Especificaciones técnicas de los prototipos:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Especificaciones técnicas de los prototipos:"

Transcripción

1 Especificaciones técnicas de los prototipos: Sensor de Temperatura y Humedad Relativa Sensor de Humedad de la Hoja

2 CARACTERÍSTICAS SENSOR HUMEDAD DE LA HOJA El Sensor de Humedad de la hoja está diseñado para simular una hoja y medir la condición de seca a mojada en un rango de 0 a 9 unidades, la detección de lluvia se logra mediante una placa de circuito impreso con dos líneas conductoras con proximidad entre sí, las cuales están recubiertas para evitar la corrosión ante la exposición a intemperie. La máxima conducción eléctrica entre ellas se tiene cuando existe humedad sobre la superficie. Se interpreta como una resistencia variable en función del grado de humedad existente: Sensor seco: R Sensado = infinito = 0 Sensor máxima humedad: R Sensado = 0 = 9 El transductor (placa) está conectada a un circuito integrado LM393 que es un amplificador operacional configurado como comparador, que recibe la máxima conducción eléctrica, si la placa esta mojada (lo que representa una resistencia baja), y esta equivale aproximadamente a 0,01 veces la alimentación conectada al sensor. Si la placa se encuentra seca se lee como un circuito abierto o una resistencia alta donde no pasa corriente hacia el comparador. En la figura 1 se muestra el diagrama a bloques del sensor. Figura 1. Diagrama del sensor

3 Especificaciones Técnicas del Sensor de Humedad de la Hoja Componentes del sensor Microcontrolador = ATmega328 Regulador = LM7805 Resistencia R1= 4.7KΩ Resistencia R2= 10KΩ Capacitor C1, C2= 22pF Capacitor C3= 10uF Cristal X1= 16MHz Conectores transductor Conector interruptor de configuración Conector para programación Conector salida radio A733 Micro-controlador Atmega328P ATMEGA 328P CPU AVR 8-Bit Memoria flash 32K Bytes EEPROM 1K Bytes RAM 2K Bytes Frecuencia máxima 20MHz Canales ADC 6-10 Bits Encapsulado PDIP-28 Interfaces 2-wire, SPI, USART Puertos de entrada/salida 14 analógicos y 6 digitales(6-pwm) Puerto para conectar al radio A733 RTU ADCON 3 pines (VCC, GND, Cabling3) copia diagrama de conexión A733. Puerto para configurar el sensor se utilizan conector de 5 pines (D0-RX, D1-TX, VCC ARDUINO, GND, RESET), utiliza la plataforma de desarrollo arduino para la programación y carga del programa (ver código) al microcontrolador.

4 Puerto Selector para seleccionar el modo configuración o Autónomo (Programación/Autónomo), el estado normal es autónomo. Conector para transductor de humedad de la hoja (GND, D0, A0, VCC) Alimentación de 5 volts de DC, alimentado a través del regulador de voltaje, con entrada externa entre 6 a 25 volts. Calibración por software Consumo de corriente bajo Dimensiones de la placa 5 cm x 4.5 cm Consumo de energía 5V Valores máximos de alimentación 6v a 25v Configuración de conectores. Conector configuración arduino a sensor Pin Nombre Comentario 1 D0-RX Conectado al D0 para configuración 2 D1-TX Conectado al D1 para configuración 3 RESET Conectado al Reset del Arduino 4 GND Conectado a tierra 5 VCC ARDUINO Conectado a 5V del Arduino Conector Selector entre configuración y automático Pin Nombre Comentario 1 VCC REGULADOR Conectado a la salida del regulador 2 VCC Alimentación Conector entre placa y Humedad Hoja Pin Nombre Comentario 1 GND Conectado a tierra 2 D0 Salida digital SHT A0 Salida análoga SHT VCC Alimentación 3 VCC ARDUINO Conectado a 5V del Arduino Conector entre placa y A733 de ADCON Pin Nombre Comentario 1 GND Conectado a tierra 2 Humedad Hoja Conectado a cabling3 Adcon 3 VCC Alimentación

5 Código Fuente instalado en Atmega: int lectura; float humsup; void setup() { // Serial.begin(9600); pinmode(9, OUTPUT); } void loop() { lectura= analogread(a0); humsup= map(lectura, 0,1023,125,0); analogwrite(9,humsup); Serial.print(lectura); Serial.print(","); Serial.println(humSup); }

6 Diagrama eléctrico

7 Conexión a radio A733 Conector del sensor Tierra Batería Cable 3 (Humedad de la hoja) Contador pulsos Cable 2 Cable 1 Digital I/O

8 CARACTERÍSTICAS SENSOR DE TEMPERATURA Y HUMEDAD RELATIVA El sensor de temperatura y humedad relativa tiene como transductor el circuito integrado SHT75 marca Sensirion, fabricado con un capacitor de polímero para la humedad relativa y para la temperatura con silicio tecnología de banda prohibida (band-gap sensor), estos son acoplados a un convertidor de analógico a digital de 14 bits y a un circuito de interface serial. El SHT75 tiene integrada una memoria para guardar información de calibración. La interface serial de 2 cables y su regulación interna de voltaje permite una integración fácil y rápida con el micro-controlador Atmega 328P. En la figura 1 se muestra el diagrama bloques del sensor. Figura 1. Diagrama del sensor Componentes de sensor. Los componentes físicos del sensor se colocaron en la tarjeta impresa de la figura 2. Conectados de acuerdo al diagrama eléctrico. Microcontrolador= ATmega328 Regulador= LM7805 Resistencia R1, R4= 10KΩ Resistencia R2, R3= 4.7KΩ Capacitor C1, C2= 22pF Capacitor C3, C4= 10uF Cristal X1 = 16MHz Conectores transductor SHT75 Conector selector de configuración Conector para programación Conector salida radio A733 Figura 2. Componentes del sistema.

9 Puerto para conectar transductor de temperatura y Humedad Relativa SHT75 Puerto para conectar sensor temperatura y Humedad Relativa al radio A733 marca ADCON 3 pines (VCC, GND, Cabling3) Puerto para configurar el sensor se utilizan conector de 5 pines (D0-RX, D1-TX, VCC ARDUINO, GND, RESET), utiliza la plataforma de desarrollo arduino para la programación y carga del programa al microcontrolador. Puerto Selector de modo configuración o Autónomo (Programación/Autónomo), el estado normal es autónomo. Especificaciones Técnicas del Sensor Temperatura y Humedad Relativa Micro-controlador Atmega328P ATMEGA 328P CPU AVR 8-Bit Memoria flash 32K Bytes EEPROM 1K Bytes RAM 2K Bytes Frecuencia máxima 20MHz Canales ADC 6-10 Bits Encapsulado PDIP-28 Interfaces 2-wire, SPI, USART Puertos de entrada/salida 14 analógicos y 6 digitales(6-pwm) Conector para RTU ADCON 4 pines (VCC, GND, Cabling1, Cabling2) Conector para programación 5 pines (D0-RX, D1-TX, VCC ARDUINO, GND, RESET) Selector de modo Programación/Autónomo Conector para sensor SHT75 (SCK, VCC, GND, DATA) Regulador de voltaje 5v Calibración por software Consumo de corriente bajo Dimensiones de la placa 5 cm x 4.5 cm Consumo de energía 5V Valores máximos de alimentación 6v a 25v

10 Temperatura Humedad Relativa Rango de medición -40 a C / -40 a F 0-100% HR Precisión ±0.3 C ±0.8% Resolución 0.04 C 0.4 %RH Conector Programar Pin Nombre Comentario 1 D0-RX Conectado al D0 para configuración 2 D1-TX Conectado al D1 para configuración 3 RESET Conectado al reset del Arduino 4 GND Conectado a tierra 5 VCC ARDUINO Conectado a 5V del Arduino Conector Selector Pin Nombre Comentario 1 VCC REGULADOR Conectado a la salida del regulador 2 VCC Alimentación Conector SHT75 Pin Nombre Comentario 1 SCK Protocolo 2Wire 2 VCC Alimentación 3 GND Conectado a tierra 4 DATA Protocolo 2Wire 3 VCC ARDUINO Conectado a 5V del Arduino Conector ADCON Pin Nombre Comentario 1 GND Conectado a tierra 2 TEMPERATURA Conectado a Cabling1 Adcon 3 HUMEDAD RELATIVA Conectado a Cabling2 Adcon 4 VCC Alimentación Adecuación de señales de entrada y salida mediante la programación del controlador ATmega328

11 Código Fuente instalado en Atmega: #include "SHTxx.h" // se incluye libreria del sensor sht75 #define clockpin 7 #define datapin 8 //se define el pin de reloj //se define el pin de datos SHTxx sht71(datapin, clockpin); // parámetros librería SHTxx.h void setup() { pinmode(9, OUTPUT); pinmode(10, OUTPUT); //se define el pin 13 como salida //se define el pin 12 como salida //Serial.begin(9600); } void loop() { float temperatura=sht71.readtemperaturec(); //se lee la temperatura del sensor sht75 float humedad=sht71.readhumidity(); int tempadcon= (temperatura+40)*1.275; int humadcon= (humedad+1)*1.275; // se lee la humedad del sensor sht75 //calculos para //calculos analogwrite(9,tempadcon); analogwrite(10,humadcon); //se escribe la temperatura en el pin9 // se escribe la temperatura en el pin10 /* Serial.print(temperatura); Serial.print(","); Serial.println(humedad); delay(60000);*/ }

12 Transductor SHT75 El transductor SHT75 requiere una fuente de alimentación en el rango de 2.4 a 5.5 volts, el voltaje recomendado es 3.3 volts. En el diagrama de la figura 3 se muestra las conexiones recomendadas por el fabricante, la resistencia de 10KΩ (Rp) que se coloca entre el pin VDD (pin 2) y DATA (pin 4) del sensor SHT75, tiene la función de poner en estado lógico alto el pin del micro controlador, para que este de esta forma maneje sólo estados lógicos bajos. En la hoja de datos del sensor SHT75 menciona que esta resistencia debe ser menor de 25KΩ y se recomienda usar una resistencia de 10KΩ. Figura 3. Generación de salidas analógicas a través de una señal PWM El micro controlador Atmega 328P cuenta con un convertidor ADC (Analog to digital converter), pero no cuenta con un DAC (Digital to Analog Converter) en lugar de esto tiene salidas PWM (modulación por ancho de pulso) que se puede manejar implementando un filtro paso bajo se convierte en salida analógica. La modulación por ancho de pulso es una forma de encriptar un voltaje en una onda portadora de frecuencia fija. Esta técnica de modulación comparte la inmunidad al ruido de FM, a la cual es muy similar. La gran diferencia es la simplicidad y naturaleza digital de esta modulación. En lugar de la variación de frecuencia con tensión, una salida PWM no es más que encender y apagar la señal a una frecuencia fija. El porcentaje del tiempo ON es en proporción a la señal de voltaje.

13 Figura 4 Figura 5. Filtro Pasa Bajo Los capacitores atenúan las variaciones de voltaje; Mantienen el voltaje estable mediante la carga y descarga de electrones. Durante el ciclo ON, el capacitor es cargado con electrones. Como la corriente fluye a través de la resistencia y carga el capacitor, el voltaje cae sobre la resistencia. Esta caída de voltaje es proporcional a la corriente del capacitor, y por lo tanto también está relacionado con la descarga del capacitor. Por lo tanto el voltaje total visto en la salida será más bajo que el mismo PWM. En este punto el sistema está preparado para el ciclo OFF. Durante el ciclo OFF del PWM el capacitor libera su sobrante de electrones y trata de mantener el voltaje que fue establecido en el ciclo ON.

14 Configuración del sensor El micro-controlador está configurado para hacer una lectura del elemento sensor (SHT75-SHT- 012), enseguida hacer las conversiones necesarias para adecuar una salida que pueda ser leída por el radio Adcon (0-2.5 volts). Al hacer las lecturas del elemento sensor nosotros podemos calibrar la salida que mandamos al radio Adcon aplicando los ajustes y calibración correspondientes. Regulador de voltaje El regulador de voltaje cumple la función de regular el voltaje que proporciona el radio Adcon y con el cual alimentamos completamente toda la placa. La tensión proveniente del radio Adcon oscila entre volts, lo cual rebasa el voltaje requiere por el micro-controlador Atmega 328P de 1.8 a 5.5 volts, la salida del regulador se ajusta y mantiene una alimentación fija de 5 volts al micro-controlador. El sensor SHT75 y SHT012 mantienen un correcto funcionamiento a 5 volts por lo cual también pueden ser alimentados a través del regulador. En el caso de hacer la configuración a través de programar el ATmega328, la alimentación la suministrada directamente por el Arduino que incorpora un regulador interno de 5 volts de voltaje de salida. Conversiones Para que el radio Adcon reconozca las entradas ingresadas en él, hay que mandar una señal que oscile entre los valores de 0 y 2.5 volts, para generar esta señal el micro-controlador dispone de las salidas PWM en la cual una señal de 255 corresponde a 5 volts y una señal PWM de 0 corresponde a 0 volts. Para generar las salidas requeridas tendremos que mandar señales PWM que variaran entre los valores de 0 y 125, respectivamente serian 0 y 2.5 volts.

15 Diagrama eléctrico

16 Conexión al radio A733 Se utiliza el conector de 7 pins con la siguiente configuración Conector del sensor Tierra Batería Cable 3 Contador pulsos Cable 2 (Temperatura) Cable 1 (Humedad Relativa) Digital I/O

MANUAL DE USUARIO Sensor de temperatura y humedad digital MCI-SEN-01561 REV. 1.0

MANUAL DE USUARIO Sensor de temperatura y humedad digital MCI-SEN-01561 REV. 1.0 MANUAL DE USUARIO Sensor de temperatura y humedad digital MCI-SEN-01561 REV. 1.0 Ingeniería MCI Ltda. Luis Thayer Ojeda 0115 of. 1105, Providencia, Santiago, Chile. Página 2 de 10 Ingeniería MCI Ltda.

Más detalles

IMPLEMENTACIÓN DE LAS NTIC S EN LOS LABORATORIOS DE CIENCIAS NATURALES MEDIANTE EL USO DE LA PLATAFORMA ARDUINO- PHYSICSSENSOR

IMPLEMENTACIÓN DE LAS NTIC S EN LOS LABORATORIOS DE CIENCIAS NATURALES MEDIANTE EL USO DE LA PLATAFORMA ARDUINO- PHYSICSSENSOR IMPLEMENTACIÓN DE LAS NTIC S EN LOS LABORATORIOS DE CIENCIAS NATURALES MEDIANTE EL USO DE LA PLATAFORMA ARDUINO- PHYSICSSENSOR MSc.Diego Aristizábal, Ing. Tatiana Muñoz {daristiz, tcmunoz}@unal.edu.co

Más detalles

2.- PLATAFORMA ARDUINO (HARDWARE)

2.- PLATAFORMA ARDUINO (HARDWARE) 2.- PLATAFORMA ARDUINO (HARDWARE) La plataforma Arduino es una plataforma open-hardware basada en una sencilla placa con entradas y salidas (E/S), analógicas y digitales. El elemento principal el microcontrolador

Más detalles

Introducción a Arduino

Introducción a Arduino 9 de Noviembre de 2012 Indice-I Plataforma Estándar Electrónica IDE Conceptos básicos electrónica Ley de Ohm y efecto Joule Ruido, puntos sin conexión y efecto rebote Semiconductores Conceptos básicos

Más detalles

INSTITUTO TECNOLÓGICO SUPERIOR DE PÁNUCO APUNTES DE LA MATERIA DE: MICROPROCESADORES Y MICROCONTROLADORES I

INSTITUTO TECNOLÓGICO SUPERIOR DE PÁNUCO APUNTES DE LA MATERIA DE: MICROPROCESADORES Y MICROCONTROLADORES I INSTITUTO TECNOLÓGICO SUPERIOR DE PÁNUCO APUNTES DE LA MATERIA DE: MICROPROCESADORES Y MICROCONTROLADORES I DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA ING. FORTINO VÁZQUEZ ELORZA Documento traducido de la

Más detalles

Gestión digital sencilla de controladores de fuentes de alimentación analógicas

Gestión digital sencilla de controladores de fuentes de alimentación analógicas COMENTARIO TECNICO Gestión digital sencilla de controladores de fuentes de alimentación analógicas Por Josh Mandelcorn, miembro del equipo técnico de Texas Instruments Normalmente, el control digital de

Más detalles

Programación de dispositivos Arduino Asignatura Sistemas Digitales!

Programación de dispositivos Arduino Asignatura Sistemas Digitales! Programación de dispositivos Arduino Asignatura Sistemas Digitales! Gabriel Astudillo Muñoz Escuela de Ingeniería Civil en Informática Universidad de Valparaíso, Chile http://informatica.uv.cl Descripción

Más detalles

Especificaciones técnicas. Power, Inputs and Outputs. Operating Voltage Input Voltage (recommended) Input Voltage (limits) Analog Input Pins

Especificaciones técnicas. Power, Inputs and Outputs. Operating Voltage Input Voltage (recommended) Input Voltage (limits) Analog Input Pins Especificaciones técnicas Microcontroller Operating Voltage Input Voltage (recommended) Input Voltage (limits) Digital I/O Pins Analog Input Pins DC Current for I/O Pin DC Current for 3.3V Pin Flash Memory

Más detalles

Familias de microcontroladores de radio frecuencia.

Familias de microcontroladores de radio frecuencia. CAPITULO 3 Familias de microcontroladores de radio frecuencia. 3.1 Familias de rfpics. MICROCHIP ha desarrollado unas familias de microcontroladores con un anexo, que es una unidad transmisora de ASK o

Más detalles

Como utilizar un servo motor con Arduino.

Como utilizar un servo motor con Arduino. Como utilizar un servo motor con Arduino. Revisión Diciembre 2009 Desarrollada por: Christopher Thompson cthompson@olimex.cl Revisada por: Paul Aguayo paguayo@olimex.cl 2 1 Introducción Arduino es una

Más detalles

EL MICROCONTROLADOR ARDUINO

EL MICROCONTROLADOR ARDUINO EL MICROCONTROLADOR ARDUINO Arduino es una plataforma libre de computación de bajo coste basada en una placa de entrada-salida y en un entorno de desarrollo IDE que implementa el lenguaje Processing/WiringHardware.

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Adquisición de datos

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Automatización Industrial Mecánica. TEMA: Adquisición de datos TEMA: Adquisición de datos Ejercicio: Controlando un proceso con instrumentación analógica y digital mediante el modulo NI USB 6009 Objetivo: Mediante modulo NI USB 6009, controlamos un proceso instrumentado

Más detalles

INFORME DE ESTACIÓN DE MONITOREO DE TEMPERATURA GRUPO LAJUCALE

INFORME DE ESTACIÓN DE MONITOREO DE TEMPERATURA GRUPO LAJUCALE INFORME DE ESTACIÓN DE MONITOREO DE TEMPERATURA GRUPO LAJUCALE LAURA ANDREA (G11NL38laura) LEONARDO CORREA (G11NL08leonardo) JUAN GALVIS (G10NL15juan) CAMILO VALENCIA (G10NL38Camilo) Informe realizado

Más detalles

Universidad de Costa Rica

Universidad de Costa Rica Grupo de Robótica de la Universidad de Costa Rica Curso: Introducción al controlador Arduino I ciclo 2014 Curso: Introducción al controlador Arduino Laura Fonseca Picado Jeffry Luque Agüero Página: 1 Índice

Más detalles

Instituto Tecnológico de Colima

Instituto Tecnológico de Colima Instituto Tecnológico de Colima Departamento de Ingeniería Industrial Ingeniería en Mecatrónica Materia: Programación Avanzada Unidad 3 Practica 12 Detector de presencia con sensor HC-SR501 Alumnos: Hernández

Más detalles

Módulo Receptor GPS MN5010HS Micro Modular Technologies. Resumen Técnico. Departamento de Ingeniería de Electrónica Elemon S.A.

Módulo Receptor GPS MN5010HS Micro Modular Technologies. Resumen Técnico. Departamento de Ingeniería de Electrónica Elemon S.A. Módulo Receptor GPS MN5010HS Micro Modular Technologies Resumen Técnico Departamento de Ingeniería de Electrónica Elemon S.A. Descripción: El módulo receptor GPS (Global Positioning System) MN5010HS de

Más detalles

Tema: Arduino y Comunicación Serial con Visual Basic

Tema: Arduino y Comunicación Serial con Visual Basic Facultad: Ingeniería Escuela: Electrónica Asignatura: Interfaces y Periféricos Tema: Arduino y Comunicación Serial con Visual Basic Objetivos Específicos. Utilizar el puerto USB como dispositivo de comunicación

Más detalles

ÍNDICE MEMÓRIA Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 Capítulo 3: el front-end analógico... 10

ÍNDICE MEMÓRIA Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 Capítulo 3: el front-end analógico... 10 ÍNDICE MEMÓRIA Índice memória... 1 Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 2.1. Qué es un osciloscopio?... 5 2.2. Tipos de osciloscopios... 5 2.2.1. Osciloscopio analógico... 5 2.2.2.

Más detalles

Tema: Introducción a la Plataforma Arduino

Tema: Introducción a la Plataforma Arduino Facultad: Ingeniería Escuela: Electrónica Asignatura: Interfaces y Periféricos Tema: Introducción a la Plataforma Arduino Objetivos Específicos. Conocer la plataforma de hardware libre Arduino 2. Desarrollar

Más detalles

VIII. CONTROL USANDO SIMULINK Y ARDUINO

VIII. CONTROL USANDO SIMULINK Y ARDUINO VIII. CONTROL USANDO SIMULINK Y ARDUINO Los entornos de Diseño de Sistemas de Control Asistido por Ordenador (CACSD) están experimentando notables cambios durante los últimos años. Estos avances afectan

Más detalles

CAPÍTULO 2. La Instrumentación

CAPÍTULO 2. La Instrumentación CAPÍTULO 2 La Instrumentación La implementación en el laboratorio del sistema péndulo-carro que describimos en el capítulo anterior presenta algunos retos de instrumentación cuya solución no es sencilla.

Más detalles

podemos enfocar al funcionamiento del robot, es decir la parte de electrónica. Para que el

podemos enfocar al funcionamiento del robot, es decir la parte de electrónica. Para que el CAPÍTULO 4 Funcionamiento del Robot Después de analizar paso a paso el diseño y funcionamiento de la interfase, nos podemos enfocar al funcionamiento del robot, es decir la parte de electrónica. Para que

Más detalles

Maqueta de control PID con Arduino

Maqueta de control PID con Arduino Maqueta de control PID con Arduino.. Con el motivo de la primera VirtualCamp (Julio 2011), el proyecto ha sido crear una maqueta de control didáctica con un presupuesto de menos de 10 euros (Arduino no

Más detalles

Barcelona, 4 junio de 2009.

Barcelona, 4 junio de 2009. UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI ESCUELA DE INGENIERÍA Y CIENCIAS APLICADAS DEPARTAMENTO DE TECNOLOGÍA ÁREA DE ELECTRÓNICA LAB. DE COMUNICACIONES I Profesor: Vásquez Mardelinis Bachilleres:

Más detalles

MICROCONTROLADORES. M. C. Felipe Santiago Espinosa. Abril de 2015

MICROCONTROLADORES. M. C. Felipe Santiago Espinosa. Abril de 2015 1 MICROCONTROLADORES M. C. Felipe Santiago Espinosa Abril de 2015 2 Recursos disponibles Los AVR tienen dos recursos para el manejo de información analógica: Un Convertidor Analógico Digital (ADC), éste

Más detalles

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN CONVERSION ANALÓGICO A DIGITAL Con el paso del tiempo, las comunicaciones electrónicas han experimentado algunos cambios tecnológicos notables. Los sistemas tradicionales de comunicaciones electrónicas

Más detalles

Arduino. DHT11 Sensor Temperatura y Humedad

Arduino. DHT11 Sensor Temperatura y Humedad DHT11 Sensor Temperatura y Humedad LunikSoft Fco. Javier Andrade http://www.luniksoft.info El autor no se responsabiliza del contenido. No asume ninguna responsabilidad, por cualquier inexactitud en la

Más detalles

DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC.

DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC. TESIS DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC. DIRECTOR DE TESIS.- Ing. Francisco Novillo AUTOR Walter Mestanza Vera. Egresado

Más detalles

EJERCICIOS CON ARDUINO LED ENCENDIDO. Se conecta el Led al pin 52 y a alimentación. Compilar Se enciende el LED.

EJERCICIOS CON ARDUINO LED ENCENDIDO. Se conecta el Led al pin 52 y a alimentación. Compilar Se enciende el LED. EJERCICIOS CON ARDUINO LED ENCENDIDO Se conecta el Led al pin 52 y a alimentación. Compilar Se enciende el LED. MARÍA TERESA CUESTA CALVO M03-ARDUINO PROYECTOS VARIOS 1 / 23 LED BICOLOR Led bicolor. Conectado

Más detalles

Rastreador de Luz para Panel Solar y Sistema de Carga para Dispositivos USB

Rastreador de Luz para Panel Solar y Sistema de Carga para Dispositivos USB Rastreador de Luz para Panel Solar y Sistema de Carga para Dispositivos USB Alemán, José Ramón. Díaz, Eduardo. Tovar, Carlos. Ingeniería Mecatrónica, Facultad de Ingeniería, Universidad Latina de Panamá,

Más detalles

Proyecto final "Sistema de instrumentación virtual"

Proyecto final Sistema de instrumentación virtual "Sistema de instrumentación virtual" M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com @efranco_escom edfrancom@ipn.mx 1 Contenido Introducción Objetivos Actividades Observaciones Reporte

Más detalles

Datalogger DL-1a. Manual del Usuario. Datalogger de voltaje con interfaces RS232 y USB2.0 CENTRO DE APLICACIONES TECNOLÓGICAS Y DESARROLLO NUCLEAR

Datalogger DL-1a. Manual del Usuario. Datalogger de voltaje con interfaces RS232 y USB2.0 CENTRO DE APLICACIONES TECNOLÓGICAS Y DESARROLLO NUCLEAR CENTRO DE APLICACIONES TECNOLÓGICAS Y DESARROLLO NUCLEAR Datalogger de voltaje con interfaces RS232 y USB2.0 Datalogger DL-1a V 1.0 Índice 1. Introducción... 1 2. Datos Técnicos... 1 3. Accesorios y suministros...

Más detalles

NOTA DE APLICACIÓN AN-P002. Programando Wiring con NXProg

NOTA DE APLICACIÓN AN-P002. Programando Wiring con NXProg NOTA DE APLICACIÓN AN-P002 Programando Wiring con NXProg Este documento se encuentra protegido por una licencia Creative Commons Creative Commons: Atribution, Non-commercial, Share Alike Atribución: Puede

Más detalles

Placa de control MCC03

Placa de control MCC03 Placa de control MCC03 Placa de control MCC03 La placa de control basada en el micro controlador PIC 16F874A de Microchip, es la encargada del procesar los datos que se introducen en el sistema y actuar

Más detalles

AUTOMATIZACIÓN - CURSO: 2010-2011- Práctica 3: Automatización de una Puerta de Garaje mediante Arduino

AUTOMATIZACIÓN - CURSO: 2010-2011- Práctica 3: Automatización de una Puerta de Garaje mediante Arduino AUTOMATIZACIÓN - CURSO: 2010-2011- Fernando Torres Medina Juan Antonio Corrales Ramón Carlos Alberto Jara Bravo Grupo de Innovación Educativa en Automática Departamento de Física, Ingeniería de Sistemas

Más detalles

En la actualidad diversos productos de consumo propio e industriales utilizan la

En la actualidad diversos productos de consumo propio e industriales utilizan la CAPÍTULO 4 COMUNICACIÓN INALÁMBRICA 4.1 Radiofrecuencia. En la actualidad diversos productos de consumo propio e industriales utilizan la energía electromagnética. Hoy en día la energía de radiofrecuencia,

Más detalles

MANUAL DE USUARIO NODO DEVICENET UNICAUCA

MANUAL DE USUARIO NODO DEVICENET UNICAUCA INTRODUCCIÓN El nodo DeviceNet diseñado e implementado en la universidad del cauca, es un dispositivo funcional con características similares a las de un dispositivo industrial, permite conectar sensores

Más detalles

AUTOMATIZACIÓN - CURSO: 2010-2011- Práctica 4: Sistema de Monitorización de tiempo mediante Arduino

AUTOMATIZACIÓN - CURSO: 2010-2011- Práctica 4: Sistema de Monitorización de tiempo mediante Arduino AUTOMATIZACIÓN - CURSO: 2010-2011- Juan Antonio Corrales Ramón Carlos Alberto Jara Bravo Fernando Torres Medina Grupo de Innovación Educativa en Automática Departamento de Física, Ingeniería de Sistemas

Más detalles

SISTEMA DE ADQUISICIÓN PARA SENSORES DE TEMPERATURA DEL TELECOPIO DE 84cm.

SISTEMA DE ADQUISICIÓN PARA SENSORES DE TEMPERATURA DEL TELECOPIO DE 84cm. SISTEMA DE ADQUISICIÓN PARA SENSORES DE TEMPERATURA DEL TELECOPIO DE 84cm. Versión 1.0. F. Murillo, E. Luna, M. Núñez, G. Guisa, A. Córdova, B. García, U. Ceseña. Resumen. El presente trabajo documenta

Más detalles

Fuentes de alimentación

Fuentes de alimentación Fuentes de alimentación Electrocomponentes SA Temario Reguladores lineales Descripción de bloques Parámetros de selección Tipos de reguladores Productos y aplicaciones Reguladores switching Principio de

Más detalles

PRACTICA N0.7 UTILIZACIÓN DE UN CONVERTIDOR A/D OBJETIVO ESPECÍFICO: APLICAR EL CONVERTIDOR ADC0804 EN UN CONTROL DE TEMPERATURA

PRACTICA N0.7 UTILIZACIÓN DE UN CONVERTIDOR A/D OBJETIVO ESPECÍFICO: APLICAR EL CONVERTIDOR ADC0804 EN UN CONTROL DE TEMPERATURA PRACTICA N0.7 NOMBRE DE LA PRÁCTICA UTILIZACIÓN DE UN CONVERTIDOR A/D OBJETIVO ESPECÍFICO: APLICAR EL CONVERTIDOR EN UN CONTROL DE TEMPERATURA INTRODUCCIÓN: Los convertidores analógico/digital (ADC) y

Más detalles

ELECTRÓNICA - SOFTWARE - AUTOMATION www.delcomp.pe 2011 DELCOMP S.A.C.

ELECTRÓNICA - SOFTWARE - AUTOMATION www.delcomp.pe 2011 DELCOMP S.A.C. TABLA DE CONTENIDOS 1) INTRODUCCIÓN 2) CONECTIVIDAD 3) TCP/IP 4) MODULOS 5) EJEMPLOS INTRODUCCIÓN La Tarjeta de Desarrollo PIC 18FJ S1 es un módulo de desarrollo electrónico con Microcontroladores práctico

Más detalles

CONEXIÓN DIRECTA DE MÚLTIPLES SENSORES A MICROCONTROLADORES SIN UTILIZAR CONVERTIDOR ANALÓGICO DIGITAL

CONEXIÓN DIRECTA DE MÚLTIPLES SENSORES A MICROCONTROLADORES SIN UTILIZAR CONVERTIDOR ANALÓGICO DIGITAL CONEXIÓN DIRECTA DE MÚLTIPLES SENSORES A MICROCONTROLADORES SIN UTILIZAR CONVERTIDOR ANALÓGICO DIGITAL Custodio Ruiz, Ángel Augusto Torres, Rafael UNEXPO, Centro Instrumentación y Control cicunexpo@gmail.com

Más detalles

Taller de Introducción a Arduino. Impartido por Abel Arellano y Omar Valencia. Duración: 5 sesiones de 4 horas del -- al --- Presentación:

Taller de Introducción a Arduino. Impartido por Abel Arellano y Omar Valencia. Duración: 5 sesiones de 4 horas del -- al --- Presentación: Taller de Introducción a Arduino Impartido por Abel Arellano y Omar Valencia Duración: 5 sesiones de 4 horas del -- al --- Presentación: La presencia de computadoras en sus diferentes formas es cada vez

Más detalles

SISTEMA DE ADQUISICIÓN DE DATOS BASADO EN UN MICROCONTROLADOR COMO SERVIDOR WEB

SISTEMA DE ADQUISICIÓN DE DATOS BASADO EN UN MICROCONTROLADOR COMO SERVIDOR WEB Caos Conciencia 2: 47-52, 2006 SISTEMA DE ADQUISICIÓN DE DATOS BASADO EN UN MICROCONTROLADOR COMO SERVIDOR WEB Víctor Sánchez Huerta, Javier Vázquez Castillo vsanchez@uqroo.mx, jvazquez@uqroo.mx División

Más detalles

Diseño de Sistemas embebidos y comunicaciones: Aplicaciones de telefonía, RF y localización remota. Ing. José Oliden Martínez

Diseño de Sistemas embebidos y comunicaciones: Aplicaciones de telefonía, RF y localización remota. Ing. José Oliden Martínez Diseño de Sistemas embebidos y comunicaciones: Aplicaciones de telefonía, RF y localización remota El controlador dentro de un sistema de Control DISPOSITIVO DE MEDICIÓN CONVERSOR ANÁLOGO DIGITAL CONTROLADOR

Más detalles

SOMI XVIII Congreso de Instrumentación MICROONDAS JRA1878 TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM

SOMI XVIII Congreso de Instrumentación MICROONDAS JRA1878 TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM J. Rodríguez-Asomoza, D. Báez-López, E. López-Pillot. Universidad de las Américas, Puebla (UDLA-P) Departamento de Ingeniería

Más detalles

Desarrollo de una interfaz RS-232 para el manejo de un coche de radiocontrol desde el PC

Desarrollo de una interfaz RS-232 para el manejo de un coche de radiocontrol desde el PC Desarrollo de una interfaz RS-232 para el manejo de un coche de radiocontrol desde el PC A. Muñoz, A. Millan, P. Ruiz-de-Clavijo, J. Viejo, E. Ostua, D. Guerrero Grupo ID2 (Investigación y Desarrollo Digital).

Más detalles

Instrumentación con Microcontroladores. Ing. Rodrigo Alejandro Gutiérrez Arenas 22/03/12 al 29/03/12

Instrumentación con Microcontroladores. Ing. Rodrigo Alejandro Gutiérrez Arenas 22/03/12 al 29/03/12 Instrumentación con Microcontroladores Ing. Rodrigo Alejandro Gutiérrez Arenas 22/03/12 al 29/03/12 Contenido Problemas relativos a los proyectos Introducción y motivación para utilizar a Arduino Entrada

Más detalles

Control por Computador. Manual de arduino. Jorge Pomares Baeza. Grupo de Innovación Educativa en Automática 2009 GITE IEA

Control por Computador. Manual de arduino. Jorge Pomares Baeza. Grupo de Innovación Educativa en Automática 2009 GITE IEA Control por Computador Manual de arduino Jorge Pomares Baeza Grupo de Innovación Educativa en Automática 2009 GITE IEA No editar manualmente esta tabla. Título Estado Author Organisation Manual de programación

Más detalles

Gamatronic. Innovando en la. Tradición

Gamatronic. Innovando en la. Tradición Gamatronic µps-sp Innovando en la Tradición Gamatronic µps-sp La UPS modelo µps-sp es un sistema True Online Doble conversión microcontrolado que emplea modulación por ancho de pulso (PWM). Suministra

Más detalles

Tarjeta de aplicación para circuito de voz de 60 seg

Tarjeta de aplicación para circuito de voz de 60 seg .mx Tarjeta de aplicación para circuito de voz de 60 seg Dispositivo: APR9600, PCB-744 Nota de Aplicación numero 5 Documentos asociados: RESUMEN. En la actualidad el manejo de los circuitos de APLUS se

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ingeniería Eléctrica y Computadoras

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ingeniería Eléctrica y Computadoras Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ingeniería Eléctrica y Computadoras Experimento #9: Convertidores de Analógico a Digital Giselle M. Bonilla Ortiz 802-00-0809

Más detalles

CATEDRA de PROYECTO FINAL

CATEDRA de PROYECTO FINAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA CATEDRA de PROYECTO FINAL TITULO DEL PROYECTO: CONTROL DE CAMARAS FRIGORIFICAS TITULO DEL INFORME: MANUAL TÉCNICO PROFESOR(ES): ING. LOPEZ

Más detalles

PROYECTO DE ELECTRÓNICA

PROYECTO DE ELECTRÓNICA PROYECTO DE ELECTRÓNICA Sistema de Alarma Raúl Lapaz de Juan Francisco Javier López Alcarria 1 ÍNDICE - Objetivo:... 3 - Justificación:... 3 - Plan de trabajo:... 3 A) Montaje del circuito en protoboards:...

Más detalles

CAPITULO IV PROTOCOLO DE PRUEBAS

CAPITULO IV PROTOCOLO DE PRUEBAS CAPITULO IV PROTOCOLO DE PRUEBAS Introducción Este capítulo ha sido dedicado al protocolo de pruebas a todo el módulo de adquisición de datos en cada una de sus tarjetas como son: Fuente de alimentación

Más detalles

MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN

MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN Este es un compacto y preciso multímetro digital de 4 ½ dígitos, opera con batería y sirve para realizar mediciones de voltaje y corriente de C.A.

Más detalles

Introducción. Que es Arduino? 1. Por qué Arduino? 2. Asequible

Introducción. Que es Arduino? 1. Por qué Arduino? 2. Asequible Básicos 1 Introducción Que es Arduino? 1 Arduino es una herramienta para hacer que los ordenadores puedan sentir y controlar el mundo físico a través de tu ordenador personal. Es una plataforma de desarrollo

Más detalles

Tu Sitio de Automatización!

Tu Sitio de Automatización! Tu Sitio de Automatización! ET-7050 Descripción Módulo de 12 entradas digitales aisladas con contadores de 32 bits y 6 salidas de colector abierto tipo sink aisladas. Características: El ET-7050, es un

Más detalles

Uso de hardware y software libre en laboratorios de Ingeniería Química

Uso de hardware y software libre en laboratorios de Ingeniería Química Uso de hardware y software libre en laboratorios de Ingeniería Química G. Luzón González, A. Fernández-Arteaga, D. Altmajer Vaz, A.I. García López, M. Fernández Serrano Dpto. Ingeniería Química Universidad

Más detalles

DESCRIPCION DEL SITEMA MASTER.

DESCRIPCION DEL SITEMA MASTER. DESCRIPCION DEL SITEMA MASTER. ESTRUCTURA. El sistema MASTER (Sistema Modular para Control Adaptativo en Tiempo Real) se ha implementado en base a un computador compatible PC-AT, dotado de una tarjeta

Más detalles

1.- Introducción CONEXIÓN DEL PLC A UN DISPOSITIVO EXTERNO. Figura 1.- T100MD888+ y modulo LCD

1.- Introducción CONEXIÓN DEL PLC A UN DISPOSITIVO EXTERNO. Figura 1.- T100MD888+ y modulo LCD CONEXIÓN DEL PLC A UN DISPOSITIVO EXTERNO Figura 1.- T100MD888+ y modulo LCD 1.- Introducción T100MD888+ es un Nuevo miembro de la familia de PLC T100MD. La unidad básica comprende 8 I/Os análogas, 8 entradas

Más detalles

Automatización de Adquisición de Datos

Automatización de Adquisición de Datos Automatización de Adquisición de Datos Marisol Menéndez Ingeniera de Campo Agenda Introducción a los sistemas de adquisición de datos (DAQ) Introducción a la plataforma NI CompactRIO Adquisición de datos

Más detalles

SISTEMA DE ADQUISICION DE DATOS DE BAJO COSTO PARA INSTRUMENTACIÓN EN ENERGIA SOLAR

SISTEMA DE ADQUISICION DE DATOS DE BAJO COSTO PARA INSTRUMENTACIÓN EN ENERGIA SOLAR ASADES Avances en Energías Renovables y Medio Ambiente Vol. 8, Nº 2, 2004. Impreso en la Argentina. ISSN 0329-5184 SISTEMA DE ADQUISICION DE DATOS DE BAJO COSTO PARA INSTRUMENTACIÓN EN ENERGIA SOLAR Daniel

Más detalles

COMUNIDAD DE FORMADORES DEL EMPRENDIMIENTO TECNOLÓGICO FEMPRETEC

COMUNIDAD DE FORMADORES DEL EMPRENDIMIENTO TECNOLÓGICO FEMPRETEC FEMPRETEC COMUNIDAD DE FORMADORES DEL EMPRENDIMIENTO TECNOLÓGICO FEMPRETEC Propuesta para el desarrollo de semilleros de investigación en Automatización y control. wcastillo90@hotmail.com, hugo.alex30@gmail.com,

Más detalles

PLC V3.0 Documentación Preliminar -----------------------------------

PLC V3.0 Documentación Preliminar ----------------------------------- PLC V3.0 Documentación Preliminar ----------------------------------- Nuestra tarjeta µplc versión 3.0 está basada en un microcontrolador AT89S53 funcionando a 22.118 MHz. Este microcontrolador es 100%

Más detalles

MM1012-1-24V MM1012-2-24V MM1013-24V

MM1012-1-24V MM1012-2-24V MM1013-24V Características: PLC compacto con HMI integrado. Pantalla LED configurable. Programa basado en Windows para configuración. Tamaño: 48mm x 96mm. Programa Incluido Tabla de Configuración E/S Código: MM1010-T/R-24V

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3 ~ 1 ~ ÍNDICE Introducción...página 3 Prácticas LabVolt...página

Más detalles

Constructor Virtual y Simulador de Circuitos Digitales con Chips TTL

Constructor Virtual y Simulador de Circuitos Digitales con Chips TTL Constructor Virtual y Simulador de Circuitos Digitales con Chips TTL Manual de Usuario (Versión 0.9.7) Ing. Arturo J. Miguel de Priego Paz Soldán www.tourdigital.net Chincha Perú, 24 de mayo de 2011 Este

Más detalles

SMPL-1152. Tarjeta de evaluación para el sensor de presión MPL115A2T1 DESCRIPCION GENERAL CARACTERISTICAS DEL SENSOR CARACTERISTICAS DE LA TARJETA

SMPL-1152. Tarjeta de evaluación para el sensor de presión MPL115A2T1 DESCRIPCION GENERAL CARACTERISTICAS DEL SENSOR CARACTERISTICAS DE LA TARJETA as SMPL-1152 Tarjeta de evaluación para el sensor de presión MPL115A2T1 DESCRIPCION GENERAL La tarjeta SMPL-1152 permite realizar una rápida evaluación al rendimiento y características del sensor de presión

Más detalles

DFRduino Romeo, todo en un controlador (RoMeo V1.0) Por favor, lea atentamente este manual antes de encender el dispositivo.

DFRduino Romeo, todo en un controlador (RoMeo V1.0) Por favor, lea atentamente este manual antes de encender el dispositivo. DFRduino Romeo, todo en un controlador (RoMeo V1.0) Por favor, lea atentamente este manual antes de encender el dispositivo. DFRduino Romeo Romeo es un microcontrolador de todo-en-uno diseñado especialmente

Más detalles

SIMULACION DE UN ENTORNO Y MEMORIA VIRTUAL PARA UNA PLATAFORMA KHEPERA. Leonardo Solaque Nelson D. Muñoz Nelson Londoño Ospina

SIMULACION DE UN ENTORNO Y MEMORIA VIRTUAL PARA UNA PLATAFORMA KHEPERA. Leonardo Solaque Nelson D. Muñoz Nelson Londoño Ospina SIMULACION DE UN ENTORNO Y MEMORIA VIRTUAL PARA UNA PLATAFORMA KHEPERA Leonardo Solaque Nelson D. Muñoz Nelson Londoño Ospina GIRA 2 (Grupo de Investigación en Robótica y Areas Afines) Universidad de Antioquia

Más detalles

Circuitos, Sensores y Actuadores

Circuitos, Sensores y Actuadores Capítulo 3 Circuitos, Sensores y Actuadores 3.1. Introducción En el siguiente capítulo se hablará acerca del circuito a utilizar en nuestra mano, para que el sistema de control por flexión funcione, el

Más detalles

ELECTRÓNICA - SOFTWARE - AUTOMATION www.delcomp.pe 2011 DELCOMP S.A.C.

ELECTRÓNICA - SOFTWARE - AUTOMATION www.delcomp.pe 2011 DELCOMP S.A.C. TABLA DE CONTENIDOS 1) INTRODUCCIÓN 2) INSTALACIÓN SOFTWARE Davr WINDOWS SO 3) INTERFACE DE LA APLICACIÓN Davr 4) DISPOSITIVOS SOPORTADOS 5) GRABACIÓN EXTERNA ISP 6) COMANDOS DE OPERACIÓN Davr EN LINUX

Más detalles

GUIÓN DE PRÁCTICAS Arduino San Valero

GUIÓN DE PRÁCTICAS Arduino San Valero GUIÓN DE PRÁCTICAS Arduino San Valero Qué es Arduino? Arduino es una plataforma electrónica de prototipos de código abierto (open-source) basada en hardware y software flexible y fácil de usar. Está pensado

Más detalles

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar

Más detalles

Reporte Segunda Practica

Reporte Segunda Practica Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Electrónica Control Digital Reporte Segunda Practica Profesor: Jaime Cid Monjaraz Alumnos: Serrano Pérez Héctor Encarnación Rosario

Más detalles

Características Generales Estándar:

Características Generales Estándar: Características Generales Estándar: Tensión de entrada: 127 Vac (220 opcional) Tensión nominal de salida: 120 ó 127 Vac (220 opcional) Frecuencia 50/60 hz. Rango de entrada: +15% -30% Vac de tensión nominal.

Más detalles

de ondas ultrasónicas, se concluyó que era imposible que funcionaran a frecuencias

de ondas ultrasónicas, se concluyó que era imposible que funcionaran a frecuencias CAPÍTULO 2 Generación y Detección de Ultrasonido. 2.1. Transductores piezoeléctricos. Gracias a la investigación realizada sobre osciladores mecánicos para la emisión de ondas ultrasónicas, se concluyó

Más detalles

Capitulo IV. Comunicación del diseño

Capitulo IV. Comunicación del diseño Capitulo IV. Comunicación del diseño 4.1 Ensamble y construcción del cuadricoptero Esta es la última etapa del modelo de diseño a cinco pasos y representa la parte más importante en la cual se conjunta

Más detalles

MANUAL CÁMARA DE MOWAY

MANUAL CÁMARA DE MOWAY MANUAL CÁMARA DE MOWAY Página 2 de 12 Copyright (c) 2011 Bizintek Innova, S.L. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,

Más detalles

Programación en C para plataforma CADmega128, basada en microcontrolador Atmel megaavr

Programación en C para plataforma CADmega128, basada en microcontrolador Atmel megaavr Laboratorio Equipos y Sistemas de Control Digital Guía Laboratorio Nº 1 Programación en C para plataforma CADmega128, basada en microcontrolador Atmel megaavr En esta experiencia se verá en forma aplicada

Más detalles

Capítulo 3 Fundamentos de una PC

Capítulo 3 Fundamentos de una PC Fundamentos de una PC Es importante saber reconocer y denominar los componentes básicos de una PC. Una PC es una pequeña red de computadoras. Fundamentos de una PC Componentes electrónicos.- Transistor

Más detalles

Competencia de Robótica R2-D2 2014

Competencia de Robótica R2-D2 2014 Competencia de Robótica R2-D2 2014 Categoría: Velocista Nombre del Robot: Miyagui Institución: UTN-FRA Participantes: Calvo, Juan Ignacio Schuster, Mariela Medina, Sergio Daniel Índice 1. Introducción...

Más detalles

TAREA DE SIMULACIÓN TS1

TAREA DE SIMULACIÓN TS1 TAREA DE SIMULACIÓN CONSTRUCCIÓN Y SIMULACIÓN DE CIRCUITOS COMBINACIONALES SENCILLOS CON CIRCUITOS INTEGRADOS ESTANDAR OBJETIVOS: - Conocer e interpretar las hojas de características del fabricante, de

Más detalles

CONTROL AUTOMATICO DE TEMPERATURA

CONTROL AUTOMATICO DE TEMPERATURA CONTROL AUTOMATICO DE TEMPERATURA Oscar Montoya y Alberto Franco En este artículo presentamos un circuito de control automático de temperatura, el cual, como es obvio, permite controlar la temperatura

Más detalles

Nociones básicas sobre adquisición de señales

Nociones básicas sobre adquisición de señales Electrónica ENTREGA 1 Nociones básicas sobre adquisición de señales Elaborado por Juan Antonio Rubia Mena Introducción Con este documento pretendemos dar unas nociones básicas sobre las técnicas de medida

Más detalles

Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU MPI-D, MPI-DN

Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU MPI-D, MPI-DN TI-P333-92 MIU Issue 1 Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU MPI-D, MPI-DN DESCRIPCIÓN Registrador multicanal electrónico para sensores HART o RS-485/MODBUS RTU 18 canales

Más detalles

Conversores Tensión - Frecuencia y Frecuencia - Tensión

Conversores Tensión - Frecuencia y Frecuencia - Tensión Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Conversores Tensión - Frecuencia y Frecuencia - Tensión

Más detalles

Control de la temperatura ambiente en un invernadero tipo venlo, mediante el uso del microcontrolador 8031

Control de la temperatura ambiente en un invernadero tipo venlo, mediante el uso del microcontrolador 8031 Control de la temperatura ambiente en un invernadero tipo venlo, mediante el uso del microcontrolador 8031 GENARO CALDERÓN RODRÍGUEZ HÉCTOR HORACIO OCHOA NARANJO FACULTAD DE INGENIERÍA MECANICA Y ELÉCTRICA

Más detalles

RECTIFICADORES PARA PROTECCIÓN CATÓDICA DE TUBERÍAS, CON CAPACIDAD DE AUTORREGULACIÓN Y TELEGESTIÓN MODELOS LUMIDIM SPC-01 Y SPC-02

RECTIFICADORES PARA PROTECCIÓN CATÓDICA DE TUBERÍAS, CON CAPACIDAD DE AUTORREGULACIÓN Y TELEGESTIÓN MODELOS LUMIDIM SPC-01 Y SPC-02 Ave. Raúl Rangel Frías 4119-11 Residencial Lincoln Monterrey, N. L., México CP 64310 Tel (81) 8373-3530 Correo : ventas@lumidim.com Internet : www.lumidim.com RECTIFICADORES PARA PROTECCIÓN CATÓDICA DE

Más detalles

COMUNICACIÓN I2C (INTER-INTEGRATED CIRCUIT)

COMUNICACIÓN I2C (INTER-INTEGRATED CIRCUIT) COMUNICACIÓN I2C (INTER-INTEGRATED CIRCUIT) Centro CFP/ES COMUNICACIÓN I2C 1 VENTAJAS DE LA COMUNICACIÓN I2C COMPARATIVA ESTANDAR DE TRANSMISIÓN 2 DISPOSITIVOS I2C DISPOSITIVOS I2C MAX518 3 DISPOSITIVOS

Más detalles

Control de motores de CC

Control de motores de CC Control de motores de CC Control por modulación de ancho de Pulso (PWM) Prof: Bolaños D (versión 1-8-11) Aportes propios y de Internet Uno de los problemas más fundamentales de la robótica es el control

Más detalles

Contador de Amperios-Hora basado en Arduino

Contador de Amperios-Hora basado en Arduino ía Industrial, Informática y de E.T.S. de Ingeniería Industrial, Telecomunicación Informática y de Telecomunicación m Contador de Amperios-Hora basado en Arduino Nombre y apellidos del autor Nombre y apellidos

Más detalles

PROYECTO CURRICULAR. Electrónica Digital y Microprogramable

PROYECTO CURRICULAR. Electrónica Digital y Microprogramable PROYECTO CURRICULAR Electrónica Digital y Microprogramable Ciclo Formativo Grado Medio Equipos Electrónicos de Consumo CAPACIDADES TERMINALES 1 Analizar funcionalmente circuitos electrónicos digitales,

Más detalles

REALITY SYS Pico JukeBox V2.1 Instalación 1

REALITY SYS Pico JukeBox V2.1 Instalación 1 . REALITY SYS Pico JukeBox V2. Instalación . Preparación de la tarjeta SD/MMC. Copie los archivos mp3 que contienen las pistas de audio en una tarjeta nueva o formateada. Los archivos audio se deben grabar

Más detalles

Universidad Luterana Salvadoreña. Cátedra: Redes I. Docente: Ing. Manuel de Jesús Flores

Universidad Luterana Salvadoreña. Cátedra: Redes I. Docente: Ing. Manuel de Jesús Flores Universidad Luterana Salvadoreña Cátedra: Redes I Docente: Ing. Manuel de Jesús Flores Evaluación: Entrega de proyecto final Fecha de entrega: 30/0/2015 Desarrollar un programa Cliente Servidor con Arduino

Más detalles

DESCRIPCIÓN DEL SISTEM A.

DESCRIPCIÓN DEL SISTEM A. CAPÍTULO II. DESCRIPCIÓN DEL SISTEM A. 2.1 Diagrama a Bloques. La siguiente figura muestra el diagrama a bloques que representa el funcionamiento del sistema; el sistema está conformado por circuitos,

Más detalles

Introducción. El Procesamiento Digital de Señales: Áreas de trabajo

Introducción. El Procesamiento Digital de Señales: Áreas de trabajo Organización Introducción Breve repaso teórico Prototipo construido Microcontrolador Freescale MCF51JM128 Freescale DSP56371 Algoritmos de procesamiento Proyecciones comerciales Conclusiones 1 Introducción

Más detalles

PROBLEMA. Diseño de un DIMMER.

PROBLEMA. Diseño de un DIMMER. PROBLEMA Diseño de un DIMMER. Solución, como las especificaciones vistas en clase fueron muy claras el DIMMER controlara la velocidad de los disparos que se harán en la compuerta de el tiristor, es decir

Más detalles