

INSPECCIÓN DE LA RECEPCIÓN DE LA MATERIA PRIMA CAPÍTULO 5: INSPECCIÓN DE LA RECEPCIÓN DE LA MATERIA PRIMA Página 38 5. ESTABLECIMIENTO DE LA INSPECCIÓN DE RECEPCIÓN DE LA MATERIA PRIMA 5.1 Control de recepción Cuando el proveedor envía el pedido se

Más detalles

( x) Distribución normal

( x) Distribución normal Distribución normal por Oliverio Ramírez La distribución de probabilidad más importante es sin duda la distribución normal (o gaussiana), la cual es de tipo continuo. La distribución de probabilidad para

Más detalles