TEMA 1 Parte I Vibraciones libres y amortiguadas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1 Parte I Vibraciones libres y amortiguadas"

Transcripción

1 TEMA 1 Parte I Vibraciones libres y aortiguadas

2 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones convenientes: péndulo para regular un reloj, cuerda pulsada de una guitarra - Vibraciones inconvenientes: vibraciones en estructuras a causa de terreotos, del viento, circulación de vehículos, áquinas Introducción: grados de libertad y...

3 1) Fuerza adicional: desplazaiento equilibrio ) Fuerza recuperadora: vuelta a posición equilibrio 3) Posición equilibrio: velocidad no nula SISTEMAS CON UN GRADO DE LIBERTAD Introducción: grados de libertad y...

4 GRADO DE LIBERTAD: Variables necesarias y suficientes para especificar la posición de un sistea ecánico EJEMPLOS: - disco que se ueve en el plano: tres grados de libertad desplazaiento x, y ángulo de rotación alrededor CM - sólido rígido: seis grados de libertad tres traslaciones eleentales tres rotaciones, seis coordenadas - sistea con un grado de libertad sistea siple: otor de autoóvil: ángulo de giro del cigüeñal Introducción: grados de libertad y...

5 OSCILACIONES PERIÓDICAS Y APERIÓDICAS O ALEATORIAS: Oscilación periódica: Periodo (T, τ): tiepo para que se repita el oviiento Frecuencia (f, ν): núero de oscilaciones por segundo Aplitud (A): desplazaiento áxio Introducción: grados de libertad y...

6 CLASIFICACIÓN DE LAS VIBRACIONES MECÁNICAS: VIBRACIONES LIBRES: fuerzas gravitatorias o fuerzas elásticas 1) NO AMORTIGUADAS: - fuerzas de rozaiento (resistencia del aire, viscosidad...) son despreciables - se repiten indefinidaente ) AMORTIGUADAS: - fuerzas de rozaiento no despreciables - tienden a desaparecer VIBRACIONES FORZADAS: - copensación de pérdida de energía de la oscilación aortiguada - fuerzas externas Introducción: grados de libertad y...

7 Diseño y construcción de puentes y edificios: FENÓMENO DE LA RESONANCIA: - Edificación: oscilador con un conjunto de frecuencias naturales (rigidez, asa y detalles de la construcción) - Oscilación forzada: fuerza debida a sacudidas del terreno en terreoto FRECUENCIA ONDAS SÍSMICAS FRECUENCIA NATURAL EDIFICIO Introducción: grados de libertad y...

8 1.. Vibraciones libres no aortiguadas FUERZA RECUPERADORA: - proporcional al desplazaiento: kx - dirigida hacia posición de equilibrio - oviiento periódico: MOVIMIENTO ARMÓNICO SIMPLE - odelo de partida para vibraciones en aplicaciones técnicas 1.. Vibraciones libres no aortiguadas

9 MODELO MECÁNICO: - reposo: posición de equilibrio - desplazaiento X : V F kx FX ax d x d x d x kx k x 1.. Vibraciones libres no aortiguadas

10 d x + ω x ω k FRECUENCIA NATURAL DE OSCILACIÓN Soluciones de la ecuación diferencial lineal hoogénea de segundo orden: c x ( t) A cos( ωt α) : x( t) Asen( ωt α) A aplitud o desplazaiento áxio α : ángulo o constante de fase 1.. Vibraciones libres no aortiguadas

11 x( t) A cos( ωt α) T f π ω ω π v dx Aωsen( ωt α ) a dv Aω cos( ω t α ) ω x 1.. Vibraciones libres no aortiguadas

12 ENERGÍA DEL MOVIMIENTO ARMÓNICO SIMPLE: x( t) A cos( ωt α) ENERGÍA POTENCIAL: E P 1 1 kx ka cos ( ωt α ) ENERGÍA CINÉTICA: E C 1 1 dx 1 v ω ( ω A sen t α) 1.. Vibraciones libres no aortiguadas

13 ENERGÍA DEL MOVIMIENTO ARMÓNICO SIMPLE: 1 ) ( 1 ) ( cos 1 A t sen A t ka E E E C P ω α ω ω α ω + + Energía cinética y potencial en función del tiepo: 1.. Vibraciones libres no aortiguadas

14 MÉTODOS ENERGÉTICOS PARA RESOLUCIÓN DE PROBLEMAS: E T E C + E P cte de T d( E + C E P ) EJEMPLO: d 1 kx 1 + x& + kxx& x&&& x ( kx + x &&) x& x & + kx k & x& + x 1.. Vibraciones libres no aortiguadas

15 1.3. Vibraciones libres aortiguadas - VIBRACIONES NO AMORTIGUADAS: idealización pérdidas de energía por rozaiento pequeñas intervalos de tiepo cortos - FUERZAS RESISTIVAS: proporcional a la velocidad y en sentido opuesto F r λv Oscilación en un fluido: aire, agua Vibraciones libres aortiguadas

16 Modelo ecánico: FX ax d x dx kx λv kx λ d x dx + λ + kx d x d x dx + γ + ω x γ λ ω k Vibraciones libres aortiguadas

17 d x dx + γ + ω x Teoría ecuaciones diferenciales: x( t) De λt D, λ: ecuación diferencial y condiciones iniciales λ + γλ + ω λ 1, γ ± γ ω γ ± i ω γ γ ± iω ω ω γ k λ Vibraciones libres aortiguadas

18 λ γ ± iω λ1t λt x( t) D1e + De 1 γt iωt iωt, x( t) e ( D ) 1e + De D 1, D : condiciones iniciales de desplazaiento y velocidad e i ω t cosωt + isenωt Tres tipos de coportaiento según : ω ω γ Vibraciones libres aortiguadas

19 1) SISTEMAS SUBAMORTIGUADOS: ω f γ ω ω γ f La solución física debe ser siepre real: D 1 Ae iα D iα Ae γt iωt x( t) e ( D1e + De iωt ) e γt ( Ae iα e iωt + Ae iα e iωt ) γt x( t) Ae cos( ωt α) Vibraciones libres aortiguadas

20 1) SISTEMAS SUBAMORTIGUADOS: γt x( t) Ae cos( ωt α) AMPLITUD: Ae γt FRECUENCIA: ω ω γ Vibraciones libres aortiguadas

21 1) SISTEMAS SUBAMORTIGUADOS: No tiene periodo en el sentido definido para las vibraciones libres: T π ω f ω π Magnitudes constantes, aunque no lo es la aplitud Vibraciones libres aortiguadas

22 ) SISTEMAS CRÍTICAMENTE AMORTIGUADOS: ω γ ω El sistea no oscila: x( t) ( B + Ct) e γt B,C: condiciones iniciales de desplazaiento y velocidad - aortiguaiento crítico: enor aortiguaiento para no oscilación - vuelta a la posición de equilibrio siguiendo curva exponencial - no se puede redefinir periodo y frecuencia Vibraciones libres aortiguadas

23 ) SISTEMAS CRÍTICAMENTE AMORTIGUADOS: ξ γ ω Ejeplo en el que este aortiguaiento es interesante: aortiguadores de los coches Vibraciones libres aortiguadas

24 3) SISTEMAS SOBREAMORTIGUADOS: ω p γ ω ω γ p Medio altaente viscoso: s λ γ ω 4 k x( t) st st ( Ae + Be ) e γt A, B: condiciones iniciales de desplazaiento y velocidad - vuelve a su posición de equilibrio sin oscilar - no es posible redefinir periodo y frecuencia Vibraciones libres aortiguadas

25 Ejeplos de oviiento subaortiguado, sobreaortiguado y críticaente aortiguado: Vibraciones libres aortiguadas

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle

Más detalles

Pauta Certamen N o 1

Pauta Certamen N o 1 Pauta Certaen N o 1 1 er Seestre 2015 Moviiento Oscilatorio, Aortiguado y Forzado, Mecánica de Ondas y Sonido Problea 1 (25 ptos.) El sistea de aortiguación de un auto está diseñado para que no perita

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Física II: Termodinámica, ondas y fluidos

Física II: Termodinámica, ondas y fluidos Física II: Terodináica, ondas y fluidos Índice 5 - MOVIMIENTO PERIÓDICO... 5.1 OSCILACIÓN: DESCRIPCIÓN Y DEFINICIÓN... 5. MOVIMIENTO ARMÓNICO SIMPLE (MAS)... 4 Ej. 5.1 Resorte sin fricción... 6 5.3 DESPLAZAMIENTO,

Más detalles

Bases Físicas del Medio Ambiente. Oscilaciones

Bases Físicas del Medio Ambiente. Oscilaciones Bases Físicas del Medio Ambiente Oscilaciones Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

PROBLEMAS DE VIBRACIONES CURSO 2012/2013

PROBLEMAS DE VIBRACIONES CURSO 2012/2013 PROBLEMAS DE VIBRACIONES CURSO 2012/2013 Problea 1.-En el sistea ecánico representado en la figura adjunta, se considera la barra de longitud L rígida, y se desprecian las asas de la barra y de los resortes

Más detalles

TEMA 1: OSCILACIONES. MOVIMIENTO ARMÓNICO. Ejemplos: Péndulos, cuerdas vocales, cuerdas de instrumentos musicales.

TEMA 1: OSCILACIONES. MOVIMIENTO ARMÓNICO. Ejemplos: Péndulos, cuerdas vocales, cuerdas de instrumentos musicales. TEMA : OSCILACIONES. MOVIMIENTO ARMÓNICO.. Introducción. Un sistea en equilibrio estable, si se perturba ligeraente de su punto de equilibrio, realiza oscilaciones en torno a este punto. Las oscilaciones

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE A: JUSTIFICACIÓN Al observar la Naturaleza nos daos cuenta de que uchos eventos físicos (por ejeplo el oviiento de rotación y traslación de los planetas) son repetitivos, sucediendo

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Movimiento armónico simple

Movimiento armónico simple Física Grado en Biotecnología Movimiento armónico simple ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Dpto. Física y Mecánica de la Ingeniería Agroforestal Prof. Mª Victoria Carbonell Programa Generalidades:

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Examen ordinario de Análisis Dinámico de Sistemas Mecánicos

Examen ordinario de Análisis Dinámico de Sistemas Mecánicos Exaen ordinario de Análisis Dináico de Sisteas Mecánicos CUESTIONES 1. Escriba la ecuación de oviiento del sistea de la figura, aplicando equilibrio de fuerzas, donde µ es el coeficiente de rozaiento entre

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Tema II: Dinámica en el espacio de fases

Tema II: Dinámica en el espacio de fases Tema II: Dinámica en el espacio de fases 1. Las ecuaciones de Hamilton Para sistemas autónomos en los que H no depende de t, es una constante del movimiento por lo que H(p, q = α (1.1 Esta ecuación determina

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Dinámica

Movimiento oscilatorio Movimiento armónico simple (MAS) Dinámica Moviiento oscilatorio Dináica IES a Madalena. Avilés. Asturias a aceleración de un punto que oscila con MAS puede expresarse coo: a = A ωsen( ωt) En función del tiepo. a = ω x En función de la distancia

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

MOVIMIENTOS OSCILATORIOS. EL OSCILADOR ARMÓNICO - RESUMEN

MOVIMIENTOS OSCILATORIOS. EL OSCILADOR ARMÓNICO - RESUMEN Dpto. Física y Quíica MOVIMINTOS OSCITORIOS. OSCIDOR RMÓNICO - RSUMN. Moviientos Oscilatorios.. Moviiento rónico Siple. Un oviiento es periódico cuando se repiten cada cierto tiepo algunas de las agnitudes

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A 0 1 2 ka2 v ma T/4 0 ωaω 0 1 0 2 ka2 a ma θ ma T/2 A 0 ω 2 A 0 1 2 ka2 v ma 1 3T/4 0 ωaω 0 0 2 ka2 a ma θ ma T A 0 ωω 2 A 0 1 2 ka2 Javier Junquera

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s ONDAS MECÁNICAS EJERCICIOS PROPUESTOS 1. Cuál es la velocidad de una onda transversal a lo largo de un hilo etálico soetido a la tensión de 89,0N si una bobina del iso que tiene 305,0 pesa 35,50N? v =

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

Examen de Física (PAU Junio 2014) Opción A

Examen de Física (PAU Junio 2014) Opción A Exaen de Física (PAU Junio 04) Opción A Pregunta El planeta A tiene tres veces ás asa que el planeta B y cuatro veces su radio. Obtenga: La relación entre las velocidades de escape desde las superficies

Más detalles

7. Sistemas oscilantes

7. Sistemas oscilantes 7. Sisteas oscilantes En esta sección tratareos sisteas que están soetidos a fuerzas que tratan de antener al sistea en su posición inicial, con lo cual se presentan oscilaciones. Epezareos con un sistea

Más detalles

PROBLEMAS DE VIBRACIONES Y ONDAS

PROBLEMAS DE VIBRACIONES Y ONDAS PROBLEMAS DE VBRACONES Y ONDAS º PROBLEMAS DE M.A.S. PROBLEMAS RESUELTOS º Una partícula que realiza un M.A.S. recorre una distancia total de 0 c en cada vibración copleta y su áxia aceleración es de 50

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE Laboratorio de ísica CC ísicas UCM Curso 0/0-6- ONDAS ESTACIONARIA. CUERDA VIBRANTE UNDAMENTO TEÓRICO Ondas Estacionarias: Cuerda ibrante Considérese una cuerda de longitud L que está sujeta por un extremo

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

1. Introducción: Movimiento Circular Uniforme

1. Introducción: Movimiento Circular Uniforme FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Principios de Newton II

IES Menéndez Tolosa Física y Química - 1º Bach Principios de Newton II IES Menéndez Tolosa Física y Quíica - 1º Bach Principios de Newton II 1 Un cuerpo de asa 10 kg se desplaza por una supericie horizontal sin rozaiento. Si la uerza que lo ipulsa es paralela al plano. Cuánto

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

CAPÍTULO 2: Dinámica no lineal y caos

CAPÍTULO 2: Dinámica no lineal y caos CAPÍTULO 2: Dinámica no lineal y caos Bibliogra

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones propuestas, sólo hay que desarrollar una opción copleta. Cada problea correcto vale por tres puntos. Cada cuestión correcta vale por un punto. Probleas OPCIÓN A.- Un cuerpo A de asa

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Protocolo de Experiencias de Oscilaciones y Ondas

Protocolo de Experiencias de Oscilaciones y Ondas Aula Espacio Tocar la Ciencia J Güémez Aula de la Ciencia Universidad de Cantabria Junio 22, 2011 Protocolo de Experiencias de Oscilaciones y Ondas 1 Equilibrios: estable, inestable, indiferente Con la

Más detalles

tecnun INDICE Volantes de Inercia

tecnun INDICE Volantes de Inercia VOLANTES DE INERCIA INDICE 7. VOLANTES DE INERCIA... 113 7.1 INTRODUCCIÓN.... 113 7. ECUACIÓN DEL MOVIMIENTO.... 113 7.3 CÁLCULO DE UN VOLANTE DE INERCIA.... 116 Eleentos de Máquinas 11 7. VOLANTES DE

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios. Primer Parcial, 24 setiembre de Problema 1 (15 puntos)

Mecánica de Sistemas y Fenómenos Ondulatorios. Primer Parcial, 24 setiembre de Problema 1 (15 puntos) nstituto de Física - Facultad de ngeniería 009 Mecánica de Sistemas y Fenómenos Ondulatorios mportante: Primer Parcial, 4 setiembre de 009 El estudiante deberá hacer un esfuerzo para comunicar claramente

Más detalles

El oscilador armónico (I): Ecuación de oscilador Armónico

El oscilador armónico (I): Ecuación de oscilador Armónico Un movimiento que responde a la ecuación x=asen(ωt+ϕ) X es la elongación A= amplitud de la oscilación; es la elongación Máxima ω=pulsación t=tiempo ϕ=fase inicial. El movimiento vibratorio Armónico simple

Más detalles

3.1. Características de los componentes de sistemas discretos

3.1. Características de los componentes de sistemas discretos 3.1. Características de los coponentes de sisteas discretos Vereos a continuación una serie de conceptos que se utilizan habitualente en el estudio de vibraciones y que es necesario tener presentes. Vibración:

Más detalles

Programa de la Asignatura

Programa de la Asignatura Prgraa de la Asignatura Lección.- La Física. Magnitudes y su edida Lección.- Cineática del Punt. Lección 3.- Dináica de la Partícula. Lección 4.- Dináica de ls Sisteas de Partículas: Sólid Rígid. Lección

Más detalles

1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Vibraciones y ondas 3 1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Desarrollamos la unidad de acuerdo con el siguiente hilo conductor: 1. Por qué se producen los movimientos periódicos vibratorios?.

Más detalles

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones

TEMA 2 NOTACIÓN Y DEFINICIONES. Notación y Definiciones Notación y Definiciones ELEMENTOS DE MÁQUINAS Y VIBRACIONES -.1 - ELEMENTOS DE MÁQUINAS Y VIBRACIONES -. - ABSORBEDOR DINÁMICO DE VIBRACIONES o AMORTIGUADOR DINÁMICO: se trata de un sistema mecánico masa-resorte(-amortiguador)

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS.

OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. OSCILACIONES. INTRODUCCIÓN A LAS ONDAS. En nuestro quehacer cotidiano nos encontramos con diversos cuerpos u objetos, elementos que suelen vibrar u oscilar como por ejemplo un péndulo, un diapasón, el

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 )

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 ) 1 Interferencia Como adelantamos al discutir la diferencia entre partí culas y ondas, el principio de superposición da a lugar al fenómeno de interferencia. Sean dos ondas idénticas que difieren en la

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

7. PÉNDULO DE TORSIÓN

7. PÉNDULO DE TORSIÓN 7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) FÍSICA Modelo 2009

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) FÍSICA Modelo 2009 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) FÍSICA Modelo 009 INSTRUCCIONES GENERALES Y VALORACIÓN. La prueba consta de dos partes. La priera parte

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

(a) (b) (c) d) Figura 1

(a) (b) (c) d) Figura 1 Movimiento Amortiguado Se ha discutido en la primera parte del curso, los conceptos relacionados con el movimiento oscilatorio, con énfasis general, en el movimiento oscilatorio armónico. No hay que olvidar,

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles