TEMA 2: Conducción de Corriente 2.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2: Conducción de Corriente 2.1"

Transcripción

1 Ídice TEMA 2: Coducció de Corriete INTRODUCCIÓN MECANISMOS DE CONDUCCIÓN DE CORRIENTE CONDUCCIÓN POR ARRASTRE: LEY DE OHM CONDUCCIÓN POR DIFUSIÓN CORRIENTES TOTALES DE e - Y h +. RELACIÓN DE EINSTEIN i

2 ii

3 Tema 2 Coducció de Corriete Itroducció E el tema aterior se ha modelado la situació de equilibrio termodiámico deduciedo u cojuto de ecuacioes que os ermite calcular la cocetració de electroes y de huecos e u semicoductor. Hay que teer e cueta que, e equilibrio termodiámico, los e - y los h + está e cotiuo movimieto uesto que osee eergía ciética de orige térmico y realiza equeños deslazamietos debido a sus cotiuos choques co los obstáculos de la red cristalia: átomos de la red cristalia y átomos de imezas ricialmete. Este movimieto térmico es aleatorio: de ahí que o exista u movimieto eto de uuu ortadores y, or lo tato, = 0. eta 2.1

4 Tema 2: Coducció de corriete E este movimieto aleatorio, etre choques, los e - y los h + suele alcazar velocidades del orde de 7 v 10 cm th s a T = 300 ºK. Sólo cuado el semicoductor es ertbado, tiee lugar ua resuesta eta de ortadores dado lugar a ua corriete eléctrica. Pues bie, la acció o resuesta de los ortadores a esa causa extera es el objetivo de este tema y del siguiete caítulo. E los semicoductores existe tres tios rimarios de resuesta: arrastre, difusió, y los rocesos de geeració-recombiació. E este tema vamos a describir los dos rimeros oiedo esecial éfasis e las costates que los caracteriza. Auque se estudie idividualmete, se etiede que los diversos tios de resuesta uede darse - y de hecho se da- simultáeamete detro de u semicoductor dado. 2.2

5 Mecaismos de coducció de corriete MECANISMOS DE CONDUCCIÓN DE CORRIENTE Mecaismo de arrastre: roducido or la alicació de u camo eléctrico extero o variació de otecial. Es similar al que tiee lugar e los metales y matemáticamete se exresa or la ley de Ohm. Mecaismo de difusió: resosable directo de muchas de las alicacioes de los semicoductores e electróica. Es más esecífico de los semicoductores y se roduce or la existecia de gradietes e las cocetracioes de e - y h + ; es decir, or las variacioes esaciales de las cocetracioes de e - y h CONDUCCIÓN POR ARRASTRE El arrastre o deriva es, or defiició, el movimieto de ua artícula cargada e resuesta a u camo eléctrico alicado. E u semicoductor, este mecaismo uede exlicarse, de forma cualitativa, como sigue: al alicar a u semicoductor u E (ver Figa 2.1a), la fuerza resultate sobre los ortadores tiede a acelerar a los h + (de carga +q) e la direcció del E y a los e - (de carga -q) e setido cotrario. Ahora bie, debido a las colisioes co la red cristalia (átomos de la red agitados térmicamete y átomos de imezas ioizadas) la aceleració de los ortadores se ve iterrumida. El resultado eto (Figa 2.1b) es u movimieto de las cargas ositivas e la direcció del E (las cargas egativas se movería e setido cotrario) ero co sucesivos eríodos de aceleració y desaceleració or choque. Desde el uto de vista macroscóico el movimieto eto de cada tio de ortador uede ser descrito e térmios de ua velocidad de arrastre o de deriva, v, costate (Figa 2.1c). Es decir, a escala macroscóica, el movimieto de arrastre o es otra cosa que todos los ortadores de u mismo tio moviédose a velocidad costate, e el mismo setido (h + ) o e setido cotrario (e - ) al E alicado. 2.3

6 Tema 2: Coducció de corriete E (b) (a) Figa Visualizació del mecaismo de arrastre: (a) movimieto de los ortadores e ua barra de semicoductor olarizada; (b) deslazamieto or arrastre de u hueco a escala microscóica o atómica; (c) deslazamieto or arrastre a escala macroscóica. Nota: Idudablemete, este movimieto de arrastre e resuesta al alicado está realmete sueruesto al movimieto de agitació térmica. Si embargo, basta recordar que este último es aleatorio, co corriete eta ula, ara eteder que o cotribuye al trasorte de corriete y cocetualmete se uede desreciar. + + (c) E v d Deducció de la exresió de la corriete de arrastre Para ello vamos a suoer ua barra de material semicoductor, de logitud L y secció A. E A I L Figa Camo eléctrico alicado y corriete resultate e la barra de material semicoductor objeto de estudio c cocetració de ortadores v velocidad de los ortadores L = v T Nº de ortadores que atraviesa A e u tiemo T c L A= c A v T 2.4

7 Coducció or arrastre Carga que atraviesa A e u tiemo T q c A v T carga = q c v t A Trasladado este resultado al caso de los e - + y los h teemos: u u, arrastre, arrastre u = q v u = q v E Teiedo e cueta (ver Figa. 2.3) que ara valores equeños y moderados del la velocidad de arrastre de los e - y de los h + es roorcioal al E, se uede escribir: u v = μ u E v = μ E Siedo µ, movilidad, la costate de roorcioalidad. Velocidad de arrastre (cm/ s) Eramailee (bb) abiada (cm/s) Elektroiak Electroes Hutsueak Huecos Eremu elektrikoa (V/cm) Camo Electrico (V/cm) Figa Medida de la velocidad de arrastre de ortadores e silicio ultrao a temerata ambiete, e fució del camo eléctrico alicado. Para valores elevados del E, la velocidad de arrastre se hace comarable a la velocidad térmica y se sata al valor de 7 10 cm s. 2.5

8 Tema 2: Coducció de corriete Itroduciedo las exresioes de v r e las de la resulta: u u, arrastre, arrastre = q μ E = q μ E (2.1) Es decir, la alicació de u E coduce a corrietes de arrastre de e - y h + e el setido del E. Puesto que e u semicoductor existe, e geeral, los dos tios de ortadores, la corriete total debida al mecaismo de arrastre, u T, vedrá dada or la, arrastre exresió: u u = u + u q T, arrastre, arrastre, arrastre T = arrastre ( μ + μ), E La exresió aterior la odemos escribir como: u = σ E (2.2) T, arrastre Siedo σ = coductividad = σ + σ = q μ + q μ La exresió (2.2) es la coocida como ley de Ohm que rereseta la roorcioalidad etre desidad de corriete y el E alicado. A artir de la coductividad odemos deducir la resistividad que reseta u semicoductor ρ = 1 = 1 σ σ + σ 1 = σ 1 + σ 1 ρ = + ρ ρ (2.3) 2.6

9 Coducció or arrastre Observado las ecuacioes (2.2) y (2.3) resulta que la σ total de u - + semicoductor equivale a la suma de las σ de los gases de e y h, mietras que, la ρ total equivale a la asociació e aralelo de dichos gases. Es de señalar, además, que e los semicoductores extrísecos la cocetració de uo de los ortadores es mucho mayor que la del otro, mietras que segú la Figa 2.3, sus movilidades so comarables. De ahí que e u semicoductor extríseco la coductividad total será: σ Total σ Mayoritarios Tio : σ σ Tio : σ σ T T Por el cotrario, e u semicoductor itríseco = = i - de ahí que deba teerse e cueta las cotribucioes tato de los e como de los h +. Es decir, e u semicoductor itríseco, ( ) σ = q μ + μ = σ coductividad itríseca Total i i Movilidad Fialmete, ara termiar este aartado, vamos a araros e el arámetro µ, arámetro fudametal e el mecaismo de arrastre de los e - y de los h +. Observado la defiició de µ, odemos iterretarla como la mayor o meor facilidad co que los e - y los h + resode ate u E alicado. Uidades estádar: cm 2 /V s 2.7

10 Tema 2: Coducció de corriete No es u arámetro costate, sio que es fució de la temerata y de la cocetració total de imezas (e la Figa 2.4 se observa la deedecia de µ co el doaje y e la Figa 2.5 se ve la deedecia de µ co la temerata). E la mayoría de los semicoductores μ > μ, y esta relació ara doajes usuales suele ser de μ 2μ. De ahí que, a igualdad de doaje, sea mejores coductoras las muestras de tio. Figa Movilidades de ortadores e fució de la cocetració de imezas ara el Si a temerata ambiete. µ es la movilidad de los electroes; µ es la movilidad de huecos. 2.8

11 Coducció or arrastre 10 3 ND=1E16 ) Mugikortasua ( cm 2/V/s ND=1E17 ND=1E19 ND=1E18 ND=1E Teerata (ºC) (a) 10 3 ) Mugikor tasua( cm2 /V/s 10 2 NA=1E17 NA=1E18 NA=1E19 NA=1E Teerata(ºC) (b) Figa Deedecia co la temerata de las movilidades de (a) electroes y (b) huecos ara muestras de silicio co doados que va desde /cm 3 hasta /cm 3. E la muestra de meor doado, μ T( K) de log T(K).. Este resultado es evidete e las gráficas log µ e fució 2.9

12 Tema 2: Coducció de corriete CONDUCCIÓN POR DIFUSIÓN La difusió es u coocido feómeo de la ciética de los gases de artículas clásicas que tiee su orige e el movimieto aleatorio de agitació térmica que las hace recorrer todo el recito que las ecierra. Desués de u choque cada artícula tiee la misma robabilidad de dirigirse e cualquier direcció, lo que hace que exista u flujo eto de artículas de las regioes más obladas a las meos obladas que tiede a homogeeizar su cocetració. Es decir, la difusió se roduce siemre que exista variacioes esaciales (gradietes) de la cocetració de artículas libres y o tiee ada que ver co el hecho de que estas artículas esté cargadas o o. Ahora bie, si las artículas tiee carga, etoces los flujos or difusió trasorta carga eléctrica y costituye, or tato, corrietes eléctricas. Deducció de la exresió de la corriete de difusió Suogamos que e u semicoductor existe ua cocetració de ortadores, c, que es fució de la osició (Figa. 2.6). El flujo eto de artículas que atraviesa ua determiada suerficie eredicular a x será roorcioal al u c ero cambiado de sigo, es decir, u u F c F = D c Ley de Fick c Flujo eto, F x Figa Cocetració de ortadores e fució de x. Flujo o movimieto de artículas desde las zoas más obladas a las zoas meos obladas. 2.10

13 Coducció or difusió Si las artículas osee carga eléctrica, el flujo trae cosigo ua corriete: = q F = q D u c articula articula Si trasladamos dicha ecuació al caso de los electroes y los huecos:, difusió difusió, uu = qd uu = qd (2.4) Teiedo e cueta que e u semicoductor existe e geeral e - y h +, resulta: uu u u = + = q D D ( ) difusió, difusió, difusió (2.5) La costate de roorcioalidad, D, arámetro fudametal e el mecaismo de difusió recibe el ombre de Coeficiete de Difusió. E u tema osterior se demostrará que los mecaismos de arrastre y de difusió o so totalmete ideedietes, de ahí que exista ua relació etre los arámetros que los caracteriza. Esta relació, coocida como Relació de Eistei se verá osteriormete y os dice que: D μ D = = (2.6) μ kt q El coeficiete de difusió, D es, or lo tato, ua característica del semicoductor, del ortador y de la temerata. Y, al igual que µ deede tambié de la cocetració total de imezas. Sus uidades habituales so 2 cm s. 2.11

14 Tema 2: Coducció de corriete CORRIENTES TOTALES DE ELECTRONES Y HUECOS Resumiedo todo lo dicho ateriormete, y teiedo e cueta que e u semicoductor, e el caso más geeral, uede darse ambos mecaismos, resulta que: = + = Total a, d, a, d, Total ( ) uu uu = σ E + q D D (2.7) De la ecuació (2.7) se ifiere que, auque tegamos los mismos gradietes e las cocetracioes de e - y h +, el térmio corresodiete a la difusió o es geeralmete ulo ya que D > D or la relació de Eistei. Además, es de señalar que la ley de Ohm sólo se cumle e semicoductores doados de forma homogéea e uu uu los cuales = =

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

El Transistor de Efecto de Campo (FET)

El Transistor de Efecto de Campo (FET) El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

2.1 - F.e.m de las máquinas de corriente alterna lineales planas

2.1 - F.e.m de las máquinas de corriente alterna lineales planas - CÁLCULO PARAMÉTRICO DE MÁQUINAS LINEALES.1 - F.e.m de las máquias de corriete altera lieales laas El valor medio de la.e.m. iducida e ua esira de aso diametral, ideedietemete de la orma esacial o de

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

JUNTURA METAL SEMICONDUCTOR

JUNTURA METAL SEMICONDUCTOR JUNTURA METAL SEMICONUCTOR. EQUILIBRIO E SISTEMAS E FERMI EN CONTACTO Supogamos dos sistemas co eergías de Fermi diferetes. esigamos como E F, ; g, ();f F, ();, () y v, () a las eergías de Fermi, la fució

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

Capítulo 7. Distribución Binomial y de Poisson. 7.1 Distribución Binomial

Capítulo 7. Distribución Binomial y de Poisson. 7.1 Distribución Binomial Caítulo 7 Distribució Biomial y de oisso 7. Distribució Biomial E la física exerimetal, la distribució de Gauss es la más imortate de las distribucioes límites, si embargo existe otras distribucioes ue

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

TEMA 7 Trenes de Engranajes

TEMA 7 Trenes de Engranajes Igeiería Idustrial. Teoría Máquias TEMA 7 Trees de Egraajes Haga clic para modificar el estilo de subtítulo del patró Objetivos: Itroducir el mudo de los trees de egraajes, aalizado los diversos tipos

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 211 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció A Reserva 1, Ejercicio 4, Oció A Reserva 2, Ejercicio

Más detalles

TEMA 5 EQUILIBRIO QUÍMICO. Cinética química. velocidad de una reacción orden de la reacción

TEMA 5 EQUILIBRIO QUÍMICO. Cinética química. velocidad de una reacción orden de la reacción TEMA 5 EQUILIBRIO QUÍMICO. Ciética química velocidad de ua reacció orde de la reacció Teoría ciética de las colisioes Factores que ifluye e la velocidad de reacció aturaleza de los reactivos estado físico

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s.

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s. U automóvil (Citroe XM V6) tiee la geometría idicada e la figura. Su masa total es.42 Kg. Dispoe de u motor cuya relació par-velocidad puede expresarse mediate la relació: Tm=-,52.-3.w2+,38.w-5,583 N.m

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos.

SEMICONDUCTORES. Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Diapositiva 1 Semiconductores extrínsecos: estructura cristalina de Ge o Si Si con impurezas en bajo porcentaje de átomos distintos. Característica: n p n ii Clasificación: Tipo-n Tipo-p Diapositiva 2

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Juio, Ejercicio 4, Opció A Juio, Ejercicio 5, Opció B Reserva 1, Ejercicio 2, Opció B Reserva 2, Ejercicio 5, Opció

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

09/05/2011. Fuerzas intermoleculares pequeñas. Movimientos rápidos e independientes

09/05/2011. Fuerzas intermoleculares pequeñas. Movimientos rápidos e independientes ESTADO GASEOSO Gases Fuerzas itermoleculares pequeñas Movimietos rápidos e idepedietes Volume El comportamieto de u gas se defie por medio de variable : Temperatura Presió N de moles 1 Medidas e gases

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció B Reserva, Ejercicio 4, Oció B Reserva 2, Ejercicio 4,

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.

POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces. POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

Relación de Ejercicios de Contrastes de Hipótesis. Ponencia Andaluza de Matemáticas Aplicadas a las CCSS II del año 2009.

Relación de Ejercicios de Contrastes de Hipótesis. Ponencia Andaluza de Matemáticas Aplicadas a las CCSS II del año 2009. IES Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua Relació de Ejercicios de Cotrastes de Hiótesis. Poecia Adaluza de Matemáticas Alicadas a las CCSS II del año 29. Ejercicio 1. La altura e cm. de

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA Coteido - 1) Clasificació de los receptores - 2) Tesioes Nomiales Normalizadas - 3) Cosideracioes geerales - 4) Calculo de la potecia demadada por cada

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

CÁLCULO DE PROBABILIDADES :

CÁLCULO DE PROBABILIDADES : CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD

Más detalles

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA.2µm A. Herrera-Favela y F. Sadoval-Ibarra Electroics Desig Grou CINESTA, Guadalajara Uit Prol. Lóez-Mateos Sur 590, 45235 Guadalajara JAL. (México) aherrera@gdl.civestav.mx

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES L. GENERALIZACIÓN DEL A.F.C. : ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES 1. Itroducció Las «ecuestas» se

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 Valuaió de u boo e ua feha etre uoes E lo que hemos isto hasta aquí sobre la determiaió del reio de u boo o uó hemos osiderado eriodos omletos, es deir, el úmero

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros Cap ³tulo 6 Series Num ericas. Problemas resueltos Salvador Vera Ballesteros www.satd.uma.es/matap/svera 6. Series um ericas. De icioes De ici o 6. (Serie) Dada ua sucesi o um erica i ita: fa g fa ;a ;a

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Tema 5: Modelos Discretos de Canal

Tema 5: Modelos Discretos de Canal ema 5: Modelos Discretos de Caal Caales discretos Sistema de trasmisió (segú Shao) Iformació trasmitida Codificació de fuete bits Codificació de caal bits Modulació Señales [W, dbw] rasmisor Iformació

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se deomia valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

2. Tecnologías del silicio

2. Tecnologías del silicio 2. Tecologías del silicio 2.1. Itroducció. 2.2. Familias lógicas 2.3. Trasistores MOS, riciio de fucioamieto 2.4. Iversores MOS y CMOS. 2.5. Tecologías CMOS 2. Tecologías del silicio 2.1. Itroducció. 2.2.

Más detalles

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19

T( K) >500 N ioi /N* n i (cm -3 ) 0 1E5 7E7 7E7 7E7 7E7 1E10 6E12 3E14 1E19 Ejercicios relativos al semiconductor 1. Se dispone de una muestra de material semiconductor del que se conocen los siguientes datos a temperatura ambiente: kt = 0,025 ev n i = 1,5 10 10 cm -3 N A = 10

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles