Unidad II. Variabilidad y Herencia. Genética Mendeliana.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad II. Variabilidad y Herencia. Genética Mendeliana."

Transcripción

1 CURSO: BIOLOGÍA MENCIÓN MATERIAL BM Nº 14 INTRODUCCIÓN Unidad II. Variabilidad y Herencia Genética Mendeliana. La genética es considerada como una disciplina relativamente nueva en el campo de la Biología. Si se quisiera establecer una edad para esta ciencia tan importante en el estudio de los seres vivos, ella no alcanzaría todavía al siglo desde que las ciencias biológicas comprendieron que tras ella se encerraba un mundo inimaginable de perspectivas para conocer y dominar la esencia de la vida. Nadie niega hoy que, sin menospreciar los esfuerzos que le precedieron, la genética nace con Gregor Mendel ( ), quien descubrió lo que hoy día conocemos como las Leyes de la Herencia. Sus trabajos, que describiremos más adelante como la base de la llamada Genética Clásica, no fueron valorados por el mundo científico de la época, sino hasta los inicios del siglo pasado. 1. MÉTODOS DE MENDEL. Muchos científicos antes de Mendel habían tratado de elucidar cómo se heredan las características biológicas. Habían cruzado plantas o animales y observado detenidamente las semejanzas entre la progenie y sus progenitores. Los resultados fueron confusos, la progenie era semejante a un progenitor en algunos rasgos, al otro progenitor en otros y claramente no se asemejaba a ninguno en otros rasgos. No fue posible descubrir regularidades precisas. Figura 1. Los siete caracteres estudiados por Mendel en el guisante Pisum sativum. Mendel tuvo éxito en donde otros investigadores habían fracasado. Estableció la necesidad de prestar atención a un sólo rasgo cada vez, por ejemplo la forma de la semilla, en lugar de considerar todas las características de la planta. Con este propósito seleccionó siete caracteres que se diferenciaban de forma muy clara (Figura 1), y se aseguró que estas fueran variedades puras. Otro hecho importante del trabajo de Mendel fue su enfoque cuantitativo, contó el número de las progenies de cada clase con el propósito de descubrir si los portadores de los rasgos en estudio aparecían siempre en la misma proporción. El método mendeliano de análisis genético todavía se utiliza actualmente. Revisemos ahora los experimentos de Mendel, las leyes básicas de la herencia derivada de los experimentos, la teoría que explica estas leyes y los resultados experimentales.

2 2. LEYES DE MENDEL Conviene aclarar que Mendel, por ser pionero, carecía de los conocimientos actuales sobre la presencia de pares de alelos en los seres vivos y sobre el mecanismo de transmisión de los cromosomas, por lo que esta exposición está basada en la interpretación posterior de los trabajos de Mendel Primera ley de Mendel o de la segregación (Monohibridismo). Enunciado de la ley: Los factores (genes alelos) para cada carácter segregan o se separan (anafase I) en iguales proporciones en el momento de la formación de gametos y terminan por lo tanto en distinta descendencia. Dos corolarios importantísimos de derivan de esta ley: 1) La herencia es particulada, vale decir, los genes no se mezclan al pasar de una generación a la que sigue. 2) Los gametos son siempre puros, no existen gametos híbridos. Figura 1. Los siete caracteres estudiados por Mendel en el guisante Pisum sativum. El experimento de Mendel. Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían semillas amarillas y con una variedad que producía semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre una llamada generación filial (F 1 ) compuesta en un 100% de plantas con semillas amarillas. Para llevar a cabo la segunda parte de su experimento, Mendel tomó plantas procedentes de las semillas de la primera generación (F 1 ) del experimento anterior (Figura 2) y las polinizó entre sí. Del cruce obtuvo plantas productoras de semillas amarillas y verdes en la proporción que se indica en la figura 3. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación (F 2 ). Figura 2. El experimento de Mendel que lo llevó a enunciar su primera ley. 2

3 Interpretación del experimento (Figura 3). El polen de la planta progenitora aporta a la descendencia un alelo para el color de la semilla, y el óvulo de la otra planta progenitora aporta el otro alelo para el color de la semilla; de los dos alelos, solamente se manifiesta aquel que es dominante (A), mientras que el recesivo (a) permanece oculto. Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial (F 1 ), no se han mezclado ni han desaparecido, simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo (genotipo Aa) formaba los gametos, se separaban sus alelos mediante el proceso de meiosis, de tal forma que en cada gameto sólo está presente uno de los alelos y así se pueden explicar los resultados obtenidos. Generación F 1 x Generación P: Aa Aa AA (amarilla) aa (verde) A a Generación F 1 : A AA Aa F 2 Aa (amarilla) Figura 3. Cruzamiento monohidrido y representación en un tablero de Punnett. a Aa aa FENOTIPO: 3:1 GENOTIPO: 1:2:1 Observación: Cuando repasamos cuidadosamente el experimento de Mendel podemos fijar nuestra atención en dos aspectos distintos presentes en los descendientes de cada generación. Fácilmente podemos determinar la característica externa (Fenotipo) que presenta cada individuo en cada generación pero, podríamos decir lo mismo a la hora de determinar sus características genéticas (Genotipo)? En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentan un fenotipo amarillo. 3

4 El cruzamiento de prueba o retrocruza sirve para diferenciar el individuo homocigoto del heterocigótico y consiste en cruzar el fenotipo dominante (proveniente, por ejemplo, de un individuo de la F 1 ) con la variedad homocigota recesiva (aa): Si es homocigótico, toda la descendencia será igual (Figura 4). Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50% (Figura 5). Fenotipo: 100% Amarillo Genotipo: 100% Hibrido Fenotipo: 50% Amarillo 50% verde Genotipo: 50% Aa 50% aa 2.2. Ejercicios (Herencia de un carácter). 1. Dos hembras negras de ratón se cruzan con un macho pardo. En varias camadas la hembra 1 dio nacimiento a 9 ratones negros y 7 pardos. La hembra 2 dio nacimiento a 57 ratones negros. a) Qué deducciones pueden hacerse acerca de la herencia del pelo negro y pardo en los ratones? b) Determine para cada caso el genotipo de los progenitores. 4

5 2. En el ganado vacuno, la falta de cuernos es dominante sobre la presencia de cuernos. Un toro sin cuernos, se cruza con 3 vacas: con la vaca A que tiene cuernos, se obtiene un ternero sin cuernos. con la vaca B, también con cuernos, se obtiene un ternero con cuernos. con la vaca C que no tiene cuernos, se obtiene un ternero con cuernos. a) Cuáles son los genotipos de los 4 progenitores? b) Qué otro tipo de descendencia se puede producir en estos cruzamientos? 3. Una mujer presenta una anormalidad en los párpados denominada ptosis que le impide abrir completamente los ojos, determinada por un gen dominante P. El padre de esta mujer también presentó ptosis, pero la madre tenía los párpados normales. Cuáles son los genotipos más probables del padre, la madre y la mujer? 5

6 Gregorio Mendel publicó los resultados de sus estudios genéticos con la arveja en 1866 y de este modo estableció los fundamentos de la genética moderna. En su trabajo, Mendel propuso algunos principios genéticos básicos. Uno de ellos se conoce como el Principio de Segregación. El encontró que de cualquier progenitor solo una forma alélica de un gen es transmitida a la descendencia a través de los gametos. Por ejemplo, una planta que tiene un factor (gen) para la semilla lisa y también uno para la semilla rugosa deberá transmitir a su descendencia sólo uno de los dos alelos a través de un gameto. Mendel no sabía nada de cromosomas o de la meiosis ya que esto no había sido aún descubierto. Actualmente se sabe que la base física de este principio está en la primera anafase meiótica donde los cromosomas homólogos se segregan o separan uno del otro. Si el gen para la semilla lisa esta en un cromosoma y su forma alélica para la semilla rugosa está en su homólogo, resulta claro que los dos alelos no pueden encontrarse normalmente en el mismo gameto. Anafase Meiótica 6

7 2.3. Segunda ley de Mendel o de la distribución independiente (Dihibridismo). Enunciado de la ley: Los factores determinantes de los distintos caracteres se combinan independientemente unos con otros segregando al azar en los gametos resultantes. Esta ley no es tan universal como la ley de la segregación, porque se aplica a los genes que se ubican en cromosomas distintos (no homólogos), pero no necesariamente a los que se ubican en el mismo cromosoma (ligados). Sin embargo es correcto decir que los cromosomas se distribuyen en forma independiente durante la formación de los gametos (permutación cromosómica), de la misma manera que los hacen dos genes cualquiera en pares de cromosomas no homólogos. El experimento de Mendel: cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa (Homocigóticas para los dos caracteres) (Figura 6). Figura 6. Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados, y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa. Las plantas obtenidas y que constituyen la F 1 son dihíbridas (AaBb). Las plantas de la F 1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas (Figura 7). Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F 2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones no encontradas ni en la generación parental (P), ni en la filial primera (F 1 ). Los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley (Figura 8). F 1 : Aa Bb Figura 7. Gametos que formará el individuo dihíbrido (AaBb) de la F 1. Gametos posibles: A a B b AB Ab ab ab Interpretación del experimento: Los resultados de los experimentos de la segunda ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen generación tras generación. Para esta interpretación fue providencial la elección de los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos cromosomas. 7

8 Figura 8. Proporciones fenotípicas resultantes de una cruza entre dos individuos híbridos (AaBb). 9/16 3/16 3/16 1/16 A_B_ A_bb aab_ aabb Cruzamiento de prueba Al hacer un cruzamiento de prueba a un dihíbrido (de la F 1 ) se obtiene una descendencia representada por 4 fenotipos distintos que siguen una proporción fenotípica de 25% cada uno. 1 : 1 : 1 : 1 Figura 9.Cruce de prueba 8

9 2.4. Ejercicios (Herencia de dos caracteres). 1. En los cuyes el pelaje negro y áspero, es dominante, en relación al pelaje blanco y suave. Un macho de pelaje negro y suave, cuyo padre tuvo pelaje blanco y áspero, se cruza con una hembra de pelaje blanco y áspero, cuya madre era de pelaje negro y suave. a) Cuál es el genotipo de los ejemplares señalados? b) Qué proporción fenotípica presentará la descendencia F 1? 2. Se cruza un cuy, albino y de pelo crespo, con uno negro de pelo liso y en F 1 todos los descendientes resultan de pelo negro y crespo. a) Qué fenotipo y genotipo tienen los descendientes de un ejemplar negro heterocigoto y de pelo liso, con uno albino de pelo crespo heterocigoto? b) Qué proporción fenotípica se obtendrá al cruzar dos dihíbridos entre sí? 9

10 3. En los perros Cocker Spaniels, el color negro del pelo depende del gen N, y el café rojizo de su alelo recesivo n. El brillo del pelo depende del gen S y su opacidad del gen s. Se cruzan dos ejemplares de pelo brillante, uno café rojizo y el otro negro y se obtienen 6 perros de pelo negro y brillante y 2 de pelo negro y opaco. Cuál es el genotipo de los perros progenitores que se cruzaron? 4. La presencia de pecas y el pelo crespo son características dominantes en el hombre. Un matrimonio en el que ambos tiene pecas, uno de pelo liso y el otro de pelo crespo, tienen dos hijos; uno de pelo liso y con pecas y el otro también de pelo liso pero sin pecas. Cual es el genotipo de los progenitores? 10

11 El Principio de la distribución independiente de Mendel, establece que la segregación de un par de factores ocurre independientemente de la de cualquier otro par. Por ejemplo, en un par de cromosomas homólogos están los alelos para el color de la semilla: amarilla y verde y en el otro par de homólogos están los alelos para la forma de la misma: lisa y rugosa. A: amarilla a: verde B: lisa b: rugosa La segregación de los alelos para el color de la semilla ocurre independientemente de la segregación de los alelos para la forma, porque cada par de homólogos se comporta como una unidad independiente durante la meiosis. Además debido a que la orientación de los bivalentes en la primera placa metafásica es completamente al azar, cuatro combinaciones de factores pueden encontrarse en los productos meióticos: amarilla-lisa amarilla-rugosa verde-lisa verde-rugosa En la actualidad se sabe que esto es cierto solo para los loci localizados en cromosomas homólogos distintos y no para los genes ligados; que se estudiarán a continuación. Genes ligados 3. GENES LIGADOS 11

12 Cuando dos o mas genes se encuentran en el mismo cromosoma, se dice que están ligados, pueden estarlo en los autosomas o en los sexuales. Los genes que están en el mismo cromosoma tienden a permanecer juntos durante la formación de gametos, por lo tanto, los resultados de los cruzamientos de prueba de individuos dihíbridos producen resultados diferentes. Los genes que están en cromosomas homólogos diferentes se distribuyen de manera independiente, por lo que en las cruzas de prueba dan una proporción de 1:1:1:1 1 : 1 : 1 : 1 Figura 10. Cruce de prueba cuando los genes están en diferentes pares de homólogos. Los genes ligados no se distribuyen de manera independiente, sino que tienden a permanecer juntos en las mismas combinaciones en las que se encontraban en los progenitores. 1 : 1 Figura 11. Cruce de prueba cuando los genes están ligados. 12

13 3.1. Recombinación entre genes ligados En la progenie de un cruzamiento dihíbrido, las desviaciones importantes de una proporción 1:1:1:1 deben considerarse como evidencia de ligamientos sin embargo, los genes ligados no siempre permanecen juntos, debido a que las cromátidas no hermanas (homólogas) pueden intercambiar segmentos de longitud variables durante la profase meiótica. No olvidar que los cromosomas homólogos se aparean e intercambian segmentos durante el crossing-over, por lo que producen gametos con combinaciones únicas. Figura 12. (a), un par de cromosomas homólogos con genes ligados están iniciando un entrecruzamiento. (b), el par de cromosomas homólogos ha terminado el entrecruzamiento y los genes ligados se han separado. (c), se presentan los cromosomas resultantes una vez terminada la segunda división meiótica, los cromosomas parentales se encuentran a los extremos y los recombinantes al centro. Los productos meióticos AB y ab tienen los genes ligados en la misma forma que en los cromosomas parentales. Los otros dos productos meióticos Ab y ab resultantes del entrecruzamiento han recombinado las relaciones de ligamiento originales de los progenitores en nuevas formas llamadas recombinantes. La frecuencia con que se produce un entrecruzamiento (quiasma) entre dos loci genéticos tiene una probabilidad característica, mientras mas alejados se encuentren dos genes en un cromosoma, mayor es la oportunidad para que se produzca un entrecruzamiento entre ellos, en cambio cuando los genes están mas cercanos hay una probabilidad menor de entrecruzamiento. Estas probabilidades son útiles para predecir las proporciones de gametos parentales que se esperan que se formen a partir de un genotipo dado. El porcentaje de gametos recombinantes formados a partir de un genotipo dado, es un reflejo directo de la frecuencia con la cual se forman entrecruzamientos entre los genes en cuestión. De todas maneras aunque exista crossing-over, al realizar un cruce de prueba de un dihíbrido con genes ligados (cruzamiento entre un dihíbrido y un padre recesivo), la proporción fenotípica de la descendencia no será 1:1:1:1, sino que será siempre mayor la proporción de descendencia con fenotipos parentales, como por ejemplo: Amarillas lisas 40% Amarillas rugosas 10% Verdes lisas 10% Verdes rugosas 40% 13

14 GLOSARIO: Alelos: cada una de las alternativas que puede tener un gen o formas alternas de un gen, que ocupan el mismo locus (lugar) en cada cromosoma homólogo. Alelos dominantes: aquellos que aparecen en el fenotipo de los individuos heterocigotos o híbridos para un determinado carácter, además de el homocigoto. Se representa con letra mayúscula Alelos recesivos: los que quedan enmascarados en el fenotipo de un individuo heterocigoto y sólo aparecen en el homocigoto, siendo homocigótico para los genes recesivos. Se representa con letra minúscula. Autosoma: Cualquier cromosoma que no sea un cromosoma sexual. Los seres humanos tienen en sus células 22 pares de autosomas y un par de cromosomas sexuales. Cromosoma: La estructura que lleva los genes. Los cromosomas eucarióticos son filamentos o bastones de cromatina que aparecen contraídos durante la mitosis y la meiosis y que en otros momentos están contenidos en un núcleo. Los cromosomas procarióticos consisten en un círculo de DNA con el que se asocian varias proteínas. Los cromosomas virales son moléculas lineales o circulares de DNA o RNA. Cromosomas homólogos: Una de las dos copias de un determinado cromosoma de una célula diploide, derivando cada copia de cada uno de los padres. Genes: Unidades hereditarias que conforman los cromosomas. Estos segmentos específicos de DNA controlan las estructuras y funciones celulares, también se define como unidad funcional de la herencia. Secuencia de bases de DNA que usualmente codifican para una secuencia polipeptídica de aminoácidos Genotipo: constitución genética o conjunto de genes que posee un individuo. Heterocromosoma: corresponden a los cromosomas sexuales (diferentes) X e Y, los cuales determinan el sexo del individuo. Fenotipo: es el resultado de dos fuerzas; los genes heredados y la acción del medio ambiente que determina la posibilidad que el gen se exprese o no. Fenotipo = Genotipo+ Ambiente. Homocigoto: significa que posee dos copias idénticas de ese gen para un rasgo dado en los dos cromosomas homólogos, puede ser dominante AA o recesivo aa. Heterocigoto o Híbrido: es cuando un individuo tiene un alelo dominante y un alelo recesivo en los cromosomas homólogos (Aa) Segregación: separación de cromosomas homólogos durante la anafase meiótica. 14

15 PREGUNTAS 1. Según la primera ley de Mendel, los factores que determinan los rasgos genéticos segregan durante el proceso conocido hoy como A) mitosis. B) meiosis. C) fecundación. D) crossing-over. E) ligamiento factorial. 2. El fenotipo de un individuo está determinado por I) el genotipo. II) el medio en que se desarrolla. III) las sucesivas mitosis en su desarrollo. A) Sólo I B) Sólo II C) Sólo I y II D) Sólo I y III E) I, II y III 3. En un cruzamiento de herencia con dominancia, al cruzar un individuo dihomocigótico dominante con otro dihíbrido, es posible esperar una descendencia I) 25% dihomocigóticos. II) 25% diheterocigóticos. III) 100% con características dominantes. A) Sólo I B) Sólo II C) Sólo III D) Sólo II y III E) I, II y III 4. La constitución genética de dos individuos es la siguiente Individuo 1 AABbCC Individuo 2 AABBCC A partir de esta información, es correcto afirmar que ambos: I) poseen el mismo genotipo II) expresan el mismo fenotipo III) forman los mismos tipos de gametos A) Solo I B) Solo II C) Solo III D) Solo I y II E) Solo I y III 15

16 5. Todos los descendientes del cruzamiento de cobayos negros de línea pura con cobayos blancos, también de línea pura, resultaron de pelaje negro. Si estos cobayos de la primera generación se cruzan entre sí y producen un total de 60 descendientes, cuál de las siguientes proporciones fenotípicas es más probable que ocurra? A) 60 de pelaje blanco: ninguno negro. B) 60 de pelaje negro: ninguno blanco. C) 45 de pelaje negro: 15 de pelaje blanco. D) 30 de pelaje negro: 30 de pelaje blanco. E) 15 de pelaje negro: 45 de pelaje blanco. 6. En el organismo humano, el gen "D" codifica la enzima que cataliza una reacción destinada a degradar un compuesto catabólico, cuya acumulación produce deficiencia mental; el alelo correspondiente "d", codifica una sustancia parecida a esa enzima, pero es incapaz de reemplazarla en su función específica. Basándose en este conocimiento, cuál (es) de las siguientes predicciones es (son) correcta (s)? I) La condición homocigótica recesiva producirá individuos con deficiencia mental. II) Una persona heterocigota para los genes mencionados excretará cantidades excesivas del catabolito dañino. III) Si el padre y la madre son heterocigotos para este par de alelos, la relación de hijos normales e hijos con deficiencia mental será 3:1 A) Sólo I B) Sólo II C) Sólo I y II D) Sólo I y III E) Sólo II y III 7. Los genes alelos, se ubican en I) locus equivalentes. II) el mismo cromosoma. III) cromosomas homólogos. A) Sólo II B) Sólo III C) Sólo I y II D) Sólo I y III E) Sólo II y III 8. Cuántos tipos de gametos distintos forma un híbrido de tipo GGAAbbCcDDEeRrssTtUU? A) 16 B) 32 C) 64 D) 128 E)

17 9. En los conejos, el gen para el color negro es dominante sobre el color castaño. Se realizó un cruzamiento de un conejo macho con tres hembras de la misma especie, designadas con las letras A, B y C. Siendo la hembra A negra, toda la descendencia fue negra; con la hembra B castaña, cuatro crías fueron de color castaño y tres de color negro. Con la hembra C negra, se obtuvieron seis crías de color negro y dos de color castaño. De esta descendencia es posible deducir que el posible genotipo de(l) A) la madre A es heterocigota. B) padre es homocigoto recesivo. C) padre es homocigoto dominante. D) la madre B es homocigota recesiva. E) la madre C es homocigota dominante. 10. El cruzamiento de homocigotos recesivos con heterocigotos, en un cruce de monohíbridos, siguiendo las leyes de transmisión de la herencia de Mendel, dará como resultado I) 50% de fenotipos dominantes. II) 50% de homocigotos recesivos. III) 50% de genotipos heterocigotos. A) Sólo I B) Sólo II C) Solo III D) Sólo I y II E) I, II y III DO-BM14 Puedes complementar los contenidos de esta guía visitando nuestra Web. 17

G E N É T I C A I BIOLOGIA MENCIÓN

G E N É T I C A I BIOLOGIA MENCIÓN G E N É T I C A I BIOLOGIA MENCIÓN BM-34 INTRODUCCIÓN La genética es considerada como una disciplina relativamente nueva en el campo de la Biología. Si se quisiera establecer una edad para esta ciencia

Más detalles

Unidad II. Variabilidad y Herencia. Genética Mendeliana.

Unidad II. Variabilidad y Herencia. Genética Mendeliana. CURSO: BIOLOGÍA COMÚN MATERIAL BC-Nº 13 INTRODUCCIÓN Unidad II. Variabilidad y Herencia Genética Mendeliana. La genética es considerada como una disciplina relativamente nueva en el campo de la Biología.

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Departamento de Ciencias y Tecnología Profesor: RCD- CCG Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Guía de repaso Biología III medios: Genética Mendeliana Nombre

Más detalles

BIOLOGIA COMÚN BC-21. Generación Parental. Flores fucsias. Flores blancas. Generación F 1. Todas las plantas fucsias.

BIOLOGIA COMÚN BC-21. Generación Parental. Flores fucsias. Flores blancas. Generación F 1. Todas las plantas fucsias. BIOLOGIA COMÚN BC-21 U N I D A D III : G E N É T I C A D I V GI SEI ÓN N É TC IE CL UA L AI R II Generación Parental Flores fucsias Flores blancas Generación F 1 Todas las plantas fucsias Generación F

Más detalles

FUNDACIÓNEDUCACIONAL COLEGIO DE LOS SSCC MANQUEHUE

FUNDACIÓNEDUCACIONAL COLEGIO DE LOS SSCC MANQUEHUE FUNDACIÓNEDUCACIONAL COLEGIO DE LOS SSCC MANQUEHUE Genética Clásica-Leyes de Mendel En la segunda mitad del siglo XIX un monje austríaco llamado Gregorio Mendel (1822-1884)- concibió la idea de que las

Más detalles

Pregunta PSU, Demre Modelo de admisión 2018

Pregunta PSU, Demre Modelo de admisión 2018 Pregunta PSU, Demre Modelo de admisión 2018 La ley de la segregación de los caracteres de Mendel es una ley porque A) debe ser sometida a prueba cada vez que se hagan cruzamientos entre individuos que

Más detalles

Unidad 2: Genética y herencia

Unidad 2: Genética y herencia Unidad 2: Genética y herencia HERENCIA GENETICA VARIABILIDAD GENETICA CARACTERES ADQUIRIDOS CARACTERES HERADADOS EL NACIMIENTO DE LA GENÉTICA Los siete caracteres de Pisum sativum estudiados por Mendel

Más detalles

Herencia y transmisión de caracteres

Herencia y transmisión de caracteres Herencia y transmisión de caracteres Herencia, trasmisión de caracteres, reproducción y leyes de Mendel La herencia y la trasmisión de caracteres es una característica bien marcada entre los seres vivos.

Más detalles

WVNM

WVNM GENETICA MENDELIANA http://www.youtube.com/watch?v=2uxbyb- WVNM GREGORIO MENDEL Se considera el Padre de la genética. Las bases de la genética moderna las sentó un monje austríaco, Gregor Mendel (822-884),

Más detalles

MEDICINA Primer Cuatrimestre

MEDICINA Primer Cuatrimestre U.N.P.S.J. B. BIOLOGÍA MEDICINA Primer Cuatrimestre 2017 REPASAMOS 1. En el siguiente esquema aparecen desordenadas las fases de la meiosis. Indica qué imagen corresponde a: a. Anafase I. b. Anafase II.

Más detalles

Herencia de Caracteres

Herencia de Caracteres INSTITUCIÓN EDUCATIVA FEDERICO SIERRA ARANGO Área: Ciencias Naturales y Educación ambiental Docente: Grado: John Jairo Pérez M Guía informativa Genética Mendeliana Fecha: Asignatura Biología INTRODUCCIÓN

Más detalles

Genética Básica RODOLFO RUIZ POSADA ZOOTECNISTA

Genética Básica RODOLFO RUIZ POSADA ZOOTECNISTA Genética Básica RODOLFO RUIZ POSADA ZOOTECNISTA FENOTIPO= GENOTIPO + AMBIENTE GENETICA Y AMBIENTE AMBIENTE Importancia de la mejora Productiva Producción Animal = herencia + ambiente = + COMPORTAMIENTO

Más detalles

7.1.-CONCEPTOS DE GENÉTICA

7.1.-CONCEPTOS DE GENÉTICA 7.1.-CONCEPTOS DE GENÉTICA 1. GENÉTICA: Ciencia que estudia los genes o la transmisión de los caracteres hereditarios. 2. GEN: Segmento de ADN o ARN (Virus) con información para un polipéptido o para un

Más detalles

PRINCIPIOS BÁSICOS DE LA HERENCIA

PRINCIPIOS BÁSICOS DE LA HERENCIA PRINCIPIOS BÁSICOS DE LA HERENCIA HERENCIA Transmisión de información genética de progenitor a descendientes CIENCIA GENÉTICA Estudia las similitudes y variaciones genéticas, entre progenitores y descendientes

Más detalles

LA GENETICA BASICA. Experimentos de Mendel Principios de segregación independiente y dominancia La probabilidad

LA GENETICA BASICA. Experimentos de Mendel Principios de segregación independiente y dominancia La probabilidad LA GENETICA BASICA Experimentos de Mendel Principios de segregación independiente y dominancia La probabilidad Qué es la genética? Es la rama de la biología que estudia la herencia Herencia: transmisión

Más detalles

Niveles de Organización de la Materia Genética Mendeliana

Niveles de Organización de la Materia Genética Mendeliana Niveles de Organización de la Materia Genética Mendeliana Cátedra de Biología Facultad de Ciencias Médicas UNR Los niveles de organización y el comienzo de la vida Los seres vivos: Están formados por una

Más detalles

TEORÍA CROMOSÓMICA DE LA HERENCIA

TEORÍA CROMOSÓMICA DE LA HERENCIA Curso: Titulo: Principios de Genética TEORÍA CROMOSÓMICA DE LA HERENCIA Unidad: 2 Módulo: Desarrollo Objetivos de Aprendizaje TEORÍA CROMOSÓMICA DE LA HERENCIA Como es el núcleo donde los cromosomas aparecen

Más detalles

1. CONCEPTOS FUNDAMENTALES

1. CONCEPTOS FUNDAMENTALES GENÉTICA MENDELIANA Genética mendeliana 1. Conceptos fundamentales 2. Leyes de Mendel 3. Casos Genéticos especiales 4. Teoría cromosómica 5. Pruebas para descubrir si un individuo con carácter dominante

Más detalles

Intensivo. Técnico Profesional BIOLOGÍA. Estrategias. Programa. Genética mendeliana. Pregunta PSU. Tip. Tip. Tip. Tip. Tip

Intensivo. Técnico Profesional BIOLOGÍA. Estrategias. Programa. Genética mendeliana. Pregunta PSU. Tip. Tip. Tip. Tip. Tip Programa Técnico Profesional Intensivo Cuaderno Estrategias y Ejercitación Genética mendeliana Estrategias? PSU Pregunta PSU BIOLOGÍA 1. Para un carácter con herencia mendeliana, si se cruza un macho homocigoto

Más detalles

1. CONCEPTOS FUNDAMENTALES

1. CONCEPTOS FUNDAMENTALES GENÉTICA MENDELIANA Genética mendeliana 1. Conceptos fundamentales 2. Leyes de Mendel 3. Casos Genéticos especiales 4. Teoría cromosómica de la herencia 5. Pruebas para descubrir si un individuo con carácter

Más detalles

La herencia de los caracteres

La herencia de los caracteres Genética La herencia de los caracteres Se denomina genética a la ciencia que se encarga de estudiar la herencia de los caracteres entre padres e hijos Las leyes que rigen ese traspaso de información entre

Más detalles

GENÉTICA I. Conceptos básicos Gen: conjunto de bases nitrogenadas, que codifican para unacaracterística.

GENÉTICA I. Conceptos básicos Gen: conjunto de bases nitrogenadas, que codifican para unacaracterística. GENÉTICA I Conceptos básicos Gen: conjunto de bases nitrogenadas, que codifican para unacaracterística. Alelos: posibilidades de expresión de un gen, que puede ser dominante al enmascarar a otro, o recesivo

Más detalles

Conceptos de Genética

Conceptos de Genética Conceptos de Genética a) Genética: Es la ciencia que estudia la herencia biológica, tanto sus mecanismos como las leyes que la rigen. b) Genética mendeliana o mendelismo: Es una parte de la genética que

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL. Genética mendeliana SGUICTC036TC31-A16V1

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL. Genética mendeliana SGUICTC036TC31-A16V1 SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Genética mendeliana SGUICTC036TC31-A16V1 SOLUCIONARIO GUÍA Solucionario Genética mendeliana Ítem Alternativa Habilidad 1. C Comprensión 2. B Reconocimiento 3. B Comprensión

Más detalles

Herencia Mendeliana I. LECTURA DE COMPRENSION

Herencia Mendeliana I. LECTURA DE COMPRENSION Herencia Mendeliana I. LECTURA DE COMPRENSION La presente lectura contiene solo los conceptos más importantes de la unidad de Herencia Mendeliana, los cuales se resaltan en un tipo de letra distinta al

Más detalles

LA HERENCIA BIOLÓGICA

LA HERENCIA BIOLÓGICA LA HERENCIA BIOLÓGICA LOS CROMOSOMAS Todas las células tienen el material genético en forma de ADN.(Acido desoxirribonucleico) El ADN es la molécula química donde se localiza la información de la célula.

Más detalles

Niveles de Organización de la Materia Genética Mendeliana

Niveles de Organización de la Materia Genética Mendeliana Niveles de Organización de la Materia Genética Mendeliana Cátedra de Biología Facultad de Ciencias Médicas UNR Los niveles de organización y el comienzo de la vida Características de los seres vivos: Están

Más detalles

LA GENÉTICA FORMAL O MENDELIANA

LA GENÉTICA FORMAL O MENDELIANA LA GENÉTICA FORMAL O MENDELIANA MATURITA DE BIOLOGÍA 1. INTRODUCCIÓN. 2. PRIMERA LEY DE MENDEL 3. SEGUNDA LEY DE MENDEL. 4. TERCERA LEY DE MENDEL. 5. GENÉTICA HUMANA. 6. ACTIVIDADES. 1. INTRODUCCIÓN. Hablar

Más detalles

Tema 3 HERENCIA DE LOS CARACTERES

Tema 3 HERENCIA DE LOS CARACTERES Tema 3 HERENCIA DE LOS CARACTERES GENÉTICA Ciencia que estudia la herencia y la variación de los seres vivos William Bateson, 1906 G. MENDEL Un poco de historia Nace en 1822 en Heinzendorf (R. Checa).

Más detalles

4. Genética Mendeliana

4. Genética Mendeliana 4. Genética Mendeliana 4. Genética mendeliana 4.1 Leyes de Mendel 4.2 Interacciones génicas 4.4 Método mendeliano 4.4 Genealogías 4.5 Cálculo de probabilidad 4.6 Método CHI Cuadrado Introducción La información

Más detalles

TEMA 3. GENÉTICA. Fenotipo = Genotipo + Influencia del Medio Ambiente

TEMA 3. GENÉTICA. Fenotipo = Genotipo + Influencia del Medio Ambiente TEMA 3. GENÉTICA 1. CONCEPTOS BÁSICOS DE GENÉTICA. Genética. Ciencia que estudia la herencia biológica, es decir, las leyes que gobiernan la transmisión de los caracteres de padres a hijos. Gen. Fragmento

Más detalles

Genética Mendeliana. Las leyes de la herencia

Genética Mendeliana. Las leyes de la herencia Genética Mendeliana. Las leyes de la herencia Gregor Mendel, 1860 Monasterio de Sto. Tomás, Rep. Checa Los Experimentos de Gregor Mendel (1865) Material experimental: Semillas de plantas de chícharo (Pisum

Más detalles

Genética I. 2ª Parte: Cruces dihíbridos y ligamiento de genes. Tema 6 de Biología NS Diploma BI Curso

Genética I. 2ª Parte: Cruces dihíbridos y ligamiento de genes. Tema 6 de Biología NS Diploma BI Curso Genética I 2ª Parte: Cruces dihíbridos y ligamiento de genes Tema 6 de Biología NS Diploma BI Curso 2012-2014 Antes de comenzar Pregunta guía Por qué no se cumple siempre la proporción 9:3:3:1 en un cruce

Más detalles

LOS EXPERIMENTOS DE MENDEL

LOS EXPERIMENTOS DE MENDEL LOS EXPERIMENTOS DE MENDEL Gregor J. Mendel nació en 1822 en Austria, en 1843 entró en la orden de los Agustinos donde interesado en la genética estudió los resultados de los cruzamientos entre dos variedades

Más detalles

Gen. Locus. El lugar donde se localiza el gen en el cromosoma.

Gen. Locus. El lugar donde se localiza el gen en el cromosoma. GENÉTICA MENDELIANA Griffiths A., Wessler S., Lewontin R., Gelbart W., Suzuki D., Miller J. (2005) Introduction to Genetic Analysis (8 th ed). W.H. Freeman and Company, New York. (también ediciones recientes)

Más detalles

Tercera ley de Mendel o ley de la independencia de los caracteres

Tercera ley de Mendel o ley de la independencia de los caracteres Tercera ley de Mendel o ley de la independencia de los caracteres En los dos primeros experimentos, Mendel se fijó sólo en un carácter. Posteriormente, repitió los experimentos pero fijándose en la herencia

Más detalles

Genética y Herencia. Experimentos de Gregor Mendel. Experimentos de Gregor Mendel cont. Experimentos de Gregor Mendel cont.

Genética y Herencia. Experimentos de Gregor Mendel. Experimentos de Gregor Mendel cont. Experimentos de Gregor Mendel cont. Genética y Herencia La herencia genética es la transmisión de las características de los padres a sus hijos. Este proceso mantiene generalmente unos patrones de funcionamiento que hacen posible el hacer

Más detalles

TEMA 5. MENDEL Y LOS GUISANTES

TEMA 5. MENDEL Y LOS GUISANTES TEMA 5. MENDEL Y LOS GUISANTES Gregor Mendel (1822-1884) fue un monje católico y naturalista, nacido en Heinzendorf, Austria (actualmente pertenece a la República Checa). Se le reconoce como el padre de

Más detalles

UNIDAD 5: LA REPRODUCCIÓN CELULAR. GENÉTICA TRADICIONAL

UNIDAD 5: LA REPRODUCCIÓN CELULAR. GENÉTICA TRADICIONAL UNIDAD 5: LA REPRODUCCIÓN CELULAR. GENÉTICA TRADICIONAL Los seres vivos se reproducen, es decir, hacen copias de sí mismos. A partir de una sola célula similar en todas las especies, se pueden formar organismos

Más detalles

Resumen de la clase anterior

Resumen de la clase anterior Resumen de la clase anterior Factores heredables Genética mendeliana Homocigoto Heterocigoto Genotipo Fenotipo Monohibridismo. Ley de la segregación Dihibridismo. Ley de la segregación independiente Los

Más detalles

Genética II: el ligamiento y la teoría cromosómica

Genética II: el ligamiento y la teoría cromosómica Genética II: el ligamiento y la teoría cromosómica (Continuación de la 2º Ley de Mendel) Cada individuo tiene dos copias de cada unidad de herencia (gen). Estas dos copias se separan durante la formación

Más detalles

LA OBRA DE MENDEL SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE

LA OBRA DE MENDEL SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE LA OBRA DE MENDEL SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE Mendel era un monje austríaco que empezó en 1857 a seleccionar material para ver cómo se transmitían los caracteres, y en 1865 publicó sus experiencias

Más detalles

UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE HUMANIDADES Y CIENCIAS SOCIALES

UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE HUMANIDADES Y CIENCIAS SOCIALES UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE HUMANIDADES Y CIENCIAS SOCIALES CATEDRA: INTRODUCCIÓN A LA BIOLOGÍA (L.I.G.A.) TRABAJO PRÁCTICO Nº 3: GENETICA MENDELIANA ALUMNO: FECHA:

Más detalles

Gregor Johann Mendel. Redescubrimiento de Mendel

Gregor Johann Mendel. Redescubrimiento de Mendel Gregor Johann Mendel austrìaco Experimentó jardìn Siguió Cont abilizó generación Anali zó Utilizó matemáticas Biologí a Manejó presentó Redescubrimiento de Mendel Entre 1866 y 1900 Se descubren los cromosomas.

Más detalles

Qué es la genética? Hoy en día, la genética es una de las áreas más activas de la investigación científica.

Qué es la genética? Hoy en día, la genética es una de las áreas más activas de la investigación científica. La Genética Básica Qué es la genética? Una característica que un ser viviente puede transmitir a su progenie es una característica hereditaria. La transmisión de las características de padres a hijos es

Más detalles

GENÉTICA MENDELIANA Y DE POBLACIONES

GENÉTICA MENDELIANA Y DE POBLACIONES GENÉTICA MENDELIANA Y DE POBLACIONES John Gregory Mendel (1822-1884) Monje Austriaco que empezó a experimentar a mediados del siglo antepasado con el chícharo (Pisum sativum) y reunió sus resultados durante

Más detalles

IES La Gándara PREGUNTAS PAU CyL Dpto. Biología y Geología. EJERCICIOS PAU (Castilla y León)

IES La Gándara PREGUNTAS PAU CyL Dpto. Biología y Geología. EJERCICIOS PAU (Castilla y León) Tema 13. Genética Mendeliana EJERCICIOS PAU (Castilla y León) Fuente: http://www.usal.es/node/28881 1. El cabello oscuro (O) en el hombre es dominante sobre el cabello rojo (o) y el color pardo de los

Más detalles

TP: Herencia Mendeliana

TP: Herencia Mendeliana TP: Herencia Mendeliana Introducción a la biología (FHYCS - UNPSJB) Por Lic. Damián G. Gil (2009) Objetivos del TP Aplicar los mecanismos de transmisión de los caracteres hereditarios, según la leyes de

Más detalles

Cátedra de Genética de la Facultad de Agronomía y Zootecnia UNT. SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE

Cátedra de Genética de la Facultad de Agronomía y Zootecnia UNT. SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE La obra de Mendel SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE Antiguamente se creía que descendencia surgía de unión arbitraria de factores; otros postuban que descendencia era una mezc de los caracteres

Más detalles

2) Si en el perro el número diploide es de 78 cromosomas, un espermatozoide tendrá... a) 78 también b) 156

2) Si en el perro el número diploide es de 78 cromosomas, un espermatozoide tendrá... a) 78 también b) 156 Nombre: Las preguntas 1 a 24 valen en conjunto 8 puntos: o Cada respuesta correcta vale 0,33 puntos. o Cada respuesta incorrecta vale -0,33/4 puntos. o Cada respuesta en blanco vale 0 puntos. Las preguntas

Más detalles

SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE

SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE La obra de Mendel SEGREGACIÓN Y DISTRIBUCIÓN INDEPENDIENTE Antiguamente se creía que descendencia surgía de unión arbitraria de factores; otros postuban que descendencia era una mezc de los caracteres

Más detalles

9.- Qué significa un par de genes rr? El rasgo que no se expresa cuando está la alternativa dominante es:..

9.- Qué significa un par de genes rr? El rasgo que no se expresa cuando está la alternativa dominante es:.. Prof: Sandra Cisternas A GUIA DE GENETICA Unidad: Genética Mendeliana Curso:2ºMedio Contenidos: Monohibridismo.Trabajos de Mendel.Ejercicios. Nombre Alumno (a):.. Fecha: 10-6- 2016 1.- En drosophila Melanogaster

Más detalles

Estándar Intensivo. Ciencias Básicas Biología. Estrategias. Pregunta PSU. Tip. Tip. Tip. Tip. Tip. Programa

Estándar Intensivo. Ciencias Básicas Biología. Estrategias. Pregunta PSU. Tip. Tip. Tip. Tip. Tip. Programa 1 Ciencias Básicas Biología Programa Estándar Intensivo Cuaderno Estrategias y Ejercitación Genética mendeliana CUACES025CB81-A16V1 Estrategias? PSU Pregunta PSU 1. Para un carácter con herencia mendeliana,

Más detalles

La genética mendeliana

La genética mendeliana BIOLOGÍA 2º BACHILLERATO TEMA 12: La genética mendeliana Actividades: 1º DÍA: Conceptos generales de genética mendeliana Los trabajos de Mendel Pg 216-217 1. Define los siguientes conceptos: a) Genética

Más detalles

http://history.nih.gov/exhibits/nirenberg/images/photos/01_mendel_pu.jpg Gregor Mendel (1822-1884) fue un monje católico y naturalista, nacido en Heinzendorf, Austria (actualmente pertenece a la República

Más detalles

Eligiendo a los descendientes por los caracteres deseados, el hombre ha modificado muchas especies, e incluso ha creado razas nuevas, mediante la

Eligiendo a los descendientes por los caracteres deseados, el hombre ha modificado muchas especies, e incluso ha creado razas nuevas, mediante la I GENÉTICA Eligiendo a los descendientes por los caracteres deseados, el hombre ha modificado muchas especies, e incluso ha creado razas nuevas, mediante la selección artificial. Mostaza silvestre Col

Más detalles

Técnico Profesional BIOLOGÍA

Técnico Profesional BIOLOGÍA Programa Técnico Profesional BIOLOGÍA Genética mendeliana Nº Ejercicios PSU 1. Según los resultados de sus eperimentos, Mendel logró determinar los alelos dominantes y MTP recesivos para cada rasgo a través

Más detalles

IES La Gándara PREGUNTAS PAU CyL Dpto. Biología y Geología. Tema 13. Genética Mendeliana Actualizado EBAU EJERCICIOS PAU (Castilla y León)

IES La Gándara PREGUNTAS PAU CyL Dpto. Biología y Geología. Tema 13. Genética Mendeliana Actualizado EBAU EJERCICIOS PAU (Castilla y León) Tema 13. Genética Mendeliana Actualizado EBAU 2017 EJERCICIOS PAU (Castilla y León) Fuente: http://www.usal.es/node/100506 1. El cabello oscuro (O) en el hombre es dominante sobre el cabello rojo (o) y

Más detalles

GENÉTICA genética herencia biológica

GENÉTICA genética herencia biológica GENÉTICA La genética es la parte de la biología que estudia la herencia biológica, es decir, cómo se transmiten los caracteres de generación en generación. Principales conceptos de genética mendeliana

Más detalles

MONOHIBRIDOS Y DIHIBRIDOS. Cátedra de Genética FAZ UNT

MONOHIBRIDOS Y DIHIBRIDOS. Cátedra de Genética FAZ UNT MONOHIBRIDOS Y DIHIBRIDOS Mendel era un monje austríaco que empezó en 1857 a seleccionar material para ver cómo se transmitían los caracteres, y en 1865 publicó sus experiencias pero no tuvieron mayor

Más detalles

UNIDAD 5: LA REPRODUCCIÓN CELULAR. GENÉTICA TRADICIONAL

UNIDAD 5: LA REPRODUCCIÓN CELULAR. GENÉTICA TRADICIONAL UNIDAD 5: LA REPRODUCCIÓN CELULAR. GENÉTICA TRADICIONAL Los seres vivos se reproducen, es decir, hacen copias de sí mismos. A partir de una sola célula similar en todas las especies, se pueden formar organismos

Más detalles

INICIACIÓN A LA GENÉTICA.

INICIACIÓN A LA GENÉTICA. INICIACIÓN A LA GENÉTICA. INTRODUCCIÓN. Evaluación previa: 1. Por qué un hijo tiene parecido con el padre y la madre?. 2. Subraya los conceptos que creas relacionados con la herencia biológica: gen, cloroplasto,

Más detalles

TEMA 6 MENDELISMO COMO CONSECUENCIA GENÉTICA DE LA MEIOSIS. -Principio de la UNIFORMIDAD -Principio de la SEGREGACIÓN

TEMA 6 MENDELISMO COMO CONSECUENCIA GENÉTICA DE LA MEIOSIS. -Principio de la UNIFORMIDAD -Principio de la SEGREGACIÓN TEMA 6 MENDELISMO COMO CONSECUENCIA GENÉTICA DE LA MEIOSIS 1.- PRINCIPIOS MENDELIANOS 2.- MONOHIBRIDISMO 3.- DIHIBRIDISMO 4.- POLIHIBRIDISMO -Principio de la UNIFORMIDAD -Principio de la SEGREGACIÓN -Principio

Más detalles

Gregor Mendel inició sus experimentos eligiendo dos plantas de guisantes que diferían en un carácter

Gregor Mendel inició sus experimentos eligiendo dos plantas de guisantes que diferían en un carácter Preguntas: Preguntas: GENÉTICA BÁSICA PRESENTADO POR J. MARTÍNEZ 1 1. Qué es una característica hereditaria? 2. A qué se le llama herencia? 3. Qué estudia la genética? 4. Quién fue Gregor Mendel? 5. Con

Más detalles

BIOLOGÍA DIVISIÓN CELULAR

BIOLOGÍA DIVISIÓN CELULAR BIOLOGÍA DIVISIÓN CELULAR Comparación de las características generales de la división celular y la formación de gametos: mitosis y meiosis El núcleo es una de las estructuras más importantes de la célula,

Más detalles

LA HERENCIA BIOLÓGICA!

LA HERENCIA BIOLÓGICA! LA HERENCIA BIOLÓGICA! Atecedentes históricos! S. XVIII-XIX! " Kolreuter (1760) y Gaertner (1820)! - Experimentos de hibridación animal y vegetal; los híbridos presentan características de un progenitor

Más detalles

Tema 14: LAS LEYES DE LA HERENCIA

Tema 14: LAS LEYES DE LA HERENCIA 1.- Planteamiento experimental del Mendel 2.- Estudio de la herencia de los caracteres 3.- Las leyes de Mendel 4.- Teoría cromosómica de la herencia 5.- Genes ligados 6.- Herencia poligénica y alelismo

Más detalles

18.- Genética clásica: mendelismo y teoría cromosómica de la herencia

18.- Genética clásica: mendelismo y teoría cromosómica de la herencia Resumen de Mendel: mendelismo y teoría Cromosómica de la herencia. 1 Mendel cruzó plantas de flor violeta con plantas de flor blanca. Esta es la generación parental y son razas puras. 18.- Genética clásica:

Más detalles

La meiosis comprende una replicación del ADN seguida de dos divisiones celulares sucesivas

La meiosis comprende una replicación del ADN seguida de dos divisiones celulares sucesivas LIGAMIENTO Ligamiento Ligamiento describe el fenómeno por el que alelos en genes vecinos, ubicados en el mismo cromosoma, serán transmitidos juntos más frecuentemente que por azar. La meiosis comprende

Más detalles

GENÉTICA. La Genética (del griego genno γεννώ= dar a luz) es la ciencia de los genes, la herencia y la variación de los organismos.

GENÉTICA. La Genética (del griego genno γεννώ= dar a luz) es la ciencia de los genes, la herencia y la variación de los organismos. GENÉTICA La Genética (del griego genno γεννώ= dar a luz) es la ciencia de los genes, la herencia y la variación de los organismos. La genética se subdivide en tres ramos: Clásica o mendeliana: Se preocupa

Más detalles

CUESTIONES DE GENÉTICA

CUESTIONES DE GENÉTICA CUESTIONES DE GENÉTICA DEFINE. GENÉTICA 1. Defina los siguientes conceptos: genoma, gen, heterocigótico y herencia intermedia [2]. Total 2 puntos Genoma: conjunto de genes de una célula, de un individuo

Más detalles

GENÉTICA Mendel Hugo de Vries identificación de los cromosomas como los portadores de la herencia.

GENÉTICA Mendel Hugo de Vries identificación de los cromosomas como los portadores de la herencia. GENÉTICA Los trabajos de Mendel fueron redescubiertos en Europa en 1900 por Hugo de Vries y otros científicos y atrajeron una gran atención en todo el mundo, estimulando muchos estudios de investigadores

Más detalles

Gregor Johan Mendel Leyes de la herencia (1865)

Gregor Johan Mendel Leyes de la herencia (1865) Gregor Johan Mendel Leyes de la herencia (1865) Modelo de estudio de Mendel Las 7 características que Mendel estudió en sus experimentos de genética Cruzas monohíbridas: Cruza recíproca Es una cruza entre

Más detalles

La herencia en los seres vivos

La herencia en los seres vivos La herencia en los seres vivos Texto: Marrero, C. (203). Biología 0º y º. Teórico Práctico. San José, Costa Rica: Universo. GENÉTICA Rama de las ciencias biológicas que estudia cómo los genes son transmitidos

Más detalles

Guía para el docente

Guía para el docente Guía para el docente Descripción curricular: - Nivel: 2.º Medio - Subsector: Ciencias biológicas - Unidad temática: - Palabras claves: recesivo, dominante, experimentos de Mendel, variación, herencia,

Más detalles

Leyes de Mendel y sus aplicaciones

Leyes de Mendel y sus aplicaciones Leyes de Mendel y sus aplicaciones Genética Mendeliana. Las leyes de la herencia Gregorio Mendel, 1860 Monasterio de Sto. Tomás, Rep. Checa Mendel estudió varias características fenotípicas de la planta

Más detalles

Genética mendeliana. Año Año Sin preguntas. Año Sin preguntas. Año Año 2005

Genética mendeliana. Año Año Sin preguntas. Año Sin preguntas. Año Año 2005 Año 2001 En Drosophila (la mosca del vinagre) los genes que determinan el color del cuerpo y el tamaño de las alas van en el mismo cromosoma. Consideremos una hembra heterocigótica para ambas características,

Más detalles

LA GENÉTICA Y GREGOR MENDEL

LA GENÉTICA Y GREGOR MENDEL LA GENÉTICA Y GREGOR MENDEL Sumario Mitosis y meiosis: Código genético y síntesis de proteínas La genética y Gregor Mendel 1. Qué es la genética? 2. Los primeros experimentos de Mendel 3. La explicación

Más detalles

Si el heterocigota para el gen de la primasa tiene fenotipo normal, entonces el alelo mutado es recesivo y el normal es dominante:

Si el heterocigota para el gen de la primasa tiene fenotipo normal, entonces el alelo mutado es recesivo y el normal es dominante: BIOLOGÍA 54 - CUADERNILLO 13 - PROBLEMAS DE GENÉTICA RESUELTOS 1 1. DATOS Si el heterocigota para el gen de la primasa tiene fenotipo normal, entonces el alelo mutado es recesivo y el normal es dominante:

Más detalles

LA EXPLICACIÓN DE LOS RESULTADOS DE MENDEL

LA EXPLICACIÓN DE LOS RESULTADOS DE MENDEL LA EXPLICACIÓN DE LOS RESULTADOS DE MENDEL Mendel desarrolló varias hipótesis para explicar sus resultados Cada característica hereditaria está bajo el control de dos factores separados, uno de cada padre.

Más detalles

PRINCIPIOS BASICOS DE LA HERENCIA LAS LEYES DE MENDEL

PRINCIPIOS BASICOS DE LA HERENCIA LAS LEYES DE MENDEL PRINCIPIOS BASICOS DE LA HERENCIA LAS LEYES DE MENDEL HERENCIA: transmisión de la información genética de padres a hijos, la cual sigue patrones predecibles en organismos tan diversos, como el ser humano,

Más detalles

GENÉTICA 3. LA HERENCIA. GENÉTICA MOLECULAR.

GENÉTICA 3. LA HERENCIA. GENÉTICA MOLECULAR. GENÉTICA La vida necesitó miles de millones de años para surgir. Hoy, la aparición de nueva vida puede ser muy rápida: bastan 20 minutos para que se origine una nueva bacteria y 22 meses para un nuevo

Más detalles

1- Cómo se denomina la segunda ley de Mendel? Enúnciala.

1- Cómo se denomina la segunda ley de Mendel? Enúnciala. BIOLOGÍA Y GEOLOGÍA UNIDAD: GENÉTICA 4ºESO Nombre: Curso: Apellidos: Grupo: 1- Cómo se denomina la segunda ley de Mendel? Enúnciala. 2- Del cruce de un progenitor humano de pelo negro y rizado (NNRr) y

Más detalles

GENÉTICA DE LA TRANSMISIÓN

GENÉTICA DE LA TRANSMISIÓN GENÉTICA DE LA TRANSMISIÓN TEMA 5. MENDELISMO. Principios mendelianos aplicados a los animales domésticos. Polihibridismo. Teoría cromosómica de la herencia. Herencia mendeliana en los animales domésticos.

Más detalles

Genética Mendeliana. Universidad Nacional de Colombia Sede Medellín. Autor: Dario Alvarez Marin Docente. Profesor: Ing. A. Alejandro Piedrahita

Genética Mendeliana. Universidad Nacional de Colombia Sede Medellín. Autor: Dario Alvarez Marin Docente. Profesor: Ing. A. Alejandro Piedrahita Universidad Nacional de Colombia Sede Medellín Trabajo Final de Látex Genética Mendeliana Autor: Dario Alvarez Marin Docente Profesor: Ing. A. Alejandro Piedrahita 15 de abril de 2011 Índice 1. Introducción

Más detalles

Tema 27. LIGAMIENTO I

Tema 27. LIGAMIENTO I Tema 27. LIGAMIENTO I Genes independientes o ligados. Sobrecruzamiento y recombinación. * frecuencia de recombinación y Distancia entre genes. * Estudio del ligamiento en la especie humana. * Puntuación

Más detalles

Región codificante. eucarionte

Región codificante. eucarionte Gen La unidad hereditaria básica. Por definición molecular, una secuencia de DNA necesaria para brindar un producto funcional a la célula: proteína o RNA. Región codificante eucarionte Alelo La forma alternativa

Más detalles

TERMINOLOGÍA EN GENÉTICA MENDELIANA. Carácter hereditario- característica transmisible a la descedencia (morfológica fisiológica, estructural ).

TERMINOLOGÍA EN GENÉTICA MENDELIANA. Carácter hereditario- característica transmisible a la descedencia (morfológica fisiológica, estructural ). TERMINOLOGÍA EN GENÉTICA MENDELIANA Carácter hereditario- característica transmisible a la descedencia (morfológica fisiológica, estructural ). Gen- fragmento de ADN con información para la síntesis de

Más detalles

La UNESCO ha declarado el genoma humano Patrimonio de la Humanidad (1997)

La UNESCO ha declarado el genoma humano Patrimonio de la Humanidad (1997) Valoración y significado del conocimiento del ADN El conocimiento completo del ADN ha abierto una nueva ciencia, la Biotecnología con un alcance aún insospechado; cómo: La tecnología del ADN recombinante

Más detalles

Genética. Qué entendemos por genética?

Genética. Qué entendemos por genética? GCCGGGTAGGGAGGCCGGTCCCGCGGGCGGGGGCGGGGCCGGCTCCGCGGCTTCTCCCGCCGCCGCCGCCGCCAAGGGGAGTTTCCAGGAAGTGGCCA TATTGGATCCATTCAGCCGCAGCCGCCCGGGCGGAGCGCGTCCCGCAGCCGGCTCATCCCCGCCGCGGCCCCGGCGTTCCCCGCAACCCGCCCGCCCG GTGCGCAGCTCGCCATGGCGGCCACCGACTTGGAACGCGTCTCGAACGCAGAGCCTGAGCCCCGGAGCCTGTCCCTGGGCGGCCATGTTGGGTTTGAC

Más detalles

Genética mendeliana. Año Año Año Año Año 2005

Genética mendeliana. Año Año Año Año Año 2005 Año 2001 En Drosophila (la mosca del vinagre) los genes que determinan el color del cuerpo y el tamaño de las alas van en el mismo cromosoma. Consideremos una hembra heterocigótica para ambas características,

Más detalles

Tema 4. La transmisión de los caracteres hereditarios

Tema 4. La transmisión de los caracteres hereditarios Tema 4. La transmisión de los caracteres hereditarios Si consideramos cualquier especie, por ejemplo la especie humana, nuestros hijos no son exactamente iguales a nosotros, pero se nos parecen. Este fenómeno

Más detalles

TEMA 3 HERENCIA Y TRANSMISIÓN DE CARACTERES COLEGIO LEONARDO DA VINCI BIOLOGÍA Y GEOLOGÍA 4º ESO CURSO 2014/15

TEMA 3 HERENCIA Y TRANSMISIÓN DE CARACTERES COLEGIO LEONARDO DA VINCI BIOLOGÍA Y GEOLOGÍA 4º ESO CURSO 2014/15 TEMA 3 HERENCIA Y TRANSMISIÓN DE CARACTERES COLEGIO LEONARDO DA VINCI BIOLOGÍA Y GEOLOGÍA 4º ESO CURSO 2014/15 OBJETIVOS DEL TEMA * Tipos de reproducción. Ventajas. Inconvenientes. * Leyes de Mendel *

Más detalles

Genética mendeliana. Nombre todos los genotipos posibles de los parentales de cada cruzamiento. Razone las respuestas.

Genética mendeliana. Nombre todos los genotipos posibles de los parentales de cada cruzamiento. Razone las respuestas. Genética mendeliana MODELO 2007 En la mosca de la fruta (Drosophila melanogaster) existen individuos de cuerpo negro y otros que presentan el cuerpo gris: a) Se cruzan dos moscas grises y se obtiene una

Más detalles

PROBLEMAS DE GENÉTICA

PROBLEMAS DE GENÉTICA PROBLEMAS DE GENÉTICA 1.- Un conejo de piel manchada (S) es dominante sobre la piel de color uniforme (s), el negro (B) es dominante sobre el pardo (b). Un conejo manchado pardo se cruza con un ejemplar

Más detalles

LEYES DE MENDEL. MENDELISMO. EJERCICIOS.

LEYES DE MENDEL. MENDELISMO. EJERCICIOS. LEYES DE MEDEL. MEDELISMO. EJERCICIOS. HERECIA DE U GE. HERECIA DOMIATE Ejercicio modelo resuelto 1) En la mosca del vinagre, el carácter ojos rojos es dominante sobre ojos blancos. Una mosca de ojos blancos

Más detalles

1. Si A domina sobre a qué proporción fenotípica se obtendrá de los cruzamientos siguientes?: AA x Aa Aa x aa AA x aa Aa x Aa

1. Si A domina sobre a qué proporción fenotípica se obtendrá de los cruzamientos siguientes?: AA x Aa Aa x aa AA x aa Aa x Aa GENÉTICA MENDELIANA 1. Si A domina sobre a qué proporción fenotípica se obtendrá de los cruzamientos siguientes?: AA x Aa Aa x aa AA x aa Aa x Aa 2. En la planta del guisante el tallo alto domina sobre

Más detalles

LIGAMIENTO Y RECOMBINACIÓN TEMA 4

LIGAMIENTO Y RECOMBINACIÓN TEMA 4 LIGAMIENTO Y RECOMBINACIÓN TEMA 4 Cruzamientos de Bateson y Punnett > > P p A a PpAa x PpAa F1 Esperados Observados P_A_ 215 (9) 284 F2 P_aa ppa_ 71 (3) 71 (3) 21 21 ppaa 24 (1) 5 381 381 Los primeros

Más detalles

Ligamiento y Recombinación II

Ligamiento y Recombinación II Ligamiento y Recombinación II Base física de la recombinación El cromosoma es la unidad de transmisión en la meiosis C. Bridges: cr. X asociado al color de los ojos de Drosophila N. Stevens ye. Wilson:

Más detalles