DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II"

Transcripción

1 DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación secundaria. Los estilos de aprendizaje fueron evaluados a través del cuestionario CHAEA, seleccionando al azar 12 sujetos con una preferencia clara por cada uno de los siguientes estilos: reflexivo (a1), teórico (a2), activo (a3) y pragmático (a4). Tenemos los siguientes resultados en las pruebas ómnibus: Descriptivos Ic para la media al 95% N Media Desviación típica Error típico Límite inferior Límite superior Mínimo Máximo reflexivo 12 6,9167,79296, ,4128 7,4205 6,00 8,00 teórico 12 5,9167 1,67649, ,8515 6,9819 4,00 9,00 activo 12 6,0000 1,12815, ,2832 6,7168 4,00 8,00 pragmático 12 5,5833 1,31137, ,7501 6,4165 4,00 8,00 Total 48 6,1042 1,32472, ,7195 6,4888 4,00 9,00 Prueba de homogeneidad de varianzas Estadístico de Levene gl1 gl2 Sig. 3, ,033 ANOVA Suma de cuadrados gl Media cuadrática F Sig. Inter-grupos 11, ,910 2,431,078 Intra-grupos 70, ,608 Total 82, Pruebas robustas de igualdad de las medias Estadístico a gl1 gl2 Sig. Welch 3, ,616, Podemos afirmar que el rendimiento en matemáticas depende del estilo de aprendizaje? Se observa que no se cumple la igualdad de varianzas, por lo que aquí hemos de aplicar Welch. La significación es.022, en consecuencia, rechazamos la Hipótesis nula y consideramos que el rendimiento en matemáticas depende del estilo de aprendizaje. 1

2 2.- Cuándo aplicarías la prueba de Welch? Cuando no se cumple la homocedasticidad. 3.- Cómo interpretarías en este caso la prueba ómnibus del análisis de la varianza? De acuerdo con el análisis de la varianza podemos considerar todas las medias iguales a nivel poblacional ya que la significación es mayor que.05. Aceptaríamos la Hipótesis nula. 4.- Qué nos indica la Hipótesis nula? Y la Hipótesis alternativa? Cuál sería en el caso del análisis de la varianza la probabilidad de equivocarte en caso de rechazar la Ho? Y en el caso de Welch? La Hipótesis nula nos indica que a nivel poblacional todas las medias son iguales, que el rendimiento académico no depende del estilo de aprendizaje. La hipótesis alternativa, que no todas las medias son iguales. Obsérvese que no decimos que todas sean distintas sino que no todas son iguales, basta que sólo una sea distinta para que se rechace la Hipótesis nula y se acepte la alternativa. En el ANOVA la probabilidad de equivocarnos es.078 y en el caso de Welch.022. En el primer caso está en la zona de aceptación de la Ho y en el caso de Welch está en la zona de rechazo. 5.- Supongamos que trabajamos para un alpha de.05, Qué concluiríamos con Welch? Y si trabajamos con α =. 01) Trabajar con un valor de alpha de.05 significa que estamos dispuestos a aceptar hasta un riesgo de.05 de equivocarnos, o sea, 5 de cada 100 veces. Como nos estamos equivocando un 2.2% de las veces, que es menor, concluimos que rechazamos la Ho con ese riesgo menor que el que estamos dispuestos a admitir. Por el contrario, si trabajásemos con un riesgo del 0.01 significaría que como máximo estaríamos dispuestos a equivocarnos ese número de veces (en realidad ese número de veces sin llegar a él). Como nos equivocamos un 2.2% que es mayor que ese 1% máximo admisible, pues no podríamos rechazar la Ho a ese nivel y concluiríamos que para un α =.01 aceptaríamos la Ho y concluiríamos que a ese nivel de significación todas las medias proceden de poblaciones con igual media. 6a.- Supongamos que un sujeto reflexivo ha obtenido 7 puntos, en cuánto se ha equivocado el modelo? Cuál es su parte explicada? Cuándo diríamos que el modelo explica el 100% de la variabilidad de los datos? Cuánto explica en este caso? 2

3 Se entiende por error la diferencia entre la puntuación realmente obtenida y la prevista o pronosticada por el modelo. En nuestro caso, el sujeto reflexivo ha sacado 7 puntos y el modelo pronostica que todos los reflexivos han de tener una puntuación de , así pues el error cometido será: error = = La parte explicada por el modelo hace referencia a la ganancia predictiva que hemos conseguido al considerar los estilos de aprendizaje. Para ello hemos de comparar la predicción del modelo con la predicción que habría en caso de no haberse aplicado el modelo, que en caso que nos ocupa sería la puntuación pronosticada en caso de no haberse considerado los estilos de aprendizaje. Obsérvese que si no hubiéramos considerado los estilos de aprendizaje, la puntuación más probable para un sujeto es la que nos ofrece la media global de todos ellos, que en este caso es de puntos. Si no tuviéramos información sobre los estilos de aprendizaje la única puntuación prevista para este sujeto reflexivo sería esta media. Como el modelo pronostica para los reflexivos puntos, lo que hemos ganado respecto a la ausencia total de información ha sido la diferencia ente la pronosticada el modelo y la media global. Así pues, la parte explicada será: Tenemos así que para un sujeto: En términos numéricos: Desviación explicada = Desviación total = desviación no explicada + desviación explicada ( ) = ( ) + ( ) Más formalmente, para el sujeto i del tratamiento j: (X ij X total ) = X ij X j + X j X total Y en relación al conjunto de los sujetos podemos afirmar: X ij X total 2 = X ij X j 2 + X j X total 2 O lo que es lo mismo, cambiando los sumando en la forma convencional: X ij X total 2 = X j X total 2 + X ij X j 2 Esto es: Suma de cuadrados total = Suma de cuadrados explicada + Suma de cuadrados no explicada 3

4 6b.- Cuándo diríamos que el modelo explica el 100% de la variabilidad de los datos? El modelo explica el 100% cuando no hay error de pronóstico, o lo que es mismo, cuando la suma de cuadrados no explicada o del error vale cero. 7.- Operando con el conjunto de los sujetos y de acuerdo con los datos de la tabla del análisis de la varianza, cuánto consideras que vale la variabilidad explicada por el modelo? Y la no explicada? Determina el valor de eta cuadrado (o proporción de variabilidad explicada). La variabilidad explicada y no explicada hacen referencia a la suma de cuadrados explicada y no explicada respectivamente. Así pues para el caso que nos concierne: Suma de cuadrados explicada = Suma de cuadrados no explicada = El cociente entra la suma de cuadrados explicada y la total nos indica la proporción de variabilidad explicada, que en el caso del análisis de la varianza se denomina eta 2 y en el caso de la regresión R 2. Así: eta 2 = = El modelo explica un 14.22% de la variabilidad de los datos (y no explica en consecuencia el 85.78%) 9.- Supongamos que la tabla siguiente se ha hecho con Tukey, hay diferencia significativa entre reflexivos y pragmáticos? Con qué riesgo de equivocarnos? Y si la prueba fuera unilateral? Cuándo aplicamos pruebas unilaterales y bilaterales? Cuáles son más exigentes? Pruebas para los contrastes Comparaciones múltiples (I) estilo (J) estilo Diferencia de medias (I-J) Error típico Sig. Intervalo de confianza al 95% Límite inferior Límite superior reflexivo teórico 1,00000,53537,281 -,5351 2,5351 activo,91667,39807,131 -,1988 2,0321 pragmático 1,33333*,44239,034,0837 2,5830 teórico reflexivo -1,00000,53537,281-2,5351,5351 activo -,08333,58333,999-1,7215 1,5548 pragmático,33333,61443,948-1,3807 2,0474 activo reflexivo -,91667,39807,131-2,0321,1988 teórico,08333,58333,999-1,5548 1,7215 pragmático,41667,49937,838 -,9724 1,8058 pragmático reflexivo -1,33333*,44239,034-2,5830 -,0837 teórico -,33333,61443,948-2,0474 1,3807 activo -,41667,49937,838-1,8058,9724 *. La diferencia de medias es significativa al nivel

5 Si operamos para alpha =.05, concluimos que sí hay diferencia significativa ya que la significación es.034, que es precisamente el riesgo de equivocarnos. En la prueba bilateral el valor de.034 se encuentra repartido en ambos lados de la curva, o sea que en realidad a cada extremo le corresponde.017. En la prueba unilateral todo el área está en un extremo. Como en las comparaciones post hoc de esta tabla se trabaja con pruebas bilaterales, este extremo de.017 sería la probabilidad de la prueba unilateral (suponiendo que nos piden la unilateral ofreciendo en la tabla la bilateral), que es todavía menos que.034, exactamente la mitad. Las pruebas unilaterales son menos exigentes. Aplicamos bilaterales cuando queremos comprobar si algo es diferente a algo (mayor o menor, ambas posibilidades). Unilateral sólo cuando nos interesa si es mayor o si es menor (no ambos al mismo tiempo). Normalmente las pruebas son bilaterales por aquello de que un investigador no debe ir con ideas preconcebidas y debe ir abierto a que los resultados salgan en un sentido u otro. 9.- Cuando realizamos 3 ensayos y partimos de un error de.05, cuál es de acuerdo con Bonferroni la probabilidad de equivocarnos alguna vez? Con cuál deberíamos partir para que al final fuera de.05? La probabilidad de acertar las 3 veces será = , por tanto la probabilidad de fallar alguna vez será = También podemos decir 0.05 *3 = 0.15, aunque esto no es tan exacto. Vemos que con 3 ensayos la probabilidad final se triplica (más o menos), así que para que la final sea 0.05, habremos de empezar por una que sea la tercer parte, por tanto α = 0.05/3 = También podemos ser más rigurosos matemáticamente y despejar α de la siguiente ecuación que nos da la probabilidad final que debe ser Así: Despejando α tenemos que: 1 (1 α) 3 = α = = Qué prueba no parámetrica aplicarías? Qué tipo de medición se utiliza? Ventajas e inconvenientes. Se aplicaría la prueba de Kruskal Wallis. Utiliza puntuaciones por rangos. Si no se cumple claramente la normalidad es preferible porque la probabilidad de equivocarnos es exactamente la que asumimos. Tiene el inconveniente de que la medición por rangos contiene menos información que la medición cuantitativa y por tanto no detectaría diferencias que sí detectaría el análisis de la varianza si se cumpliese el supuesto de normalidad. A veces la decisión sobre qué prueba aplicar es un poco complicada porque hemos de elegir entre la violación de la normalidad y la calidad de la medición. 5

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

ALTERNATIVAS NO PARAMÉTRICAS AL ANÁLISIS DE LA VARIANZA

ALTERNATIVAS NO PARAMÉTRICAS AL ANÁLISIS DE LA VARIANZA ALTERATIVAS O PARAMÉTRICAS AL AÁLISIS DE LA VARIAA 1.- Introducción... 2 2.- Prueba de Kruskal Wallis para muestras independientes... 3 3.- Prueba de Friedman para medidas repetidas... 6 1.- Introducción

Más detalles

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS 1.- Introducción... 2 2.- Prueba U de Mann Whitney para muestras independientes... 3 3.- Prueba t de Wicoxon para muestras apareadas... 8 1.- Introducción

Más detalles

Regresión con variables independientes categóricas

Regresión con variables independientes categóricas Regresión con variables independientes categóricas 1.- Introducción... 2 2.- Regresión y contrate de medias... 2 2.1.- Contrate de medias... 2 2.2.- Regresión... 3 3.- Regresión y análisis de la varianza...

Más detalles

CONTRASTES DE HIPÓTESES

CONTRASTES DE HIPÓTESES CONTRASTES DE IPÓTESES 1. Contraste de hipótesis 2. Contrastes de tipo paramétrico 2.1 Contraste T para una muestra 2.2 Contraste T para dos muestras independientes 2.3 Análisis de la varianza 3. Contrastes

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

COMPARACIÓN DE MEDIAS

COMPARACIÓN DE MEDIAS COMPARACIÓN DE MEDIAS 1.-Prueba de comparación de una media observada y otra teórica... 2 1.1- Aplicación práctica. Cálculo manual... 4 1.2.- Aplicación práctica. SPSS... 6 2.- Prueba de comparación de

Más detalles

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS 3datos 2011 Variables CUANTITATIVAS Valor más representativo: MEDIA aritmética Técnicas Inferenciales sobre la significación de la diferencia entre

Más detalles

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

Ejercicios T.5 CONTRASTES PARAMÉTRICOS

Ejercicios T.5 CONTRASTES PARAMÉTRICOS Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución

Más detalles

ANÁLISIS DE LA VARIANZA

ANÁLISIS DE LA VARIANZA ANÁLISIS DE LA VARIANZA 1.- Introducción... 2 2.- Hipótesis y análisis estadístico... 2 3.- Aplicación práctica. Cálculo manual... 6 4. -Aplicación práctica. SPSS... 9 5.- Comparaciones a posteriori...

Más detalles

14 horas. 20 horas

14 horas. 20 horas EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar mcladera@uib.es Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

ANALISIS DE LA VARIANZA PARA MEDIDAS REPETIDAS

ANALISIS DE LA VARIANZA PARA MEDIDAS REPETIDAS ANALISIS DE LA VARIANZA PARA MEDIDAS REPETIDAS 1.- Introducción... 2 2.- Modelo de medidas repetidas para un factor... 2 2.1.- Pruebas post hoc... 7 3. - Modelo de medidas repetidas para dos factores...

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Caso particular: Contraste de homocedasticidad

Caso particular: Contraste de homocedasticidad 36 Bioestadística: Métodos y Aplicaciones 9.5.5. Caso particular: Contraste de homocedasticidad En la práctica un contraste de gran interés es el de la homocedasticidad o igualdad de varianzas. Decimos

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

EJERCICIOS SOBRE CONTRASTE DE HIPÓTESIS

EJERCICIOS SOBRE CONTRASTE DE HIPÓTESIS EJERCICIOS SOBRE CONTRASTE DE HIPÓTESIS 1. Qúe propiedad o propiedades caracterizan a una distribución normal tipificada frente a una distribución normal cualquiera? a. El área bajo su función de densidad

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

Tema 13 : Intervalos de probabilidad y confianza. Hipótesis y decisiones estadísticas.

Tema 13 : Intervalos de probabilidad y confianza. Hipótesis y decisiones estadísticas. Tema 13 : Intervalos de probabilidad y confianza. Hipótesis y decisiones estadísticas. ---Intervalo de probabilidad (IP) Permite predecir el comportamiento de las muestras. Si de una población se sacan

Más detalles

LECCIÓN PÚBLICA. Tema 5 Algunas Pruebas de Hipótesis. Profa. María Fátima Dos Santos

LECCIÓN PÚBLICA. Tema 5 Algunas Pruebas de Hipótesis. Profa. María Fátima Dos Santos LECCIÓN PÚBLICA Tema 5 Algunas Pruebas Profa. María Fátima Dos Santos 1 TEMARIO Fundamentos de estadística inferencial Método hipotético deductivo (Juego de hipótesis) Elementos en el contraste de hipótesis

Más detalles

Problema 1.- Tengamos las puntuaciones de X, las predichas y las residuales:

Problema 1.- Tengamos las puntuaciones de X, las predichas y las residuales: DISEÑO Y ANÁLISIS DE DATOS II. ENEO 6. Problema.- Tengamos las puntuaciones de X, las predichas y las residuales:.- Calcular la ecuación de regresión.- Correlación entre X e Y.- Por cada punto que aumenta

Más detalles

CONTRASTE SOBRE UN COEFICIENTE DE LA REGRESIÓN

CONTRASTE SOBRE UN COEFICIENTE DE LA REGRESIÓN Modelo: Y =! 1 +! 2 X + u Hipótesis nula: Hipótesis alternativa H 1 :!!! 2 2 Ejemplo de modelo: p =! 1 +! 2 w + u Hipótesis nula: Hipótesis alternativa: H :!! 1 2 1. Como ilustración, consideremos un modelo

Más detalles

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

paramétrica comparar dos grupos de puntuaciones

paramétrica comparar dos grupos de puntuaciones t de Student Es una prueba paramétrica de comparación de dos muestras independientes, debe cumplir las siguientes características: Asignación aleatoria de los grupos Homocedasticidad (homogeneidad de las

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis

Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis Unidad 15 Estadística inferencial. Estimación por intervalos. Pruebas de hipótesis PÁGINA 353 SOLUCIONES 1. El peso de azúcar por confitura se distribuye según la normal N (465;30). Veamos el porcentaje

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN

BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN BLOQUE 3 TEMA 11 ESTIMACIÓN DE PARÁMETROS. ERRORES DE ESTIMACIÓN Aproximación intutitiva a la inferencia estadística La Estadística es la ciencia que se ocupa de la ordenación y análisis de datos procedentes

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

ESTADÍSTICA APLICADA. Tema 3: Contrastes de hipótesis

ESTADÍSTICA APLICADA. Tema 3: Contrastes de hipótesis ESTADÍSTICA APLICADA Grado en Nutrición Humana y Dietética Tema 3: Contrastes de hipótesis Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis, tipos de error, nivel de significación,

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PÁCTICA 8 Problema.- En una determinada investigación aplicada a una muestra de sujetos se estudia el efecto de las variables Ejercicio (horas al día), Edad

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

CONTRASTES DE HIPÓTESIS

CONTRASTES DE HIPÓTESIS Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS M.Carmen Carollo Contrastes de hipótesis 1 Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS A partir de una o varias muestras nos proponemos

Más detalles

COMPROBACIÓN DE HIPÓTESIS

COMPROBACIÓN DE HIPÓTESIS COMPROBACIÓN DE HIPÓTESIS TAMBIÉN LLAMADO PRUEBA DE HIPÓTESIS MIC-FCA-UCE DR. DAVID ECHE, PH.D. 1 PRUEBAS ESTADISTICAS Ha Ho MIC-FCA-UCE DR. DAVID ECHE, PH.D. 2 MIC-FCA-UCE DR. DAVID ECHE, PH.D. 3 VALIDEZ

Más detalles

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta Test Compara la distribución de una variable continua normal en mas de dos poblaciones (niveles o categorías) H 0 : No existen diferencias entre los k niveles H : La hipótesis nula no es cierta Parte de

Más detalles

Grupo: Fecha: Nombre y Apellidos. -1. Formular la hipótesis nula y la hipótesis alternativa

Grupo: Fecha: Nombre y Apellidos. -1. Formular la hipótesis nula y la hipótesis alternativa 1 Grupo: Fecha: Nombre y Apellidos. -1. Formular la hipótesis nula y la hipótesis alternativa -2. Decidir el nivel de significación estadística a priori -3. Decidir qué prueba estadística es la más recomendable

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery)

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery) Ejemplo Diseño Completamente aleatorizado (Pág. 47 Montgomery) ) Representación gráfica de los datos mediante diagramas de caja Resumen del procesamiento de los casos Tension del papel (psi) Casos Válidos

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS

Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS Red ibérica de evaluación de eficacia y efectos secundarios de tratamientos para el control de plagas en el olivar (RIESPO) 2ª Reunión, Madrid 10-11/06/2010 Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS ESTADÍSTICA

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

ANÁLISIS DE EXPERIMENTOS

ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

CORRELACION Y REGRESION

CORRELACION Y REGRESION CORRELACION Y REGRESION En el siguiente apartado se presenta como calcular diferentes índices de correlación, así como la forma de modelar relaciones lineales mediante los procedimientos de regresión simple

Más detalles

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS Objetivos Plantear y resolver problemas mediante la técnica de contraste de hipótesis. Asimilar los conceptos relativos a contrastes de hipótesis, tales

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

PRACTICAS DE TAMAÑO DE EFECTO Y POTENCIA

PRACTICAS DE TAMAÑO DE EFECTO Y POTENCIA PRACTICAS DE TAMAÑO DE EFECTO Y POTENCIA 1.- Introducción... 2 2.- Comparación de una media observada y otra teórica... 2 3.- Comparación de dos medias observadas en grupos independientes... 5 4. - Comparación

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Supuestos y comparaciones múltiples

Supuestos y comparaciones múltiples Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

CONTRASTES NO PARAMÉTRICOS

CONTRASTES NO PARAMÉTRICOS CONTRASTES NO PARAMÉTRICOS Contenidos Encuestas 75 Comprobación de supuestos 79 Pruebas no Paramétricas en el SPSS 80 Contrastes para 2 muestras independientes 81 Contrastes para varias muestras independientes

Más detalles

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR En el análisis de la varianza con un factor (ANOVA I) se supone que hay variación debida a los tratamientos. Se aplica un tratamiento distinto a cada

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales Técnicas de Inferencia Estadística II Tema 2. Contrastes de hipótesis en poblaciones normales M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 2. Contrastes

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Análisis de la varianza (ANOVA)

Análisis de la varianza (ANOVA) Análisis de la varianza (ANOVA) Mª Isabel Aguilar, Eugenia Cruces y Bárbara Díaz UNIVERSIDAD DE MÁLAGA Departamento de Economía Aplicada (Estadística y Econometría) Parcialmente financiado a través del

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

PRÁCTICA 8 INFORME ESTADÍSTICO DE LA ENCUESTA DE SATISFACCIÓN Descripción de los estudiantes en la muestra de encuestas recogidas

PRÁCTICA 8 INFORME ESTADÍSTICO DE LA ENCUESTA DE SATISFACCIÓN Descripción de los estudiantes en la muestra de encuestas recogidas PRÁCTICA 8 INFORME ESTADÍSTICO DE LA ENCUESTA DE SATISFACCIÓN 1. Estadística descriptiva 1.1. Descripción de los estudiantes en la muestra de encuestas recogidas sexo Frecuencia Válidos Hombre 5 13,5 13,5

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 8: Introducción a los contrastes de hipótesis Tema 6: Contrastes de hipótesis 1 Objetivos del tema Introducir el concepto de contraste de hipótesis Diferenciar entre hipótesis

Más detalles

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid 6. Inferencia con muestras grandes 1 Tema 6: Inferencia con muestras grandes 1. Intervalos de confianza para μ con muestras grandes 2. Determinación del tamaño muestral 3. Introducción al contraste de

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Tema 2 Análisis de la varianza multifactorial

Tema 2 Análisis de la varianza multifactorial Tema 2 Análisis de la varianza multifactorial Tratamos de explicar el comportamiento de una variable aleatoria (variable respuesta) debido a la influencia de varios factores (variables explicativas) Definición

Más detalles

BIOSESTADÍSTICA AMIGABLE

BIOSESTADÍSTICA AMIGABLE BIOSESTADÍSTICA AMIGABLE EJEMPLO: Ficha solicitud Colección Reserva UNIVERSIDAD AUSTRAL DE CHILE SISTEMA DE BIBLIOTECAS Clasificación: 574.015195 MAR 2001 Vol. y/o Copia: Apellido Autor: Título: C. 1 (SEGÚN

Más detalles

9.- Análisis estadísticos con R Commander

9.- Análisis estadísticos con R Commander Tipos de datos - Cuantitativos: se expresan numéricamente. - Discretos: Toman valores numéricos aislados - Continuos: Toman cualquier valor dentro de unos límites dados - Categóricos o Cualitativos: No

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5)

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5) Análisis Estadístico de Datos Climáticos Pruebas de Hipótesis (Wilks, cap. 5) 2013 PRUEBAS DE HIPÓTESIS (o pruebas de significación) Objetivo: A partir del análisis de una muestra de datos, decidir si

Más detalles

EJERCICIOS DE PRUEBA DE HIPOTESIS

EJERCICIOS DE PRUEBA DE HIPOTESIS EJERCICIOS DE PRUEBA DE HIPOTESIS Protocolo 1. Identifique la aseveración original que se probará y exprésela en forma simbólica 1. 2. Dar la forma simbólica que debe ser verdad si la aseveración original

Más detalles

Departamento de Estadística y Econometría. UMA. EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 4

Departamento de Estadística y Econometría. UMA. EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 4 Departamento de Estadística y Econometría. UMA. EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 4 1) Una máquina de empaquetado automático deposita en cada paquete una cierta cantidad

Más detalles

Tema 7. Contrastes no paramétricos en una población

Tema 7. Contrastes no paramétricos en una población Tema 7. Contrastes no paramétricos en una población Resumen del tema 7.1. Introducción a la Estadística Inferencial. Estimación de parámetros Como ya sabemos, la Estadística estudia los métodos científicos

Más detalles

F X > F Y F X < F Y F X 6= F Y

F X > F Y F X < F Y F X 6= F Y Alternativas No paramétricas En el caso de comparación de medias, como se comentó, es fundamental que se cumplan los supuestos de normalidad y varianzas iguales pero, qué hay que hacer si alguno de ellos

Más detalles

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS 3datos 2011 Variables CUANTITATIVAS Números con unidad de medida (con un instrumento, o procedimiento, de medición formal) Ej.: Tasa cardiaca;

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS

INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS INFERENCIA ESTADÍSTICA: CONTRASTES DE HIPÓTESIS Autor: Clara Laguna 6.1 INTRODUCCIÓN En el tema anterior estudiamos cómo a partir de una muestra podemos obtener una estimación puntual o bien establecer

Más detalles

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos)

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) PROBLEMA 1 Se quiere comparar la cantidad de energía necesaria para realizar 3 ejercicios o actividades: andar, correr y montar en bici.

Más detalles

TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS

TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS LECTURA OBLIGATORIA Capítulo 2: Preparación del Archivo de datos. En Rial, A. y Varela, J. (2008). Estadística Práctica para la Investigación en Ciencias de

Más detalles