Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR"

Transcripción

1 Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR

2 Tema 7: Introducción Qué es un amplificador operacional? Un amplificador operacional ideal es un amplificador diferencial con ganancia infinita e impedancia de entrada infinita. Cuál es su relación entrada-salida? Tres zonas de trabajo Saturación positiva: V NINV > V INV V OUT =V CC Saturación negativa: V NINV < V INV V OUT =-V CC ZONA LINEAL: V NINV = V INV -V CC <V OUT <V CC Nota: Por visibilidad, V NINV = V + y V INV =V - SALVO EXCEPCIONES, INTERESA ESTAR EN ZONA LINEAL 2/27

3 Tema 7: Introducción Aplicaciones lineales básicas El amplificador operacional se encuentra en zona lineal Ejemplos V OUT =V I N No inversor Inversor V OUT =(1+ k ) V I N V OUT = k V I N Seguidor de tensión Derivador V OUT (s)= R C s V I N (s) Integrador V OUT (s)= 1 R C s V I N (s) CUIDADO CON EL TERMINAL DE REALIMENTACIÓN! 3/27

4 Principio de superposición Tema 7: Introducción La aportación de cada fuente independiente a la salida puede computarse anulando las otras. La salida real será la suma de todas las aportaciones. Ejemplo V OUT,1 = R 2 R 1 V 2 Cálculo directo... V OUT,2 =( 1+ R 2 R 1 ) V 2 V OUT =(1+ R 2 R 1 ) V 2 R 2 R 1 V 1 LA SUMA DE AMBAS CONTRIBUCIONES ES LA PREVISTA 4/27

5 Amplificador diferencial Tema 7: ICs Derivados Puede construirse con componentes discretos, pero hay circuitos integrados que contienen todos los elementos necesarios (INA133, AD629, AMP03,...) Si definimos un modo común y un modo diferencial ( Es distinto de la definición en el par diferencial!!!)... V 2 =V C + V D 2 V 1 =V C V D 2 V OUT =[ k 1+ p 1+ k p ] V C+ 1 2 [ k 1+ p 1+ k + p ] V D+ 1+ p 1+ k V REF V OUT =[ k 1+ p 1+ k V 2 p V 1] + 1+ p 1+ k V REF Y si k = p = 1? V OUT =V D + V REF LA SALIDA ES LA DIFERENCIA DE TENSIONES DE ENTRADA 5/27

6 Amplificador diferencial (II) Tema 7: ICs Derivados Y si no es así? Entonces, aparece una ganancia en modo común y un CMRR < A D = 1 2 [ k 1+ p 1+ k + p ] A C =[ k 1+ p 1+ k p ] 1 2 [ k 1+ p 1+ k ] + p 1 CMRR= k 1+ p = 1+ k p 2 p+ k+ 2 k p k p V OUT =[ k 1+ p 1+ k V 2 p V 1] + 1+ p 1+ k V REF k y p tienen una distribución normal, controlada por la tolerancia. A MENOR TOLERANCIA, MAYOR CMRR EN ICs INTEGRADOS, RESISTENCIAS AJUSTADAS POR LASER 6/27

7 Tema 7: ICs Derivados Amplificador de Instrumentación Resuelve el problema de la impedancia de entrada y ganancia diferencial de los amplificadores diferenciales. Ecuación característica V OUT =V REF + ( 1+ 2 R R G ) (V 2 V 1 ) EJEMPLOS R G es externa R es interna y ajustada por láser INA110, INA114, AD620, AD624, LT1101, LT1167, HAY OTRAS CONFIGURACIONES, PERO ESTA ES LA MAS POPULAR 7/27

8 Tema 7: ICs Derivados Amplificador de Instrumentación (II) Útil para crear fuentes de corriente controladas por tensión... V A =V REF + G (V 2 V 1 )=V OUT + G (V 2 V 1 ) USOS I L = V A V OUT R = G (V 2 V 1 ) R Si hacemos R/G = 16/5 y V 1 = V Se obtiene un conversor de 0-5V a 4-20 ma! TAMBIÉN PUEDE USARSE EL AMPLIFICADOR DIFERENCIAL 8/27

9 Tema 7: Circuitos simulados RESISTENCIAS NEGATIVAS Un op amp y tres resistencias nos permiten crear una resistencia negativa V OUT =(1+ k) V I N I I N = V I N V OUT q R= k q R V I N Z I N = V I N I I N = q k R Útiles en osciladores LIMITADO POR EL COMPORTAMIENTO EN FRECUENCIA DEL OP AMP 9/27

10 Tema 7: Circuitos simulados INDUCCIONES Pueden recrearse inducciones con un op amp, resistencias y condensadores Z I N = V I N I I N =Z 1 Z2 + Z 3 Z 1 + Z 2 Si Z 1 = R, Z 2 = 1/Cs y Z 3 = KR, K>>1... Z I N = R+ K R2 C s R+ K R 2 C s 1+ R C s R L =R L= K R 2 C INDUCTANCIA CONECTADA A TIERRA CON RESISTENCIA PARÁSITA 10/27

11 Tema 7: Ganancia controlable Amplificador de Ganancia Controlable En algunas circunstancias, es conveniente poder variar la ganancia de la red de realimentación de un op amp. Hay tres modos: Manual, analógico y digital. Método manual Básicamente, se utiliza un potenciómetro (Ejemplo, control manual de volumen) Ejemplo: No inversor G=1+ k 1+ a p G MAX =1+ k G MIN =1+ k 1+ p EL POTENCIÓMETRO DEBE ELEGIRSE CON CUIDADO 11/27

12 Tema 7: Ganancia controlable Amplificador de Ganancia Controlable (II) En algunas circunstancias, es conveniente poder variar la ganancia de la red de realimentación de un op amp. Hay tres modos: Manual, analógico y digital. Método analógico El fundamento es incluir un FET en zona lineal, cuya resistencia equivalente aumente o disminuya con la salida (o su valor medio) Si aumenta V OUT (o su valor medio o eficaz), la tensión de puerta del NFET aumenta, aumenta su resistencia equivalente y disminuye la ganancia. MUY NO LINEAL, NECESITA AJUSTE PREVIO DE GANANCIA! 12/27

13 Tema 7: Ganancia controlable Amplificador de Ganancia Controlable (II) En algunas circunstancias, es conveniente poder variar la ganancia de la red de realimentación de un op amp. Hay tres modos: Manual, analógico y digital. Método Digital (I) Contamos con un microprocesador o FPGA que varía la ganancia si la salida excede un valor determinado. Ejemplo: Con switches analógicos G=1+ R 1 R C R C =, R 2, R 3 ó (R 2 / / R 3 ) EL ADC PUEDE REEMPLAZARSE POR VALOR MEDIO + COMPARADOR 13/27

14 Tema 7: Ganancia controlable Amplificador de Ganancia Controlable (II) En algunas circunstancias, es conveniente poder variar la ganancia de la red de realimentación de un op amp. Hay tres modos: Manual, analógico y digital. Método Digital (II) Contamos con un microprocesador o FPGA que varía la ganancia si la salida excede un valor determinado. Ejemplo: Con DACs I O = n 2 N V REF R X > 0 I O = n 2 N V OUT R X = V I N R V OUT = 2N V I N n R X R (V I N < 0) CUIDADO CON EL SENTIDO DE LA CORRIENTE DEL DAC! 14/27

15 Tema 7: Estructura básica Estructura de un amplificador operacional Por regla general, los op amps constan de una etapa de entrada, otra de ganancia y otra de salida, polarizadas con espejos. NOTAS Nada impide que los espejos estén debajo. La entrada es siempre un par diferencial funcionando como transconductor (generalmente) o como amplificador de tensión (simple o diferencial). La etapa de ganancia es unipolar o un par diferencial. La etapa de salida es de entrada unipolar. SE HAN OBVIADO LAS FUENTES DE ALIMENTACIÓN 15/27

16 Tema 7: Estructura básica POR QUÉ EL CONDENSADOR C C? Hay tantos polos y ceros intrínsecos que, en muchos casos, el sistema entra en oscilación. Al añadir el condensador, se produce un efecto curioso: Aparece un polo en frecuencias bajas y el resto de ceros y polos se desplazan a frecuencias más altas. TH. MILLER y MODELO DEL POLO DOMINANTE. PROBLEMA: LA RESPUESTA EN FRECUENCIA EMPEORA 16/27

17 Tema 7: Estructura básica COMO SE MIDE LA ESTABILIDAD DE UN CONDENSADOR? MÁRGENES DE GANANCIA Y FRECUENCIA Margen de ganancia: Ganancia del amplificador cuando la fase es 180º. Se expresa en db y debe ser negativa (< 1) Margen de fase: Diferencia entre 180º y la frecuencia a la que la ganancia es 1. RELACIONADOS CON EL CRITERIO DE BARKHAUSEN 17/27

18 Tema 7: No idealidades Tensión de offset de la entrada Con entrada nula, la salida no es nula. En general, en zona lineal, V + - V - = - V OS Esta estructura equivale al circuito de la figura. Efecto en redes... V OUT =(1+ k) V OS Origen? Las tensiones de offset de cada bloque, amplificado por las etapas siguientes. V OS1 : Offset de la etapa de entrada V OS2 : Offset de la e. de ganancia V OS, OUT = A 1 A 2 A 3 V OS1 + A 2 A 3 V OS2 + A 3 V OS3 V OS = V OS, OUT =V A 1 A 2 A OS1 + V OS2 + V OS3 3 A 1 A 1 A 2 V OS3 : Offset de la e. de salida MÁS IMPORTANTE LA APORTACIÓN DE LA ENTRADA! 18/27

19 Tema 7: No idealidades Corriente de polarización de la entrada Aparecen dos corrientes en las entradas Si hay resistencias... V OUT =k R I B Origen? Las corrientes de base en pares BJT y corrientes de puerta en JFET y CMOS. PUEDEN SER POSITIVAS O NEGATIVAS! MISMO EFECTO QUE LA TENSIÓN DE OFFSET 19/27

20 Ganancia en lazo abierto Tema 7: No idealidades En realidad, un amplificador operacional es un amplificador diferencial con ganancia alta, pero finita: SUS EFECTOS SON OBSERVABLES V OUT = A D (V NINV V INV ) V OUT = A D (V NINV + V OS V INV ) Ejemplo: Origen? Producto de las ganancias de las tres etapas, teniendo en cuenta las impedancias de entrada y salida. V OUT = A D ( V NINV V INV ) V OUT V INV kr V NINV =V I N = V INV R V OUT 1+ k = 1 V I N 1+ (1+ k ) A D IMPORTANTE EN EL COMPORTAMIENTO EN FRECUENCIA 20/27

21 Tema 7: No idealidades Frecuencia de ganancia unidad /modelo polo dominante La inserción del condensador C C estabiliza el op amp pero introduce un polo a bajas frecuencias. A D (s) A D 1+ s ω 0 Ejemplo: En estructura no inversora V OUT (s) V I N (s) = 1+ k 1+ (1+ k ) A 1 D (s) = 1+ k 1+ (1+ k ) A 1 D + s A D ω 0 1+ k 1+ k s 1+ A D ω 0 1+ k Nuevo polo en A D ω 0 1+ k La cantidad A D 0 es propia de cada amplificador operacional y se denomina Producto ganancia-ancho de banda (GBW) o frecuencia de ganancia unidad, f U. DEL ORDEN DEL MHz EN MAYORÍA DE OP AMPS PERMITE CALCULAR EL ANCHO DE BANDA DE ESTRUCTURAS 21/27

22 Tema 7: No idealidades Slew rate En caso de conmutaciones rápidas de la salida, el condensador C C debe cargarse y descargarse a través de la fuente de corriente que polariza el par de entrada. CONSECUENCIA: La evolución de la tensión de salida está limitada por un determinado valor, llamado Slew rate, y medido en V/ s. SR N EG < dv OUT dt < SR POS CON GRANDES AMPLITUDES, MÁS IMPORTANTE QUE GBW 22/27

23 Tema 7: No idealidades Valores de frecuencia de ganancia unidad y de slew rate Puede demostrarse que, independientemente del tipo de amplificador: Frecuencia de ganancia unidad, f U = g m /(2 C C) Siendo g m la transconductancia del par de entrada. Slew rate, SR = I Q / C C, donde I Q es la fuente que polariza la etapa de entrada. En etapas de entrada con par BJT... f U = 1 2 π gm C C = 1 2 π hfe /h ie C C = 1 2 π h fe I B N V T C C 1 2 π I E N V T C C = 1 4 π I Q N V T C C SR= I Q C C f U = 1 4 π I Q N V T C C = SR 4 π N V T SR 0,326 N f U ESTA RESTRICCION NO APARECE SI EL PAR ES DE EFECTO CAMPO! 23/27

24 Tema 7: No idealidades Limitación de la tensión de salida Idealmente, se supone que el amplificador satura a ±V CC. En realidad, es imposible alcanzar estos valores por las limitaciones de los compontes internos. Ejemplo: En una etapa de salida AB, la tensión colector-emisor debe ser de, al menos, 0,2 V. Desplazamiento de las tensiones de saturación: E SAT,+ = V CC -V SAT,+ y E SAT,- = V CC +V SAT,- Corriente máxima de salida o de cortocircuito El amplificador operacional no puede proporcionar/absorber cualquier corriente... ESTÁ LIMITADA, INTENCIONADAMENTE O NO! I O, MIN R L < V OUT < I O, MAX R L EN AMPLIFICADORES TÍPICOS, VARIAS DECENAS DE MILIAMPERIOS 24/27

25 Tema 7: Comparadores Es un amplificador operacional? No. Ambos son amplificadores diferenciales con alta impedancia de entrada y ganancia. Sin embargo, ahí acaban las similitudes... El op amp trabaja en zona lineal. El comparador en saturación. El op amp necesita ser estable. El comparador, rápido. Los comparadores carecen de C C. La salida de un comparador tiene niveles lógicos 0 y 1, la de un op amp cualquiera. La salida de un comparador puede ser doble (original y negada) Un op amp tiene una o dos entradas de alimentación. El comparador, hasta 4. +V CC, -V CC, V L y 0V. Un comparador suele atacar elementos con alta impedancia de entrada. No suele tener etapa de salida (ó pull-up /pull-down con colector/drenador abierto). En un comparador, la relación entrada/salida puede tener histéresis. 25/27

26 Tema 7: Comparadores NO IDEALIDADES (DE INTERÉS) TENSIÓN DE OFFSET DE LA ENTRADA GANANCIA DIFERENCIAL ANCHURA DEL CICLO DE HISTÉRESIS TIEMPO DE RESPUESTA PUEDE HABER REALIMENTACIÓN POSITIVA EN EL INTERIOR 26/27

27 Tema 7: Comparadores COMPARADOR REGENERATIVO Un comparador regenerativo es aquél que presenta un ciclo de histéresis. Ventaja: Detecta transiciones de estado reales, no las causadas por el ruido. Por diseño interno Por redes de resistencias (báscula de Schmitt), con realimentación positiva Si V OUT = -V SATN y V IN decrece, el cambio ocurre en: V THN = R 1 V REF R 2 V SATN R 1 + R 2 Si V OUT = +V SATP y V IN crece, el cambio ocurre en: V THP = R 1 V REF + R 2 V SATP R 1 + R 2 > V THN SE PUEDE AJUSTAR EL VALOR MEDIO Y LA ANCHURA DE CICLO 27/27

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 7: EL AMPLIFICADOR OPERACIONAL. Francisco J.

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 7: EL AMPLIFICADOR OPERACIONAL. Francisco J. TEMA 7: EL AMPLIFICADOR OPERACIONAL Francisco J. Franco Peláez Apuntes para uso en la asignatura Electrónica Analógica, impartida en la Ingeniería Superior Electrónica en la Facultad de Físicas de la.

Más detalles

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple.

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Comparador simple El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Vo +Vcc Vi-Vref El comparador analógico se denomina también ADC de un bit.

Más detalles

Amplificadores Operacionales (I)

Amplificadores Operacionales (I) Amplificadores Operacionales (I) Concepto general de amplificador operacional: Amplificador diferencial con una ganancia de tensión elevada, acoplo directo y diseñado para facilitar la inclusión de una

Más detalles

M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción a la Electrónica

M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción a la Electrónica AMPLIFICADOR OPERACIONAL M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción Amplificador Operacional ideal. Modelo Diferentes tipos

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales José Luis Rodríguez, Ph.D., Agosto del 2004 1 Amplificadores Operacionales Un Amplificador Operacional (AO) es un amplificador modular de multietapas con una entrada diferencial que se aproxima mucho en

Más detalles

PROBLEMAS. EL AMPLIFICADOR OPERACIONAL. 1. El circuito de la figura(1) muestra un Amplificador Operacional ideal salvo que tiene una ganancia finita A. Unas medidas indican que vo=3.5v cuando vi=3.5v.

Más detalles

ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES

ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES Prof. Gerardo Maestre González Circuitos con realimentación negativa. Realimentar un amplificador consiste en llevar parte de la señal de salida

Más detalles

Comparadores electrónicos

Comparadores electrónicos Comparadores electrónicos. Introduión En este capítulo se estudian los circuitos comparadores electrónicos con énfasis en los comparadores regenerativos y en los comparadores monolíticos, amplificadores

Más detalles

Circuitos no lineales con amplificador operacional Guía 8 1/7

Circuitos no lineales con amplificador operacional Guía 8 1/7 1/7 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 8 Circuitos no lineales con amplificador operacional Problemas básicos 1. El comparador de la figura 1 tiene una ganancia a lazo abierto de 110 db. Cuánto

Más detalles

Amplificadores de potencia

Amplificadores de potencia Amplificadores de potencia Clasificación de los amplificadores de potencia Tradicionalmente se consideran amplificadores de potencia aquellos que por manejar señales de tensión y corriente apreciables

Más detalles

UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES

UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- Amplificadores operacionales Amplificador de alta ganancia, que tiene una impedancia de entrada muy alta (por lo general mega-ohms) y una impedancia

Más detalles

Unidad Orientativa (Electrónica) Amplificadores Operacionales

Unidad Orientativa (Electrónica) Amplificadores Operacionales Unidad Orientativa (Electrónica) 1 Amplificadores Operacionales Índice Temático 2 1. Que son los amplificadores operacionales? 2. Conociendo a los Amp. Op. 3. Parámetros Principales. 4. Circuitos Básicos

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139 DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 019 TRABAJO DE LECTURA.101 Práctica introductoria de electrónica analógica Práctica En

Más detalles

Comparadores de tensión

Comparadores de tensión Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Comparadores de tensión OBJETIVOS - CONOCIMIENTOS

Más detalles

Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra

Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra Lógica de resistencia transistor La lógica de resistencia-transistor RTL es una clase de circuitos digitales

Más detalles

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción: DISEÑO DE SISTEMAS DE CONTROL 1.-Introducción. 2.-El problema del diseño. 3.-Tipos de compensación. 4.-Reguladores. 4.1.-Acción Proporcional. Reguladores P. 4.2.-Acción Derivativa. Reguladores PD. 4.3.-Acción

Más detalles

Tema 07: Acondicionamiento

Tema 07: Acondicionamiento Tema 07: Acondicionamiento Solicitado: Ejercicios 02: Simulación de circuitos amplificadores Ejercicios 03 Acondicionamiento Lineal M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx

Más detalles

Apuntes para el diseño de un amplificador multietapas con TBJs

Apuntes para el diseño de un amplificador multietapas con TBJs Apuntes para el diseño de un amplificador multietapas con TBJs Autor: Ing. Aída A. Olmos Cátedra: Electrónica I - Junio 2005 - Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACIONAL DE TUCUMAN

Más detalles

EL TRANSISTOR Características, polarización, estabilidad, clases de trabajo. El amplificador con transistor.

EL TRANSISTOR Características, polarización, estabilidad, clases de trabajo. El amplificador con transistor. EL TRANSISTOR Características, polarización, estabilidad, clases de trabajo. El amplificador con transistor. Autor: Ing. Aída A. Olmos Cátedra: Electrónica I Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos electrónicos Otoño 2000 Tarea para casa 11 Boletín F00-057 Fecha de entrega: 6/12/00 Introducción

Más detalles

El Ampli cador Operacional Ideal

El Ampli cador Operacional Ideal El Ampli cador Operacional Ideal J.I. Huircán Abstract El Ampli cador Operacional Ideal es un ampli- cador de oltaje de alta ganancia, controlado por oltaje, que posee una resistencia de entrada in nita.

Más detalles

TEMA 5. MICROELECTRÓNICA ANALÓGICA INTEGRADA

TEMA 5. MICROELECTRÓNICA ANALÓGICA INTEGRADA TEMA 5. MCOEECTÓCA AAÓGCA TEGADA 5.. esistencias activas En el capítulo tercero se puso de manifiesto la dificultad que conlleva la realización de resistencias pasivas de elevado valor con tecnología CMOS,

Más detalles

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 8: APLICACIONES NO LINEALES DE LOS AMPLIFICADORES OPERACIONALES

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 8: APLICACIONES NO LINEALES DE LOS AMPLIFICADORES OPERACIONALES TEMA 8: APLICACIONES NO LINEALES DE LOS AMPLIFICADORES OPERACIONALES Francisco J. Franco Peláez Apuntes para uso en la asignatura Electrónica Analógica, impartida en la Ingeniería Superior Electrónica

Más detalles

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Circuitos Integrados Lineales y Lab.

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Circuitos Integrados Lineales y Lab. Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso: Circuitos Integrados Lineales y Lab. Carácter Semestre recomendado Sesiones Créditos Antecedentes Obligatorio

Más detalles

Unidad temática 4 Tema 2 OSCILADORES NO SINUSOIDALES

Unidad temática 4 Tema 2 OSCILADORES NO SINUSOIDALES Unidad temática 4 Tema OSCILADOES NO SINUSOIDALES APUNTE TEÓICO Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana

Más detalles

2 Electrónica Analógica

2 Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009-2010 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2 2 A li i d l A lifi d O i l 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3

Más detalles

GUÍA 7: AMPLIFICADORES OPERACIONALES

GUÍA 7: AMPLIFICADORES OPERACIONALES 3º Electrónica ogelio Ortega B GUÍA 7: AMPLIFICADOES OPEACIONALES El término de ampliicador operacional (operational ampliier o OA o op -amp) ue asignado alrededor de 940 para designar una clase de ampliicadores

Más detalles

LOS TRANSISTORES DE EFECTO DE CAMPO

LOS TRANSISTORES DE EFECTO DE CAMPO LOS TRANSISTORES DE EFECTO DE CAMPO Compilación y armado: Sergio Pellizza Dto. Apoyatura Académica I.S.E.S. En el capítulo anterior hemos visto que en los transistores bipolares una pequeña corriente de

Más detalles

ELECTRÓNICA ANALÓGICA

ELECTRÓNICA ANALÓGICA Universidad Nacional de Misiones ELECTRÓNICA ANALÓGICA Introducción a los Amplificadores Operacionales y sus principales aplicaciones 1 Historia 1947 Surge el transistor 1954 Primer transistor de Si 1959

Más detalles

TEMA 7: CIRCUITOS DE ACONDICIONAMIENTO PARA SENSORES DE REACTANCIA VARIABLE

TEMA 7: CIRCUITOS DE ACONDICIONAMIENTO PARA SENSORES DE REACTANCIA VARIABLE TEMA 7: CICUITO DE ACONDICIONAMIENTO AA ENOE DE EACTANCIA AIABLE Bibliografía: ensores y acondicionadores de señal allás Areny,. Marcombo, 1994 Instrumentación electrónica moderna y técnicas de medición

Más detalles

Secretaría de Docencia Dirección de Estudios Profesionales

Secretaría de Docencia Dirección de Estudios Profesionales PROGRAMA DE ESTUDIO POR COMPETENCIAS ELECTRÓNICA DIGITAL Secretaría de Docencia I. IDENTIFICACIÓN DEL CURSO Espacio Educativo: Facultad de Ingeniería Licenciatura: Ingeniería en computación Año de aprobación

Más detalles

Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional

Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional 1. Introducción. En esta práctica se diseña un regulador de tensión de tipo serie y se realiza el montaje correspondiente

Más detalles

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción Práctica Amplificadores de RF. Objetivo En primer lugar, en esta práctica montaremos un amplificador de banda ancha mediante una etapa emisor común y mediante una etapa cascodo, con el findeestudiar la

Más detalles

2 El Ampli cador Operacional Ideal

2 El Ampli cador Operacional Ideal El Ampli cador Operacional Ideal J.I.Huircan Uniersidad de La Frontera January 4, 202 Abstract El Ampli cador Operacional Ideal es un ampli cador de oltaje de alta ganancia, controlado por oltaje, que

Más detalles

El transistor como elemento de circuito.

El transistor como elemento de circuito. El transistor como elemento de circuito. 1.1) Características funcionales del transistor bipolar. El transistor bipolar (conocido universalmente con la simple denominación de transistor) es un elemento

Más detalles

Transistores de efecto de campo (npn) drenador. base. fuente. emisor BJT dispositivo de 3 terminales

Transistores de efecto de campo (npn) drenador. base. fuente. emisor BJT dispositivo de 3 terminales Diapositiva 1 Transistores de efecto de campo (npn) puerta FET dispositivo de 3 terminales corriente e - de canal desde la fuente al drenador controlada por el campo eléctrico generado por la puerta impedancia

Más detalles

PATENTES Y MARCAS. Strawinskylaan 341 1077 XX Amsterdam, NL 01.10.94

PATENTES Y MARCAS. Strawinskylaan 341 1077 XX Amsterdam, NL 01.10.94 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA k 11 N. de publicación: ES 2 06 743 k 21 Número de solicitud: 90446 k 1 Int. Cl. : H03G 3/ k 12 SOLICITUD DE PATENTE A2 k 22 Fecha de presentación: 04.03.93

Más detalles

solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER

solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER Cuando la señal de entrada se encuentra contaminada con ruido, la conmutación de un circuito digital o analógico ya no se efectúa

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 6: ETAPAS DE SALIDA. Francisco J.

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 6: ETAPAS DE SALIDA. Francisco J. TEMA 6: ETAPAS DE SALIDA Francisco J. Franco Peláez Apuntes para uso en la asignatura Electrónica Analógica, impartida en la Ingeniería Superior Electrónica en la Facultad de Físicas de la. 1 Índice 1.

Más detalles

TUTORIAL WEB PARA LA ASIGNATURA DE CIRCUITOS INTEGRADOS

TUTORIAL WEB PARA LA ASIGNATURA DE CIRCUITOS INTEGRADOS TUTORIAL WEB PARA LA ASIGNATURA DE CIRCUITOS INTEGRADOS F.J. GONZÁLEZ-CAÑETE, R. GARCIA-MERIDA, G. VALENCIA Departamento de Tecnología Electrónica. ETSI de Telecomunicación. Universidad de Málaga. España

Más detalles

CONTROL DE TEMPERATURA

CONTROL DE TEMPERATURA CONTROL DE TEMPERATURA 1.- OBJETIVO.- El objetivo de este trabajo es controlar la temperatura de un sistema ( Puede ser una habitación), usando un control por Histeresis. 2.- INTRODUCCION.- Como podríamos

Más detalles

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems BIPOLARES. Fundamentos de Ingeniería Eléctrica

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems BIPOLARES. Fundamentos de Ingeniería Eléctrica Máster en Mecatrónica U4M Master in Mechatronic and MicroMechatronic Systems IOLARS Fundamentos de Ingeniería léctrica Contenidos Funcionamiento Tipos de transistores Curvas características Resolución

Más detalles

11615 - DM 1 - Diseño Microelectrónico I

11615 - DM 1 - Diseño Microelectrónico I Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos: 2015 710 - EEL - Departamento de Ingeniería Electrónica INGENIERÍA ELECTRÓNICA (Plan 1992). (Unidad docente Obligatoria) MÁSTER UNIVERSITARIO

Más detalles

Transformadores de Pulso

Transformadores de Pulso 1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos

Más detalles

Acondicionamiento de Señal. Unidad 3

Acondicionamiento de Señal. Unidad 3 Acondicionamiento de Señal Unidad 3 Contenido Puentes de resistencias e impedancias Amplificadores Circuitos de salida Muestreadores Retentores Multiplexores Convertidores digital analógico Convertidores

Más detalles

Conclusiones, aportaciones y sugerencias para futuros trabajos

Conclusiones, aportaciones y sugerencias para futuros trabajos Capítulo 7 Conclusiones, aportaciones y sugerencias para futuros trabajos En este último capítulo se va a realizar una recapitulación de las conclusiones extraídas en cada uno de los capítulos del presente

Más detalles

DIE UPM. Decodificador

DIE UPM. Decodificador DIVISIÓN DE () Asignatura: Electrónica y regulación automática Fecha: 17/06/2010 Especialidad: Química, Materiales, Fabricación, Convocatoria: Junio Organización, Máquinas, Construcción, Ing. Química Publicación

Más detalles

OBJETIVOS... 3 INTRODUCCIÓN... 4

OBJETIVOS... 3 INTRODUCCIÓN... 4 10 AMPLIFICADOR OPERACIONAL Electrónica analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 10.1. AMPLIFICADORES OPERACIONALES. EL AMPLIFICADOR DIFERENCIAL... 5 10.2. LA FUENTE DE CORRIENTE CONSTANTE...

Más detalles

Práctica 2. Circuitos comparadores

Práctica 2. Circuitos comparadores Laboratorio ntegrado de ngeniería ndustrial Práctica 2 Práctica 2. Circuitos comparadores. Objetivos Conocer el funcionamiento de circuitos comparadores empleando Amplificadores Operacionales. Conocer

Más detalles

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 Índice Índice... Pág. 2 Breve descripción de la práctica... Pág. 3 Enumeración de recursos comunes... Pág. 3 Desarrollo

Más detalles

Tema 1E Amplificadores Operacionales COMPARADORES. Prof. A. Roldán Aranda 1º Ing. Informática

Tema 1E Amplificadores Operacionales COMPARADORES. Prof. A. Roldán Aranda 1º Ing. Informática Tema E Amplificadores Operacionales COMPAADOES Prof. A. oldán Aranda º Ing. Informática Características del A.O. real I Tensiones de entrada limitadas por la alimentación CC La tensión de las entradas

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

Electrónica Analógica (II)

Electrónica Analógica (II) Electrónica Analógica II) Jesús Arias Índice general. El Amplificador Operacional A. O.) 3.. El amplificador operacional ideal. Circuitos básicos............................. 3... Motivación del amplificador

Más detalles

ETN 404 Mediciones Eléctricas Docente: Ing. Juan Carlos Avilés Cortez. 2014

ETN 404 Mediciones Eléctricas Docente: Ing. Juan Carlos Avilés Cortez. 2014 UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE INGENIERIA INGENIERIA ELECTRONICA ETN 404 Mediciones Eléctricas Docente: Ing. Juan Carlos Avilés Cortez. 2014 El amplificador Operacional El Amplificador Operacional

Más detalles

POLARIZACION DEL TRANSISTOR DE EFECTO DE CAMPO DE UNION J-FET (JUNTION FIELD EFFECT TRANSISTOR)

POLARIZACION DEL TRANSISTOR DE EFECTO DE CAMPO DE UNION J-FET (JUNTION FIELD EFFECT TRANSISTOR) POLAZACON DEL TANTO DE EFECTO DE CAMPO DE UNON J-FET (JUNTON FELD EFFECT TANTO) TEOA PEA El transistor de efecto de campo (JFET) tiene las siguientes ventajas y desventajas con respecto del transistor

Más detalles

TEMA 9 Comparadores de tensión

TEMA 9 Comparadores de tensión Tema 9 TEMA 9 Comparadores de tensión 9.1.- Introducción: El OA como comparador Los comparadores son circuitos no lineales que, como su nombre indica, sirven para comparar dos señales (una de las cuales

Más detalles

Practica 5 Amplificador operacional

Practica 5 Amplificador operacional Practica 5 Amplificador operacional Objetivo: Determinar las características básicas de un circuito amplificador operacional. Examinar las ventajas de la realimentación negativa. Equipo: Generador de funciones

Más detalles

Polarización Análisis de circuitos Aplicaciones. Introducción a la Electrónica

Polarización Análisis de circuitos Aplicaciones. Introducción a la Electrónica TRANSISTOR BIPOLAR Funcionamiento general Estructura, dopados, bandas de energía y potenciales Curvas, parámetros relevantes Niveles de concentración de portadores Ecuaciones de DC Modelo de Ebers-Moll

Más detalles

Circuitos Electrónicos II (66.10) Guía de Problemas Nº 1: Realimentación negativa y Corrimientos

Circuitos Electrónicos II (66.10) Guía de Problemas Nº 1: Realimentación negativa y Corrimientos Circuitos Electrónicos II (66.10) Guía de Problemas Nº 1: Realimentación negativa y Corrimientos 1.- Para los siguientes circuitos, hallar vo/vg considerando Avol op ; Ro op = 0; Ri op 1.1) 1.2) 2.- A

Más detalles

PROBLEMA. Diseño de un DIMMER.

PROBLEMA. Diseño de un DIMMER. PROBLEMA Diseño de un DIMMER. Solución, como las especificaciones vistas en clase fueron muy claras el DIMMER controlara la velocidad de los disparos que se harán en la compuerta de el tiristor, es decir

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

CAPITULO 1 CONCEPTOS BASICOS

CAPITULO 1 CONCEPTOS BASICOS CONTENIDO Prefacio v Introducción para el estudiante xi CAPITULO 1 CONCEPTOS BASICOS 1.0 Introducción 1 1.l Historia 2 1.2 Modelos de circuitos de estado sólido 3 1.3 Elementos de circuitos lineales y

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

EL AMPLIFICADOR OPERACIONAL

EL AMPLIFICADOR OPERACIONAL EL AMPLIFICADOR OPERACIONAL La microelectrónica ha pasado a ser una industria próspera que interviene cada día más en la tecnología y en la economía. La microelectrónica está basada en el desarrollo de

Más detalles

Conversores Análogo-Digital y Digital-Análogo: Conceptos Básicos

Conversores Análogo-Digital y Digital-Análogo: Conceptos Básicos Conversores Análogo-Digital y Digital-Análogo: Conceptos Básicos Huircán, Juan Ignacio 1 Abstract El siguiente trabajo revisa las técnicas y conceptos básicos de la conversión análogo-digital y digitalanálogo,

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales OP-AMP Prof. Caroline González ELEN 3311 OP AMP Un amplificador operacional es un amplificador de alta ganancia y un circuito integrado capaz de realizar un gran número de

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

PROGRAMA DE MATERIA OBJETIVOS PARTICULARES

PROGRAMA DE MATERIA OBJETIVOS PARTICULARES DATOS DE IDENTIFICACIÓN MATERIA: CENTRO ACADÉMICO: DEPARTAMENTO ACADÉMICO: AMPLIFICADORES OPERACIONALES CIENCIAS BÁSICAS SISTEMAS ELECTRÓNICOS PROGRAMA EDUCATIVO: AÑO DEL PLAN DE ESTUDIOS: 2003 SEMESTRE:

Más detalles

AMPLIFICADORES OPERACIONALES Y APLICACIONES (8 Hrs)

AMPLIFICADORES OPERACIONALES Y APLICACIONES (8 Hrs) CAPITULO AMPLIICADOES OPEACIONALES Y APLICACIONES (8 Hrs) Objetivo: El alumno describirá el funcionamiento del AO y sus principales circuitos de aplicación, pudiendo utilizarlos para resolver problemas

Más detalles

DISEÑO CON AMPLIFICADORES OPERACIONALES

DISEÑO CON AMPLIFICADORES OPERACIONALES 1 DISEÑO CON AMPLIFICADORES OPERACIONALES Introducción Muchos de los circuitos con amplificadores operacionales que efectúan operaciones matemáticas se usan con tal frecuencia que se les ha asignado su

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción es potenciométricos Galgas extensiométricas es piezoeléctricos es capacitivos es inductivos es basados en efecto es optoelectrónicos es de ultrasonidos 5.1 Introducción

Más detalles

ÍNDICE MEMÓRIA Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 Capítulo 3: el front-end analógico... 10

ÍNDICE MEMÓRIA Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 Capítulo 3: el front-end analógico... 10 ÍNDICE MEMÓRIA Índice memória... 1 Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 2.1. Qué es un osciloscopio?... 5 2.2. Tipos de osciloscopios... 5 2.2.1. Osciloscopio analógico... 5 2.2.2.

Más detalles

Fig 4-7 Curva característica de un inversor real

Fig 4-7 Curva característica de un inversor real Clase 15: Criterios de Comparación de Familias Lógicas. Características del Inversor Real Cuando comenzamos a trabajar con un inversor real comienzan a aparecer algunos inconvenientes que no teníamos en

Más detalles

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT. EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,

Más detalles

EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN

EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN EL TRANSISTOR OMO ONMUTADOR INTRODUIÓN 1.- EL INTERRUPTOR A TRANSISTOR Un circuito básico a transistor como el ilustrado en la Figura 1 a), conforma un circuito inversor; es decir que su salida es de bajo

Más detalles

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL 1.-Introducción. 2.-Criterio de estabilidad de Nyquist. 3.-Estabilidad relativa. 3.1.-Margen de ganancia. 3.2.-Margen de fase. 4.-Estabilidad mediante

Más detalles

Cuando un condensador se comporta como una bobina

Cuando un condensador se comporta como una bobina Cuando un condensador se comporta como una bobina Milagros Montijano Moreno Objetivo Se pretende señalar en este trabajo la diferencia entre el componente electrónico ideal y el real y aportar un procedimiento

Más detalles

Sistema de adquisición de datos

Sistema de adquisición de datos Sistema de adquisición de datos Sensores Procesador Circuito de Selección de muestreo y las señales retención programable Filtro MUX AMP antialiasing S&H ADC Amplificador de ganancia programable Convertidor

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

TEMA 4. FUENTES DE ALIMENTACIÓN

TEMA 4. FUENTES DE ALIMENTACIÓN TEMA 4. FUENTES DE ALIMENTACIÓN http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 125 Aniversary: http://www.flickr.com/photos/ieee125/with/2809342254/ 1 TEMA 4. FUENTES

Más detalles

1. Analizar la topología, ventajas y desventajas de los distintos tipos de amplificadores: a. Clase A, B, D y G

1. Analizar la topología, ventajas y desventajas de los distintos tipos de amplificadores: a. Clase A, B, D y G AMPLIFICADOR DE AUDIO DE POTENCIA 1. Analizar la topología, ventajas y desventajas de los distintos tipos de amplificadores: a. Clase A, B, D y G 2. Definir y analizar las principales especificaciones

Más detalles

3. ACONDICIONAMIENTO

3. ACONDICIONAMIENTO 3. ACONDICIONAMIENTO - Funciones generales. - Arquitectura básica del sistema de adquisición. -Circuitos integrados de acondicionamiento: amplificadores, filtros, muestreo y retención, multiplexores, conversores

Más detalles

HORARIO DÍA HORAS SALÓN

HORARIO DÍA HORAS SALÓN UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA SYLLABUS PROYECTO CURRICULAR DE INGENIERÍA ELÉCTRICA Nombre del Docente ESPACIO ACADÉMICO (Asignatura): ELECTRONICA II Obligatorio

Más detalles

Comunicaciones (5º año) Definición: Se denomina así a un amplificador que cumple dos condiciones:

Comunicaciones (5º año) Definición: Se denomina así a un amplificador que cumple dos condiciones: Amplificadores de RF Comunicaciones (5º año) - De pequeña señal de RF Amp. ó de señal débil de FI De RF - De potencia o de (sintonizados) gran señal Amplificadores de señal débil Definición: Se denomina

Más detalles

Conversores Tensión - Frecuencia y Frecuencia - Tensión

Conversores Tensión - Frecuencia y Frecuencia - Tensión Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Conversores Tensión - Frecuencia y Frecuencia - Tensión

Más detalles

Nombre de la asignatura: Amplificadores Operacionales. Créditos: 4 2-6. Aportación al perfil:

Nombre de la asignatura: Amplificadores Operacionales. Créditos: 4 2-6. Aportación al perfil: Nombre de la asignatura: Amplificadores Operacionales Créditos: 4 2-6 Aportación al perfil: Diseñar, analizar y construir equipos y/o sistemas electrónicos para la solución de problemas en el entorno profesional,

Más detalles

UNIDAD 4 TRANSISTORES BJT Y JFET

UNIDAD 4 TRANSISTORES BJT Y JFET UNIDAD 4 TRANSISTORES BJT Y JFET OBJETIVO Conocer, identificar, resolver y analizar los transistores BJT y JFET, así como distinguir sus ventajas y desventajas. TEMARIO 4.1 Construcción del transistor

Más detalles

APLICACIONES CON OPTOS

APLICACIONES CON OPTOS APLICACIONES CON OPTOS Los modos básicos de operación de los optoacopladores son: por pulsos y lineal, en pulsos el LED sé switchea on-off (figura 4). En el modo lineal, la entrada es polarizada por una

Más detalles

Usos de un Analizador de Respuesta en Frecuencia

Usos de un Analizador de Respuesta en Frecuencia Usos de un Analizador de Respuesta en Frecuencia La respuesta en frecuencia es la medida del espectro de salida de un sistema en respuesta a un estímulo. El análisis de respuesta en frecuencia mide la

Más detalles

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 4: AMPLIFICADORES DE ENTRADA SIMPLE. Francisco J.

Universidad Complutense de Madrid. Para uso de alumnos de la. http://www.ucm.es TEMA 4: AMPLIFICADORES DE ENTRADA SIMPLE. Francisco J. TEMA 4: AMPLIFICADORES DE ENTRADA SIMPLE Francisco J. Franco Peláez Apuntes para uso en la asignatura Electrónica Analógica, impartida en la Ingeniería Superior Electrónica en la Facultad de Físicas de

Más detalles

Incremento de la producción ya que la velocidad del motor de puede aumentar a elección sin intervenir en el proceso.

Incremento de la producción ya que la velocidad del motor de puede aumentar a elección sin intervenir en el proceso. Características Los reguladores de velocidad son controles electrónicos de motores que controlan la velocidad y el par de los motores de corriente alterna convirtiendo las magnitudes físicas de frecuencia

Más detalles

PARÁMETROS DEL TRANSISTOR

PARÁMETROS DEL TRANSISTOR 13 PARÁMETROS DEL TRANSISTOR 0.- INTRODUCCIÓN (2) 1.- SONDA DETECTORA (4) 2.- MEDIDA DE LA ft (5) 2.1 Realización práctica (7) 3.- PARÁMETRO DE TRANSFERENCIA INVERSA (10) 3.1 Realización práctica (10)

Más detalles

TEMA 3: Control secuencial

TEMA 3: Control secuencial TEMA 3: Control secuencial Esquema: Índice de contenido TEMA 3: Control secuencial...1 1.- Introducción...1 2.- Biestables...3 2.1.- Biestables asíncronos: el Biestable RS...4 2.1.1.- Biestable RS con

Más detalles

Gestión digital sencilla de controladores de fuentes de alimentación analógicas

Gestión digital sencilla de controladores de fuentes de alimentación analógicas COMENTARIO TECNICO Gestión digital sencilla de controladores de fuentes de alimentación analógicas Por Josh Mandelcorn, miembro del equipo técnico de Texas Instruments Normalmente, el control digital de

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

LABORATORIO DE INTERFACES

LABORATORIO DE INTERFACES Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Ingeniería Electrónica con orientación en Sistemas Digitales LABORATORIO DE INTERFACES PRÁCTICO Nº 9 Sensores de efecto

Más detalles