TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas"

Transcripción

1 TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació de discoformidades y fució de deméritos 1 Gráfico de cotrol para la fracció de uidades defectuosas Se cosidera ua muestra de tamaño de uidades obteidas del proceso de fabricació Se deota por p la probabilidad de que ua uidad sea defectuosa siedo p la fracció de defectuosos que idica la calidad de la producció Etoces se cosidera el estadístico i=1 W = X i dode X i vale uo si la uidad i es defectuosa y vale cero e caso cotrario Es decir X i i = 1 se distribuye segú Beroulli idepedietes co parámetro p Se tiee etoces ( ) 1/2 p(1 p) EW = p σ W = dode σ W deota la desviació típica de W Por tato el gráfico de cotrol para la fracció de uidades defectuosas viee dado por los límites de cotrol: Límite Superior de Cotrol (LSC ) ( ) 1/2 p(1 p) p + 3 Límite Iferior de Cotrol (LIC ) ( ) 1/2 p(1 p) p 3 Para p descoocido se cosidera la siguiete estimació de p calculada a partir de la extracció de m muestras piloto: p = j=1 i=1 Xj i m 1

2 dode X j i toma el valor uo si la uidad i de la muestra piloto j es defectuosa y vale cero e caso cotrario Los límites de prueba viee dados etoces por ( ) 1/2 p(1 p) p ± 3 Si cada ua de las m muestras piloto preseta u valor muestral del estadístico W detro de los límites ateriores etoces se tiee que el proceso parte de ua situació cotrolada y que por tato los límites de prueba calculados so adecuados para la producció actual y futura E caso cotrario se recalcula los límites de prueba a partir de las muestras que queda tras elimiar las muestras que diero valores del estadístico fuera de los límites de cotrol Cuado los tamaños muestrales de las m muestras piloto so diferetes j j = 1 m etoces p se calcula como sigue: p = j=1 i=1 Xj i j=1 j y los límites de prueba viee dados por ( ) 1/2 p(1 p) p ± 3 i Ua alterativa a los límites variables cuado los tamaños muestrales de las m muestras piloto so desiguales cosiste e cosiderar los límites ( ) 1/2 p(1 p) p ± 3 siedo j=1 = j m E ocasioes se cosidera el diagrama estadarizado que se defie a partir de Z j = W j p ( p(1 p) j ) 1/2 j = 1 m Fució característica de operació Represeta el poder discrimiatorio del diagrama para cotrolar si el proceso se desvía del valor omial p 0 cosiderado Se defie e térmios de la probabilidad β de error de tipo II: β = P [W < LSC p] P [W LIC p] [ ] [ ] = P X i LSC p P X i LIC p i=1 para diferetes valores reales de p dode i=1 X i se distribuye segú ua Biomial co parámetros y p Nota El diagrama para el úmero de uidades defectuosas se diseña de forma similar al diagrama aterior cosiderado el estadístico W 2 i=1

3 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Este tipo de diagramas se utiliza para cotrolar la calidad de uidades grades o piezas grades de la producció Bajo las hipótesis (H1) el úmero de posibles discoformidades de ua uidad es ifiito (H2) la probabilidad de ocurrecia de discoformidad es costate la variable aleatoria X que cotabiliza el úmero de discoformidades e ua uidad sigue ua distribució de Poisso Deotado por c el úmero medio de discoformidades por uidad (parámetro que defie la distribució de X) los límites de cotrol del diagrama para el úmero medio de discoformidades por uidad viee dados por c ± 3(c) 1/2 (1) cuado c es coocido Para c descoocido se cosidera m uidades piloto y se aproxima c mediate el estimador i=1 Xu i c = m dode Xi u represeta el úmero de discoformidades e la uidad i de las m uidades piloto extraídas Se puede cosiderar u aálisis adicioal basado e los siguietes criterios: Aálisis del tipo de discoformidades y de su frecuecia Relació etre el tipo de defecto y el tipo de piezas que compoe ua uidad Estudio de fuetes de discoformidades y de su iterrelacioes Diagrama de cocetració de defectos Se utiliza para aalizar si las discoformidades se localiza e el mismo área del producto 21 Selecció del tamaño muestral E el aálisis de discoformidades por uidad se puede cosiderar e lugar de ua muestra de tamaño uo ua muestra de tamaño Se cotempla etoces dos alterativas e el efoque del estudio: (i) Cosiderar ua ueva uidad de tamaño veces la uidad de ispecció aterior (ii) Cosiderar el úmero de discoformidades e u cojuto de uidades de ispecció 3

4 E el caso (i) el diagrama para el úmero medio de discoformidades se costruiría cosiderado los límites de cotrol c ± 3(c) 1/2 si c es coocido y c ± 3( c) 1/2 si c es descoocido calcula E el caso (ii) se cosidera ua muestra de tamaño de uidades de ispecció y se i=1 Xu i W = siedo como ates Xi u el úmero de discoformidades e la uidad i de ispecció Se tiee etoces ( c ) 1/2 EW = c σ W = Cuado c es coocido el diagrama de cotrol viee dado por los límites ( c ) 1/2 c ± 3 Si c es descoocido los límites de prueba viee dados por ( ) 1/2 c c ± 3 siedo j=1 i=1 c = Xuj i m dode X uj i represeta el úmero de discoformidades de la uidad i de la muestra piloto j E alguos casos depediedo del tipo de discoformidades el modelo de Poisso o es adecuado y se utiliza otros modelos Cuado el tamaño muestral de las muestras piloto es variable los límites de prueba se calcula e térmios de la aproximació c = j=1 i=1 Xuj i j=1 j y viee dados por ( ) 1/2 c c ± 3 j = 1 m j e el caso de límites variables E el caso de límites costates se tiee ( ) 1/2 c c ± 3 dode = j=1 j m 4

5 3 Clasificació de discoformidades y fució de deméritos E el estudio del úmero de defectos por uidad se suele realizar ua clasificació de dichos defectos asociado a cada tipo de defecto u peso segú su importacia Cosideramos la siguiete clasificació: Defectos de tipo A So defectos muy graves cuya reparació o es posible y que puede ocasioar lesioes persoales o materiales Defectos de tipo B So defectos graves que reduce la duració de las piezas o uidades e icremeta los costos de mateimieto Defectos de tipo C So defectos moderadamete importates que está relacioados co el acabado presetació o calidad del trabajo Defectos de tipo D So defectos poco importates cuya ocurrecia o modifica sustacialmete la calidad del producto Se defie etoces las variables aleatorias: X A que idica el úmero de discoformidades de tipo A X B que idica el úmero de discoformidades de tipo B X C que idica el úmero de discoformidades de tipo C X D que idica el úmero de discoformidades de tipo D La fució de deméritos viee dada por F DE = 100X A + 50X B + 10X C + X D dode se ha cosiderado los pesos más usuales e la defiició de dicha fució cuado se cosidera ua clasificació del tipo aterior Si se cosidera ua muestra de uidades de ispecció etoces el úmero de deméritos por uidad es U = F T DE dode F T DE = F u 1 DE + + F u DE siedo F u i DE i = 1 la fució de deméritos evaluada e la uidad i 5

6 Supoiedo que X A X B X C y X D se distribuye idepedietemete segú ua distribució de Poisso co parámetro c A c B c C y c D respectivamete se tiee EU = 100c A + 50c B + 10c C + c D σ U = ( ) c A c B /2 c C + c D Por tato los límites de cotrol viee dados por ( ) c A c B /2 c C + c D 100c A + 50c B + 10c C + c D ± 3 e el caso e que los parámetros c A c B c C y c D so coocidos Cuado dichos parámetros so descoocidos se estima a partir de la extracció de m muestras piloto cosiderado la fracció media muestral de discoformidades de cada tipo 6

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene:

Se utilizan tres enunciados para básicos para definir los procesos de Poisson. Sea t un t 0, entonces se tiene: 9 TEORÍA DE TRÁFIO La teoría de tráfico es ua herramieta ampliamete utilizada para el aálisis del comportamieto de las redes de comuicacioes, las cuales puede ser de comutació de circuitos, como las redes

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1 Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia Práctica 7: Itervalos de coaza y cotrastes de hipótesis I Objetivo E esta práctica y e la siguiete apredemos a aplicar e iterpretar las técicas de itervalos de coaza y test de hipótesis, seleccioado la

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS El cotraste de hipótesis es el procedimieto mediate el cual tratamos de cuatificar las diferecias o discrepacias etre ua hipótesis estadística y ua realidad de la que poseemos ua

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 6)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 6) IES Fco Ayala de Graada Sobrates de 01 (Modelo 6 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 01 (MODELO 6) OPCIÓN A EJERCICIO 1_A Ua empresa vede tres artículos diferetes

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE Supogamos teer ua plata de trasferecia G(s) (ver la figura), que es estable y a la cual le igresamos ua señal siusoidal r(t) = a. se(ω.t). Se demuestra que

Más detalles

3. Las medidas de centralización

3. Las medidas de centralización FUOC XP00/71004/00017 21 Las medidas de cetralizació 3. Las medidas de cetralizació La mediaa y la media aritmética Los diagramas de tallos y hojas y los histogramas proporcioa ua descripció geeral de

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

5.1. Tipos de convergencia

5.1. Tipos de convergencia Estadística Tema 5 Covergecia de Variables Aleatorias 51 Tipos de covergecia 52 Ley de los grades úmeros 53 Teorema cetral del límite 54 Método delta Objetivos 1 Motivació estudio secuecias de VAs 2 Covergecia

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M.

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M. MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció La Estadística Descriptiva os ofrece ua serie de herramietas muy útiles para resumir gráfica

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles