ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014"

Transcripción

1 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los valores de a (,5 punos) 0 b) Para a =, resolver la ecuación maricial X= 0, siendo la mariz raspuesa 0 de ( puno) a) El rango de la mariz dada no varía si se hacen las ransformaciones de Gauss que se indican: a a+ a+ a a+ a+ = a a+ 3 a+ 4 = F F 0 a a+ 5 a+ 6 F3 F0 4 4 Como la fila 3ª es doble que la ª, F3= F, el rango es siempre menor que 3 a Como el menor + a + = a + ( a + 4) = 0, el rango siempre será 0 b) Para a =, resolver la ecuación maricial X= 0 es: 0 x 0 x+ y+ z = y = 0 x+ 4y+ 6z = 0 se raa de un sisema homogéneo z 0 3x+ 5y+ 7z = 0 compaible indeerminado, pues, como se ha viso, el rango de la mariz de coeficienes es (Puede observarse que la ercera ecuación es la suma de las oras dos) x+ y+ z = 0 x+ y = z Será equivalene a resando, E E, se x+ 4y+ 6z = 0 x + y = 3z obiene: y = z; x = z x= La solución puede escribirse como: y = z =

2 ÁLGEBR (Selecividad 04) Casilla La Mancha, junio 4 a) Sabiendo que es una mariz cuadrada de orden al que razonadamene el valor de los deerminanes:,, T, 3 = 5, calcula ( puno) a b c b) Sabiendo que = calcula, usando las propiedades de los deerminanes, a b c a b c + a + b + c y a 3b 3c (,5 punos) n a) De k = k, siendo de orden n = ( ) = ( ) = 5 Como = I = y T Como = = 5 T = = = = 5 De n n = 3 3 = 5 = 5 3 a b c 3 a b c b) + a + b + c = (se exrae 3 de F3) = 3 + a + b + c = (se suman filas) 3a 3b 3c a b c F+ F3 3 0 a b c = F F3 3 = (cambiando la F por la F3) = 3 = 3 = 6 a b c 3 0 Si se desarrolla por la primera fila: a b c a b c = = (se exrae de F, 0 de F y 4 de F3) = a b c = = (se inercambian F y F3) = a b c = 400 ( ) = 400 =

3 ÁLGEBR (Selecividad 04) 3 3 Caaluña, junio 04 a) Como = = = I = 0 Por ano, es inverible demás, = = ± Si = I = Muliplicando por, por la izquierda y derecha, la igualdad anerior se iene: ( ) = ( ) ( ) ( ) ( ) ( ) II = I ( ) I = ( ) = a b a b a b 0 b) Si = y = I = c c c 0 a + bc = a + bc ( a + ) b 0 ( a+ ) b= 0 ( b 0) a= = ( a + ) c cb ( a+ ) c= 0 bc + 4= 3 De la 4ª igualdad c = b b Por ano, la expresión general de la mariz será: = 3/ b

4 ÁLGEBR (Selecividad 04) 4 4 Comunidad Valenciana, julio 04 Obener razonadamene, escribiendo odos los pasos del razonamieno uilizado: a) El valor del deerminane de la mariz S =, ( punos) y la mariz 3 5 S, que es la mariz inversa de la mariz S ( punos) Indicar la relación enre que el valor del deerminane de una mariz S sea o no nulo y la propiedad de que esa mariz admia mariz inversa S ( puno) 4 T, sabiendo que T es una mariz cuadrada de 3 ( ) b) El deerminane de la mariz ( ) filas y que 0 es el valor del deerminane de dicha mariz T (3 punos) a a 3 a a+ 3 c) La solución a de la ecuación a+ a + 4= a 4a ( 3 4a 3 a + 4 punos) a) S = = (5 3) + (5 + ) + (3 + ) = Para que exisa la inversa de una mariz es necesario que 0 En caso conrario la mariz no iene inversa, pues su inversa viene dada por = ( ij ), siendo ( ) ij mariz de los adjunos de Es obvio que si = 0 la expresión anerior no iene senido En ese caso: S = ( S ij ) S Los adjunos son: S =+ = ; S = = ; 3 S = 3 ; S = ; S 3 = 4 S = ; S 3 = ; S 33 = La mariz de los adjunos es: ( S ij ) Luego, S 3 3 = b) Se aplican las siguienes propiedades: 6 4 = S =+ = 4 3 la

5 ÁLGEBR (Selecividad 04) 5 n ) k = k ) Con eso, si T = 0 ( ) 4( T ) = 5600 n n = 3) T = 0 = 400 = 3 4T = = 5600 c) Dos marices son iguales cuando sus elemenos correspondienes son iguales a a 3 a a+ 3 a = a+ a+ a + 4= a 4a 3 4a 4a= a a + 4 a a = 0 a= ; a = La única solución posible es a = a 4a+ 4= 0 a = 5 Canarias, julio 04 Deerminar los valores de los parámeros a y b para los que iene inversa la mariz a+ b 4b = (,5 punos) a a+ b Calcular la mariz cuando a = 3 y b = ( puno) Para que exisa la inversa de la mariz es necesario que 0 a+ b 4b Como = = ( a+ b) 4b= ( a b) La mariz dada endrá inversa a a+ b siempre que a b Cuando a = 3 y b =, la mariz es 4 4 = 3 4, siendo = 4 Si inversa viene dada por = ( ij ), siendo ( ij ) En ese caso, ( ij ) la mariz de los adjunos de = = = /4

6 ÁLGEBR (Selecividad 04) 6 6 Madrid, junio 04 Dada las marices: α β γ = γ 0 α, β γ se pide: x X = y, z B = 0, 0 O = 0 0 a) (,5 punos) Calcula α, β, γ para que sea solución del sisema X = B 3 b) ( puno) Si β = γ =, qué condición o condiciones debe cumplir α para que el sisema lineal homogéneo X = O sea compaible deerminado? c) (0,5 punos) Si α =, β = y γ = 0, resuelve el sisema X = B α β γ α+ β+ 3γ = a) Si es solución de X = B γ 0 α = 0 3α+γ= 0 3 β γ3 + β+ 3 γ = α+ β+ 3γ = E E3 α= α= 3 α +γ= 0 (Por Gauss) 3 α +γ= 0 γ= 3 β+ 3γ= 0 β+ 3γ= 0 β= 9/ b) Si β = γ =, el sisema X = O queda: homogéneo Será compaible deerminado cuando 0 α x 0 0 α y = 0 Sisema z 0 Como = α + α + = 0 α = 0 o α =, el sisema será compaible deerminado para cualquier valor de α 0 y c) Si α =, β = y γ = 0, el sisema X = B es x+ y = z = 0 x + y = Su solución es x = 0 y = z = 0 0 x 0 0 y = 0 0 z

7 ÁLGEBR (Selecividad 04) 7 7 Madrid, junio 04 a Dada la mariz = 3 a, se pide: 0 a a) ( puno) Hallar el valor o valores de a para que la mariz enga inversa b) ( puno) Calcular la mariz inversa de, en el caso a = a) Para que la mariz enga inversa es necesario que 0 a = 3 a = a + 5 b) Si a =, 0 a 5 a a ± = 3, con = 3 0 = ij, siendo ( ij ) la mariz de los adjunos de ij = 3 = La mariz inversa es ( ) En ese caso: ( ) 8 Madrid, junio 04 Por la compra de cinco cuadernos, dos rouladores y res bolígrafos se han pagado veinidós euros Si se compran dos cuadernos, un roulador y seis bolígrafos, el cose es de caorce euros Se pide: a) ( puno) Expresar, en función del precio de un bolígrafo, lo que cosará un cuaderno y lo que cosará un roulador b) ( puno) Calcular lo que deberíamos pagar si adquirimos ocho cuadernos y res rouladores a) Si C, R y B son los precios de un cuaderno, un roulador y un bolígrafo, respecivamene, se iene las siguienes ecuaciones: 5C+ R+ 3B= 5C+ R= 3B C+ R+ 6B= 4 C+ R= 4 6B Luego: 3B 4 6B 3B 8 + B C = = = 6+ 9B; 5

8 ÁLGEBR (Selecividad 04) 8 5 3B 46B 70 30B B R= = = 6 4B 5 b) Si adquirimos ocho cuadernos y res rouladores habrá que pagar: 8C+ 3R= B B = B+ 78 7B= 30 euros ( ) ( ) 9 Madrid, sepiembre 4 Dadas las marices: a a x 0 = a, X = y, O = 0 a a z 0 se pide: a) ( puno) Deerminar el valor o valores de a para los cuales no exise la mariz inversa b) ( puno) Para a =, hallar la mariz inversa c) ( puno) Para a = ; calcular odas las soluciones del sisema lineal X = O a) La mariz inversa no exise cuando su deerminane vale 0 a a a a = a = F F 0 0 a = a a a + a = a a a a a a a Como a( a) ( a) = 0si a = 0, a = o a = la mariz no endrá inversa cuando el valor de a sea 0, o b) Para a =, la mariz es La mariz inversa viene dada por ( ) de Los adjunos son: La mariz de los adjunos es: ( ij ) ( ) ( ) ( ) ( ) = ; que iene inversa, pues = 4 3 = ij, siendo ( ) ij la mariz de los adjunos 5 8 = Luego, = x 0 c) Para a =, el sisema X = O queda: y = 0 Sisema homogéneo, 0 z 0 con infinias soluciones, pues el rango de la mariz de coeficienes es

9 ÁLGEBR (Selecividad 04) 9 El sisema se puede escribir como x= Su solución es y = z = x+ y+ z = 0 x + y + z = 0 y + z = 0 x+ y+ z = 0 y+ z = 0 x= y z y = z 0 Madrid, sepiembre 4 a Dada la ecuación maricial: B =, donde B es una mariz cuadrada de 3 7 amaño, se pide: a) ( puno) Calcular el valor o valores de a para los que esa ecuación iene solución b) ( puno) Calcular B en el caso a = a) La ecuación dada endrá solución cuando pueda despejarse B Para ello debe exisir la a inversa de la mariz inicial, a =, pues B = Esa inversa exise cuando su deerminane sea disino de 0 a 6 Por ano, = 7a 6 0 a b) Para a =, se iene B = 3 7 La inversa de es = ( ij ) = = = 3 Por ano: B = = 3 Madrid, sepiembre a Esudiar el rango de la mariz =, según los valores del parámero a a El rango de una mariz es el orden del mayor menor no nulo En ese caso, el rango puede llegar a valer 4; para ello el deerminane de debe ser disino de 0 Voy a calcular el deerminane haciendo ransformaciones de Gauss que indico: la segunda y ercera columna se le resa la primera; a la4ª, seis veces la primera:

10 ÁLGEBR (Selecividad 04) a 0 3 a = = = (se desarrolla por la ercera fila) = a 3 7 a = 0 3 a 7 a 8 = ( ( ) ( )) 3 3a a 84 5a+ 60 = a+ Por ano: Si a + 0 a 6, el rango de la mariz vale Cuando a = 6, la mariz inicial es =, que iene el mismo rango que (se han hecho las ransformaciones aneriores) Como el menor 0 3 = 9 0 el rango es 3 0 0

11 ÁLGEBR (Selecividad 04) Murcia, junio 04 Sabiendo que x y z = 4, calcula, sin desarrollar ni uilizar la regla de Sarrus, los 0 4 siguienes deerminanes, indicando en cada caso qué propiedad de los deerminanes se esá uilizando 3x 3y 3z x y z a) ( puno) b) (,5 punos) 3x 3y+ 3z+ 4 0 x+ y+ z+ Se aplicarán las ransformaciones de Gauss, que se indican en cada caso: 3x 3y 3z x y z a) = (se exrae 3 de la primera fila) = 3 = (se inercambian la 0 0 fila ª y ª) = del deerminane) = 3 x y z = (se muliplica por la fila 3ª; debe dividirse por fuera 0 3 x y z = 3 4 = x y z x y z b) 3x 3y+ 3z+ 4 = (se resan las filas como se indica) F 3F0 4 = x+ y+ z+ F3 F 0 4 = (se inercambian las filas ª y ª) = x y z = (se inercambian las filas ª y 3ª) = = x y z = (se exrae de la primera fila) = x y z = 4 =

12 ÁLGEBR (Selecividad 04) 3 País Vasco, junio 04 Un comercio ha adquirido una parida de armarios y mesas Los armarios han cosado 649 cada uno de ellos y las mesas 3 cada una El responsable del comercio no recuerda si el precio oal ha sido 76 o 76 a) Cuáno ha pagado exacamene? Razona la respuesa b) Cuános armarios y mesas ha comprado exacamene? Si el comerciane adquiere x armarios e y mesas, debe cumplirse alguna de las dos ecuaciones siguienes: 649x+ 3y = 76; o bien, 649x+ 3y = 76 Es evidene que fala una ecuación, pero se pueden conocer dos cosas: ) Los valores de x e y deben ser eneros; ) demás x 4, pues con x = 5 se supera el precio oal La solución puede obenerse probando si para x = 0,,, 3 o 4, exise un valor coherene para el número de mesas y Con la primera ecuación 649x+ 3y = 76, si se adquieren x armarios: rmarios, x Cose de x Canidad Número posible de Es posible? armarios sobrane mesas compradas ,57 No ,65 No ,74 No ,8 No ,90 No Por ano, la canidad de 76 no ha podido ser el precio oal Con la segunda ecuación 649x+ 3y = 76, si se adquieren x armarios: rmarios, x Cose de x Canidad Número posible de Es posible? armarios sobrane mesas compradas ,9 No SÍ ,83 No ,6 No ,5 No La única solución posible es: Se ha comprado armario y 6 sillas El precio oal ha sido de 76 euros

13 ÁLGEBR (Selecividad 04) 3 4 Casilla y León, junio 4 Discuir, y resolver cuando sea posible, el sisema de ecuaciones lineales según los mx + y = valores del parámero m: x + my = m (,5 punos) mx + y = m + Se raa de un sisema de 3 ecuaciones con incógnias Tendrá solución cuando el rango de la mariz de coeficienes sea igual al de la mariz ampliada En consecuencia, el rango de la mariz ampliada debe ser menor que 3 Por ano, m 3 M = m m = 0 m m m+ = 0 ( m ) ( m+ ) = 0 m m+ El sisema puede ser compaible cuando m = o m = Si m ±, el sisema será incompaible, pues el rango de M es 3 x+ y = E x+ y = Si m = el sisema queda: x y =, que es E3/ x + y = 0 x + y = 0 incompaible, pues resando ambas ecuaciones 0 =, que es absurdo Si m = el sisema queda: x+ y = x+ y = x+ y = { x+ y =, cuya solución es x= y = 5 Exremadura, junio 04 Considérese el sisema compaible deerminado de dos ecuaciones con dos incógnias x+ y = S, cuya solución es el puno P 0 = (, ) de R x y = 3 Sea S el sisema que se obiene al añadir a S una ercera ecuación ax + by = c Conesa razonadamene las siguienes pregunas: a) (0,75 punos) Puede ser S compaible deerminado? b) (0,75 punos) Puede ser S incompaible? c) ( puno) Puede ser S compaible indeerminado? a) El sisema S será compaible deerminado siempre que la ecuación añadida sea una combinación lineal de las dos dadas; eso es: ( ax + by = c) p ( x + y = ) + q ( x y = 3) x+ y = Por ejemplo, si p = q =, el sisema x y = 3 S sigue eniendo la misma solución, x = 4 el puno P 0 = (, )

14 ÁLGEBR (Selecividad 04) 4 b) Será incompaible siempre que la ercera ecuación no sea combinación lineal de las x+ y = oras dos Por ejemplo, si se añade la ecuación x+ y = 0, el sisema x y = 3 S es x+ y = 0 claramene incompaible c) Para que el sisema resulane sea compaible indeerminado es necesario que el rango de la mariz de coeficienes sea, pero eso es imposible, pues el rango inicial ya vale Observación: Me parece innecesario hacer más problemas de sisemas de ecuaciones lineales, que se repien con frecuencia en los exámenes de Selecividad; pueden enconrarse en muchos siios Por ejemplo en los problemas del Tema 3 de esa página: hp://wwwmaemaicasjmmmcom/maemicas-ii-ecnolgico/

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

Ecuaciones Matriciales y Determinantes.

Ecuaciones Matriciales y Determinantes. Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Gauss Ejercicio nº.- Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: compaible deerminado compaible indeerminado c) incompaible Jusifica en cada caso

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SS. II 2007/2008 ÁLGEBRA. a) Plantee, sin resolver, un sistema de ecuaciones asociado al siguiente problema:

MATEMÁTICAS APLICADAS A LAS CC. SS. II 2007/2008 ÁLGEBRA. a) Plantee, sin resolver, un sistema de ecuaciones asociado al siguiente problema: MATEMÁTICAS APLICADAS A LAS CC SS II ÁLGEBRA 1 Un cliene de un supermercado ha pagado un oal de 156 euros por 24 liros de leche, 6 kg de jamón serrano y 12 liros de aceie de oliva Planee y resuelva un

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES ES Padre Poveda (Guadi) Maemáicas plicadas a las SS EJEROS UNDDES : MTRES Y DETERMNNTES (-M--) Sean las marices D a) ( punos) Resuelva la ecuación maricial D ( D) b) ( puno) Si las marices D son las marices

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES PROLEMS RESUELTOS SELECTIVIDD NDLUCÍ 06 MTEMÁTICS PLICDS LS CIENCIS SOCILES TEM : MTRICES Junio, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva 3, Ejercicio, Opción Reserva

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos

MATEMÁTICAS II TEMA 5 Ecuaciones de rectas y planos en el espacio. Posiciones relativas Problemas propuestos Geomería del espacio ecuaciones de recas planos; posiciones relaivas MATEMÁTICAS II TEMA Ecuaciones de recas planos en el espacio. Posiciones relaivas Problemas propuesos Ecuaciones de recas planos. Halla,

Más detalles

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Junio 04) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dadas las matrices α β γ x 0 A = γ 0 α ; X = y ; B = 0 O = 0 β γ z 0 se pide: (,5 puntos). Calcula α, β

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE A 2 1 0

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE A 2 1 0 ÁLGEBRA (Selectividad 017) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 017 1 Andalucía, junio 17 0 x Ejercicio 3- Considera las matrices

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES. Resuelva la siguiene ecuación aricial: X B C, siendo, 4 C.. Deerine la ari X de orden al que: X.. Se considera la ari. a) Calcule los valores de para los que no eise la inversa de.

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

9. SISTEMAS DE ECUACIONES LINEALES.

9. SISTEMAS DE ECUACIONES LINEALES. Sisemas de ecuaciones lineales. 15 9. SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva, Ejercicio 1, Opción B

Más detalles

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una lera (incógnia o variable). El valor de la variable que

Más detalles

UNIDAD 3: MATRICES Y DETERMINANTES

UNIDAD 3: MATRICES Y DETERMINANTES UNIDAD 3: MATRICES Y DETERMINANTES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - MATRICES CONCEPTOS BÁSICOS TIPOS DE MATRICES 3- OPERACIONES CON MATRICES 4 4- TRANSFORMACIONES ELEMENTALES EN UNA MATRIZ 6 5- MATRIZ

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS º DE BACHILLERATO MÉTODO DE GAUSS Soluciones -- SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS. Resolver los siguienes siseas de ecuaciones aplicando el éodo de Gauss. a) 8 8 b) c) -- SOLUCIONES MÉTODO DE GAUSS

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de

Más detalles

3. Matrices y álgebra matricial

3. Matrices y álgebra matricial Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas

Más detalles

9. SISTEMAS DE ECUACIONES LINEALES.

9. SISTEMAS DE ECUACIONES LINEALES. Prácicas de Maemáicas II con DERIVE-5 16 9. SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS Maemáicas Problemas resuelos por el Méodo de Gauss PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS ) Resolver el siguiene sisema por Gauss Para resolver el sisema por el méodo de Gauss, hemos de riangulariarlo.

Más detalles

Como el sistema es homogéneo, sabemos que es compatible ( rang(a) = rang(a ) ). Estudiemos el máximo rango posible de A,

Como el sistema es homogéneo, sabemos que es compatible ( rang(a) = rang(a ) ). Estudiemos el máximo rango posible de A, OPCIÓN A, se pide: Problema A.. Dado el sistema de ecuaciones lineales a)deducir, raonadamente, para qué valores de α el sistema sólo admite la solución (,, ) (0,0,0). (5 puntos) Solución: Estudiemos el

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES hp://elefonica.ne/web/imm EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES.- En las ecuaciones lineales en diferencias, enemos el modelo de la elaraña, que se refiere a la versión discrea

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO ) D = ( 4 2

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO ) D = ( 4 2 EXAMEN DE MATEMATICAS II 1ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO 2016-17 Opción A 1.- Considera las matrices A = ( 1 2 1 0 0 2 1 ), B = ( 2 1 0) y C = ( 1 0 0 1 5 0 ) 3 2 1 a)

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones. Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce Economería I. DADE Noas de Clase PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce (rafael.dearce@uam.es) INTRODUCCIÓN Una vez lograda una expresión maricial para la esimación de los parámeros

Más detalles

UNIDAD 5: MATRICES Y DETERMINANTES

UNIDAD 5: MATRICES Y DETERMINANTES UNIDD 5: MTRICES Y DETERMINNTES ÍNDICE DE L UNIDD - INTRODUCCIÓN - MTRICES CONCEPTOS BÁSICOS TIPOS DE MTRICES 3- OPERCIONES CON MTRICES 4 4- TRNSFORMCIONES ELEMENTLES EN UN MTRIZ6 5- MTRIZ INVERS 7 6-

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio

Más detalles

Ejercicio 3 de la Opción A del modelo 1 de 2008.

Ejercicio 3 de la Opción A del modelo 1 de 2008. Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

1.1 Utilizando sistemas modulares, resolver la ecuación + =.

1.1 Utilizando sistemas modulares, resolver la ecuación + =. 5. 5. 1. Sisemas de la forma: Una ecuación con dos o más variables. 1.1 Uilizando sisemas modulares, resolver la ecuación + =. La ecuación 3 +5 =23 es equivalene a 3 23 ó.5, eso es, planeamos conocer el

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

ECUACIONES DE 1º GRADO 1. Resuelve las siguientes ecuaciones de 1º grado en función de los parámetros que llevan: ; ( )

ECUACIONES DE 1º GRADO 1. Resuelve las siguientes ecuaciones de 1º grado en función de los parámetros que llevan: ; ( ) ECUACIONES DE º GRADO. Resuelve las siguienes ecuaciones de º grado en función de los parámeros que llevan a) a b ( c) b) b ( a) a( b) c) ( b a) a b b d) a a 7 a e) a b b a a. a b ( c). Para resolver la

Más detalles

Elementos de acero 3 PROPIEDADES GEOMÉTRICAS. 2.1 Áreas de las secciones transversales

Elementos de acero 3 PROPIEDADES GEOMÉTRICAS. 2.1 Áreas de las secciones transversales Elemenos de acero 3 PROPIEDADES GEOMÉTRICAS 2.1 Áreas de las secciones ransversales Área oal de un miembro (A ) Es el área complea de su sección ransversal. El área oal A es igual a la suma de los producos

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica

Métodos de Previsión de la Demanda Pronóstico para Series Temporales Niveladas Representación Gráfica Méodos de Previsión de la Demanda Pronósico para Series Temporales Niveladas Represenación Gráfica REPRESENTACIÓN GRÁFICA DE LA SERIE DE DATOS Período i Demanda Di 25 2 2 3 225 4 24 5 22 Para resolver

Más detalles

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n. En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones)

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones) TEMA 2.- SISTEMAS DE ECUACIONES 1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS La ecuación 2x 3 5 tiene un término en x (el término 2x), otro en y (el término -3y) y un término independiente (el 5) Este

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1 ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 24 de diciembre de 2017

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 24 de diciembre de 2017 Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 4 de diciembre de 017 Índice general 1. Álgebra 5 1.1. Año 000............................. 5 1.. Año 001.............................

Más detalles

TEST DE DETERMINANTES

TEST DE DETERMINANTES Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B

Más detalles

EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO

EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO 2016-17 1 2 Ejercicio 1º.- Considera las matrices A 1 1 y B 0 1 1 0 a) (1,25 puntos) Encuentra las matrices X e Y tales que X Y = A T y 2X Y = B. b)

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

x y z, X =, O = a a x y z, X =, B =

x y z, X =, O = a a x y z, X =, B = [4] [EXT-A] Dadas las matrices A = a a a a- a, X =, O = a) Determinar el valor o valores de a para los cuales no eiste la matri inversa A - b) Para a = -, hallar la matri inversa A - c) Para a =, calcular

Más detalles

Matrices y determinantes (Curso )

Matrices y determinantes (Curso ) ÁLGEBRA Práctica 3 Matrices y determinantes (Curso 2008 2009) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz triangular

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDDES PÚLICS DE L COUNIDD DE DRID PRUET DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) Curso 8-9 (Sepiebre) TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El aluno conesará a los cuaro ejercicios de

Más detalles

Propuesta A. 1. Dadas las matrices: C = B = A =

Propuesta A. 1. Dadas las matrices: C = B = A = Pruebas de Acceso a Enseñanzas Univerarias Oiciales de Grado 6 Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá conesar a una de las dos opciones propuesas A ób. Se podrá uilizar

Más detalles