3. Campos escalares diferenciables: gradiente.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. Campos escalares diferenciables: gradiente."

Transcripción

1 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto U. Sea z = f(, ) de manera qe P= (,, z es n pnto de la gráfica de f. Cál es la ecación del plano tangente a la gráfica de f en el pnto P (si es qe eiste)? Si samos la interpretación geométrica de las derivadas parciales f (, ) f (,, descrita en la sección anterior, llegamos a la conclsión de qe el plano tangente debe pasar por el pnto P= (,, z contener a los vectores (,, f (, )) (,, f (, ), lo qe eqivale a qe el vector ( f(,, f(,,) sea normal a dico plano. Con este argmento llegamos a la conclsión de qe la ecación del plano tangente debe ser z z = f (, )( ) + f (, )( ). Esta ecación tiene sentido sin más qe sponer qe eisten las derivadas parciales de la fnción f en el pnto (,. Sin embargo, sabemos qe la, = fnción f(, ) = no es contina en el pnto (,, con lo cal no eiste plano tangente en el pnto (,,; pero eisten ss derivadas parciales f,, (, = f (, =, con lo cal tiene sentido considerar el plano de ecación z =. Todo esto nos indica qe para qe la gráfica de na fnción tenga plano tangente en n pnto no sólo deben eistir las derivadas parciales en ese pnto, sino qe debe verificarse algo más. DEFINICIÓN. Se dice qe f es diferenciable en el pnto (, si f(, ) f(, ) f (, )( ) f (, )( ) lim =, (, ) (, o eqivalentemente, (, ) (, ( + ( f(, ) f(, f(, f(, lim =. (, ) (, ) La matriz fila Df(, : = f(, f(, se llama diferencial de f en (,. Si f es diferenciable en el pnto (, decimos qe z z = f(, ( + f(, ( es la ecación del plano tangente a la gráfica de f en el pnto (,. OBSERVACIÓN. Si comparamos la epresión anterior con la qe emos visto anteriormente para fnciones de na variable, observamos qe la matriz fila Df(, : = f(, f(, interpreta en la definición de fnción diferenciable de dos variables el papel correspondiente a la derivada en la definición de derivada de na fnción de na variable. Esto se ve aún más claramente si escribimos, por ejemplo, A = (, A= (, ), con lo qe la fórmla anterior qeda f( A) f( A Df( A( A A lim =. A A A A

2 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. OBSERVACIÓN. Si f es na fnción diferenciable en el pnto (, llamamos ε (, ): = f(, ) z(, ), (, ) = (, ) + (, )( ) + (, )( ), es decir, la diferencia entre el valor con z f f f de la fnción s plano tangente en el pnto (,, entonces con f (, ) = f(, ) + f(, )( ) + f(, )( ) + ε(, ), ε(, ) lim =. ( ) + ( ) (, ) (, Esto nos dice, qe la diferencia ε (, ) entre la gráfica de la fnción s plano tangente tiende a cero más rápidamente qe la distancia del pnto (, ) al pnto (,. En particlar, se verifica qe lim ε(, ) = la fnción f es contina en el (, ) (, pnto (, pesto qe lim f (, ) = f(, + f(, lim ( + f(, lim ( (, ) (, (, ) (, (, ) (, (, ) (, = = = + lim ε (, ) = f(,. De eco, se verifica mco más, como veremos en la sigiente proposición. PROPOSICIÓN. Sea f :(, ) U f(, ) na fnción diferenciable en n pnto (, interior a U. Entonces eisten las derivadas direccionales de f en dico pnto si = (, ) es n vector nitario, se verifica qe D f(, = D f(, = f(, + f(,. DEM. Debemos probar qe si = (, ) es n vector nitario, entonces eiste el sigiente límite, de eco, tiene el valor qe se indica en la igaldad del ennciado, es decir, f( +, + ) f(, ) lim = D f(, = f(, + f(,. Detallaremos la preba en el caso en qe >. De igal forma se aría si <. Sabemos qe si f es diferenciable en el pnto (,, entonces con f (, ) = f(, ) + f(, )( ) + f(, )( ) + ε(, ), (, ) (, ε(, ) lim =. En particlar, si (, ) = ( +, + ) obtenemos qe ( ) + ( ) f ( +, + ) f (, ) = f (, ) + f (, ) + ε( +, + ), lego f ( +, + ) f (, ε( +, + ) = f(, + f(, +.

3 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Para los pntos de la forma (, ) = ( +, + ) se verifica qe ( + ( = ε(, ) si, entonces (, ) (,. De esto de lim (, ) (, ( + ( = dedcimos ε ( +, + ) qe lim =, con lo qe f( +, + ) f(, ) f f lim = (, + (,. PROPOSICIÓN (PROPIEDAD DE DIRECCIÓN ÓPTIMA). Sea f :(, ) U f(, ) na fnción diferenciable en n pnto (, interior a U. Entonces el valor máimo de la derivada direccional D f(, se alcanza cando es el vector nitario de la misma dirección sentido qe Df (, el valor mínimo de D f(, se alcanza cando es el vector nitario de la misma dirección sentido contrario qe Df (,. DEM. Usando la fórmla D f(, = D f(, obtenemos qe D f(, = Df(, = Df(, cos θ = Df(, cos θ, siendo θ [, π ] el ánglo qe forman los vectores Df (,. Entonces, el valor máimo de D f(, se alcanza cando cosθ =, es decir, θ = tiene la misma dirección sentido Df (, qe Df (,, por tanto, = : = D f (, = Df (, = Df (,. Df (, Df (, Análogamente, el valor mínimo de D f(, se alcanza para = : =, por tanto, D f (, ) = Df (, ) = Df (, ) Df (,. EJEMPLO. Consideremos la fnción fnción en el pnto (, ) es, como sabemos, ( ) ( ) D z, =. La dirección de mínimo cre- =,. cimiento es = =, El valor máimo de la derivada es ( ) z (, ) = +. La dirección de máimo crecimiento de esta Dz, =,. El vector nitario en esa dirección es el valor mínimo de la derivada es ( ) direcciones de crecimiento cero son aqellas = (, ) qe verifican ( ) direcciones tales qe + =. Por ejemplo, los vectores Observa la sigiente figra. =, D z, =. Las Dz, =, es decir, las =,. 3

4 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. dos fn- OBSERVACIÓN (PROPIEDADES ALGEBRAICAS DE LA DIFERENCIAL). Sean f, g: U ciones diferenciables en n pnto (, interior a U. Entonces se verifica: ) af + bg es diferenciable en (, Daf ( + bg) = adf+ bdg. ) fg es diferenciable en (, D( fg) = fdg+ gdf. 3) Si g (,, entonces f g es diferenciable en f gdf fdg (, D =. g g Las fnciones ss diferenciales están evaladas todas en el pnto (,. Es m difícil probar qe na fnción es diferenciable aplicando directamente la definición; el resltado clave qe nos permite dedcir, en todos los casos de interés, qe na fnción es diferenciable se conoce como la condición sficiente de diferenciabilidad. TEOREMA (CONDICIÓN SUFICIENTE DE DIFERENCIABILIDAD). Sea f :(, ) U f(, ) n campo escalar. Si las fnciones derivadas parciales de f eisten son continas en U, entonces f es diferenciable en todos los pntos interiores a U. EJEMPLO. Eisten fnciones diferenciables cas derivadas parciales no son continas. Por ejemplo, la fnción definida por f(, ) = ( + )sen si (, ) (, f (, = es diferenciable, pero ss derivadas parciales f + f no son continas en (,. De forma similar, en na variable, tenemos fnciones derivables ca derivada no es contina. Por ejemplo, la fnción definida por f( ) = sen si f ( =. Como comentamos anteriormente, es m complicado a partir de la definición, comprobar qe na 4

5 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. fnción concreta es diferenciable. Sin embargo, con la condición sficiente de diferenciabilidad es bastante simple. Basta calclar ss derivadas parciales comprobar qe son fnciones continas. Por ejemplo, los polinomios en dos ( en tres) variables son fnciones diferenciables. También lo sen( + ) son las fnciones e +,, + + Gradiente de n campo escalar. En ciertas aplicaciones del cálclo diferencial, las variables e de na fnción f (, ) peden representar diversas magnitdes: presión, temperatra, precios, voltios, amperios, cantidades de compestos qímicos, etc. Sin embargo, en la constrcción de mcos modelos de la técnica se san 3 para indicar, específicamente, el plano el espacio tridimensional, así qe las variables cartesianas corresponden a longitdes se san para representar posiciones; se dice entonces qe son variables espaciales. Para este caso, la diferencial, es decir, Df(, : = f(, f(, recibe el nombre de vector gradiente de f en (, se representa de las sigientes maneras (el símbolo se lee nabla) f (, o grad f (,. EJEMPLO. Sea f la fnción qe a cada pnto P le asigna el cadrado de s distancia al origen. En coordenadas cartesianas tenemos qe f (, ) = +. Como f (, ) = f (, ) = son fnciones continas, f (, ) es diferenciable s diferencial es Df (, ): = [ ] qe, por ser e las variables espaciales cartesianas, coincide con el gradiente de f. Si consideramos la misma fnción, pero dada en coordenadas polares, tenemos f (, r θ ) = r, como fr (, r θ ) = r fθ (, r θ ) = son continas, obtenemos qe f ( r, θ ) es diferenciable Df (, r θ ): = [ r ] es s diferencial. Las variables polares r θ no son las variables espaciales cartesianas e, así qe Df (, r θ ): = r no es el gradiente de f. [ ] En resmen, la noción de diferencial es abstracta, no depende del conteto en el qe estemos trabajando. Por contra, la noción de vector gradiente es de natraleza geométrica. Entonces, si tenemos n campo escalar definido en términos, por ejemplo, de las coordenadas polares cómo calclamos s gradiente, el vector de las derivadas parciales con respecto a las variables espaciales? Esto lo veremos en la sección sigiente donde estdiaremos la regla de la cadena qe es el instrmento adecado para realizarlo. EJERCICIO. Calcla la ecación del plano tangente de las sigientes fnciones en el pnto qe se indica ( + ) f(, ) = log +, P= (,,, () f(, ) = e, P= (,,), () ( ) (3) f(, ) =, P= (,,), (4) f(, ) = 4 +, P= (,, 5), (5) f(, ) = 3 +, P= (,,), (6) (, ) + f = e sen, P= ( π,,. EJERCICIO. Escribe la definición de diferenciabilidad de diferencial de na fnción de tres variables enncia las propiedades correspondientes. 5

6 GRADO DE INGENIERÍA AEROESPACIAL. CURSO. EJERCICIO 3. Escribe la definición de derivada direccional de na fnción de tres variables enncia las propiedades correspondientes. EJERCICIO 4. Encentra las direcciones de máimo mínimo crecimiento de las sigientes fnciones en los pntos qe se indican () f(, ) = + +, P= (,), (3) f (,, z) = log( ) + log( z) + log( z), P = (,,), () f(, ) = + e sen, P= (,, (4) f(,, z) = log( + ) z, P= (,,. EJERCICIO 5. En qé direcciones es nla la derivada de la fnción P = (,)? f(, ) = + en el pnto EJERCICIO 6. Eiste algna dirección en qe la derivada direccional, en el pnto P = (,), de la fnción f (, ) = 3+ 4 valga 4? EJERCICIO 7. La derivada direccional de na fnción diferenciable f en n pnto P es máima en la dirección (, ) s valor es 3. Cánto vale Df( P )? Y, Cánto vale la derivada direccional de f en P en la dirección del vector (,? EJERCICIO 8. Considera el campo escalar tridimensional f ( z,, ) = + z z, el pnto P = (,,3) el vector nitario = (,,. () Calcla ( ). D f P () En qé dirección es máima la derivada direccional de f en P? Cál es el valor de dica derivada direccional? 6

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

Límite de una función

Límite de una función CAPÍTULO 3 Límite de una función OBJETIVOS PARTICULARES. Comprender el concepto de límite de una función en un punto. 2. Calcular, en caso de que eista, el límite de una función mediante la aplicación

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a): 0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

1.2 TÉCNICAS DE LA DERIVACIÓN.

1.2 TÉCNICAS DE LA DERIVACIÓN. . TÉCNICAS DE LA DERIVACIÓN... DERIVACIÓN DE FUNCIONES ALGEBRAICAS Generalmente la derivación se lleva acabo aplicando fórmlas obtenidas mediante la regla general de la derivación y qe calclaremos a continación,

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

Unidad 5. La derivada. 5.2 La derivada de una función

Unidad 5. La derivada. 5.2 La derivada de una función Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3 Ejercicios para practicar. Dado los conjntos A = {, 4, 6, 8,0,,4} B = {,, 5, 7, 9,,,5}; Constra la sigiente relación de A en B R = {(, ) / = + }. Adicionalmente determine el dominio el rango de cada na

Más detalles

TEMA 1. MAGNITUDES FÍSICAS

TEMA 1. MAGNITUDES FÍSICAS TEMA 1. MAGNITUDES FÍSICAS 1. Definición de magnitd física 2. Magnitdes físicas fndamentales deriadas. Sistema Internacional de Unidades (SI) 3. Cambio de nidades: Método de las fracciones nitarias 4.

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES 1 Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites.

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites. Cap. Límites de Fnciones. LÍMITE EN UN PUNTO. LÍMITES LATERALES. TEOREMAS SOBRE LÍMITES.4 CÁLCULO DE LÍMITES.5 LÍMITES AL INFINITO.6 LÍMITES INFINITOS.7 OTROS LÍMITES OBJETIVOS: Definir Límites. Realizar

Más detalles

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a 3 Derivación 3.. La derivada La derivada de una función en punto a de su dominio está dada por la fórmula f (a) = lím a f() f(a) a El cociente f() f(a) a es la pendiente de la recta secante a la función

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por . Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Para poder isalizar los elementos de R 3 ={(x,y,z)/x,y,z R}, primero fijamos n sistema de coordenadas, eligiendo n pnto en el espacio llamado el origen qe denotaremos por O, y tres

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Segunda Parte: Producto escalar de vectores

Segunda Parte: Producto escalar de vectores Segnda Parte: Prodcto escalar de ectores Constrcciones ectores En el diseño del techo de na galería se emlea n semicílindro, qe se sostiene a traés de igas qe se cran en distintos ntos sobre el techo.

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

Límites y continuidad

Límites y continuidad Límite funcional 6 6. Límite funcional 79 6.2 Límites infinitos y en el infinito 8 6.3 Cálculo de límites 83 6.4 Continuidad 84 6.5 Teorema del valor intermedio 87 6.6 Monotonía 89 6.7 Ejercicios 9 La

Más detalles

TEMA 1: VECTORES EN EL PLANO

TEMA 1: VECTORES EN EL PLANO Profesora: María José Sánchez Qeedo TEMA 1: VECTORES EN EL PLANO El estdio del Análisis Vectorial se remonta al siglo XVII, cando el ingeniero holandés Steen (1548-160), formló el principio del paralelogramo

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Aproximación intuitiva al concepto de límite de una función en un punto

Aproximación intuitiva al concepto de límite de una función en un punto Aproimación intuitiva al concepto de límite de una función en un punto ) Consideremos el siguiente gráfico Cuando los valores de se aproiman a 8 por la derecha, las imágenes de se acercan a 4 Cuando los

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Método de identificación de modelos de orden reducido de tres puntos 123c

Método de identificación de modelos de orden reducido de tres puntos 123c Método de identificación de modelos de orden redcido de tres pntos 123c Víctor M. Alfaro, M.Sc. Departamento de Atomática Escela de Ingeniería Eléctrica Universidad de Costa Rica valfaro@eie.cr.ac.cr Rev:

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecaciones Diferenciales Ordinarias Cristian j. P. Castillo U. ÍNDICE GENERAL PRESENTACIÓN CAPÍTULO. INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 4. Definición de ecación diferencial 5. Clasificación de

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

Cálculo vs Análisis. Trabajos

Cálculo vs Análisis. Trabajos 1. Analizar los dos libros que aparecen en la bibliografía del curso, Cálculo Vectorial, de Marsden, J.E. y Tromba, A.J., y Análisis clásico elemental, de Marsden, J.E. y Hoffman, M.J. Hacer un informe

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2 CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación

Más detalles

TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR

TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR TEMA 5. FUNCIONES DERIVABLES. TEOREMA DE TAYLOR 5.1 DERIVADA DE UNA FUNCIÓN 5.1.1 Definición de derivada Definición: Sea I in intervalo abierto, f : I y a I. Diremos que f es derivable en a si existe y

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

Solución Numérica de Ecuaciones Diferenciales Parciales Parabólicas

Solución Numérica de Ecuaciones Diferenciales Parciales Parabólicas Solción Nmérica de Ecaciones Diferenciales Parciales Parabólicas Diferencias Finitas En la discretización de las EDPs samos fórmlas de diferencias finitas para las derivadas qe se derivan de las fórmlas

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT14100) Lista de Ejercicios.

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT14100) Lista de Ejercicios. Instituto Tecnológico Autónomo de Méico Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT400) Lista de Ejercicios La derivada Cálculo Diferencial e Integral I La derivada La derivada Antes

Más detalles

12.3. El producto punto. 674 Capítulo 12: Los vectores y la geometría del espacio. Ángulo entre vectores

12.3. El producto punto. 674 Capítulo 12: Los vectores y la geometría del espacio. Ángulo entre vectores 674 Capítlo 1: Los ectores la geometría del espacio c. Obtenga las coordenadas del pnto donde se cortan las medianas del DABC. De acerdo con el ejercicio 17 de la sección 6.6, este pnto es el centro de

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

PRÁCTICA 6 CAPACIDAD CALORÍFICA DE UN SÓLIDO

PRÁCTICA 6 CAPACIDAD CALORÍFICA DE UN SÓLIDO LAORAORIO E ESAO SÓLIO Y SEMIONUORES 6.1 1.- INROUIÓN: 1.1 Modelo de ebye PRÁIA 6 APAIA ALORÍFIA E UN SÓLIO Llamamos capacidad calorífica de n sólido al calor necesario para elevar en n grado la temperatra

Más detalles

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes: a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Vectoriales: Velocidad, Aceleración, Fuerza, Campo eléctrico, Campo magnético

Vectoriales: Velocidad, Aceleración, Fuerza, Campo eléctrico, Campo magnético Tema: Campos escalares y vectoriales. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Verificar instrucciones y comandos en Matlab para graficar campos

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Derivada de una función

Derivada de una función Derivada de una función Derivada de una función La derivada de una función, f, en un punto, 0, y que se indica f'( 0 ) se define como el límite: f( 0 ) f( ) f '( 0 ) = lim 0 0 Si dicho límite no eiste,

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles