Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel"

Transcripción

1 Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al problema es mportante:. Estudar las propedades matemátcas de las funcones que ntervenen en el problema. Estudar la estructura matemátca del problema, los dstntos tpos que se presentan y las técncas de solucón partculares para cada uno de ellos Indce Conceptos Generales ormulacón Optmos locales y globales actbldad Propedades matemátcas Contnudad Convedad Tpos de problemas de optmzacón Un problema de optmzacón NLP mn J() h() = g() R n = (,,..., n ) vector de varables de decsón J() funcón de costo h() = =,,...,l gualdad g () =,,...,m desgualdad restrccones de restrccones de S no esten h n g el problema se denomna sn restrccones Equvalencas Contornos / Curvas de nvel mn J() h() = g() Mnmzar / Mamzar mn J() = ma J() g () a puede escrbrse como g () a J() J() * J J() = (, ) J J J g () es equvalente a -g () g () es equvalente a g () + ε =, ε h () = es equvalente a h () -ε, ε *

2 actbldad actbldad mn J() h() = g() J() mn J() h() = g() J J J Defnen la regón de busqueda o conunto factble Defnen la regón de busqueda o conunto factble S no hay nngún punto que satsfaga todas las restrccones, o sea s el conunto factble es vacío, el problema es no-factble y no este solucón Eemplos Restrccones actvas mn( ) + ( ) J mn( ) + ( + ) + + = 4 + J + = 4 mn J() h() = g() mn( + ) + 4 Una restrccón g () es Restrccón actva en actva en un punto s se verfca: g ( ) = Punto = (, ) (A menudo se refere a la solucón) Restrccón nactva en + = 4 Regones coneas Optmo local (mínmo local) J J J Regón factble conea J J J Regón factble no conea Un punto * se denomna un mínmo local del problema de optmzacón s este un entorno de * tal que para cualquer otro punto del entorno: J() J( * ) J() Pueden estr varos óptmos locales * * S se verfca la desgualdad estrcta el óptmo es propo J() J() * * Mínmos mpropos

3 Optmo global Eemplo Un punto * se denomna un mínmo global del problema de optmzacón s para cualquer punto del conunto factble : J() J( * ) J() Problema no acotado J() * S no este nngún valor de * tal que J(*) J() el problema es no acotado y no este mínmo Optmo global Varos mámos y mínmos locales Eemplos Contnudad Curvas de nvel J() Contnua en J() dscontnua en J J J J J J Dervada no defnda Optmo global Optmo local Mínmo sn restrccones lm J() J( ) este este lm J() = J( ) Es mportante para muchos algortmos trabaar con funcones contnuas y con dervadas contnuas Contnudad Teorema J() Contnua pero con dervada dscontnua en Métodos de optmzacón basados en el cálculo de dervadas pueden producr osclacones y falta de convergenca en la solucón s hay dscontnudades J() dervada dscontnua debdo a la conversón en funcón contnua medante nterpolacón lneal de una funcón orgnalmente defnda solo en puntos dscretos de Una funcón contnua J() tene un mínmo global en cualquer conunto cerrado y acotado J()

4 Convedad Conunto Conveo mn J() La forma de la regón de J búsqueda es h() = J mportante J para los g() algortmos de optmzacón es conveo s y solo s:,, γ [,] = γ + ( γ) La nterseccón de dos conuntos conveos es convea conveo Un conunto es conveo s el segmento que une dos puntos cualquera del msmo esta totalmente contendo en no-conveo Regón convea y cerrada uncón convea uncón concava La funcón J() es convea en un conunto conveo s no toma valores superores a los de una nterpolacón lneal,, γ [,] J() J( γ + ( γ) ) γj() + ( γ)j( ) S se cumple con < es estrctamente convea La funcón J() es cóncava en un conunto conveo s no toma valores nferores a los de una nterpolacón lneal,, γ [,] J() J( γ + ( γ) ) γj() + ( γ)j( ) S se cumple con < es estrctamente convea Convedad Eemplos de funcones conveas J() J() ep(-) log() > σ ma () S J() es convea, -J() es concava Una funcón lneal es convea y concava J() a a, > Todas las normas son conveas. La meda geométrca es cóncava

5 Convedad de funcones (una varable) Convedad de funcones dj( ) d J() J() = J( ) + ( ) + ( ) +... d d dj( ) d J() J() (J( ) + ( )) = ( ) +... d d dj() H = d J() S H es contnua y postva semdefnda la funcón J() es convea en un entorno de J( )+J ( )(- ) J J() J() = J( ) + ( ) + ( )' ( ) +.. J J() J() (J( ) + ( )) = ( )' ( ) +.. J() = ( )' ( ) ( )'H( ) La forma cuadrátca z Hz determna s la funcón J() es convea en un entorno de J() H Hessano J( )+J ( )(- ) ormas Cuadrátcas / Matrces PD Regón J() α Una forma cuadrátca z Hz es postva defnda (PD) s z Hz > z Para ello la matrz H debe tener todos sus autovalores > Se dce tambén que la matrz H es PD Una forma cuadrátca z Hz es postva semdefnda (PSD) s z Hz z Para ello la matrz H debe tener todos sus autovalores Una forma cuadrátca z Hz es negatva defnda (ND) s z Hz < z Para ello la matrz H debe tener todos sus autovalores < S la funcón J() es convea en un conunto conveo, entonces el conunto: J α {,J() α} es conveo Una forma cuadrátca z Hz es ndefnda s puede tomar valores postvos o negatvos para dstntos valores de z En ese caso la matrz H tene autovalores postvos y negatvos J() α Conunto f()= Convedad de funcones lneales En general, el conunto defndo por la restrccón no-lneal de gualdad f() = es no conveo Conunto de puntos que verfcan f(, ) = Regones defndas por desgualdades o gualdades lneales son conveas. Se denomnan poltopos. Igualmente, las funcones lneales son conveas (y concavas)

6 uncones cuadrátcas Convedad de regones cuadrátcas J() = a + b' + 'H J() = b' + 'H J() = H La matrz H defne el tpo de forma cuadrátca La convedad es global [ ] a b = c d J() [ ] a b uncón (forma) cuadrátca en R c d Descrbe una regón en R El conunto H es conveo s la matrz H es real smétrca postva semdefnda H es postva semdefnda s Q() = H, autovalores H es postva defnda s Q() = H >, autovalores > H es negatva semdefnda s Q() = H, autovalores H es negatva defnda s Q() = H <, autovalores < La funcón cuadratca Q() es PD s H es PD, etc. Convedad de regones cuadrátcas Convedad de regones cuadrátcas.5.5 [ ] Autovalores.5,.5 PD [ ] Autovalores 5., -. Indefnda uncón.5 J(, ) = [ ].5 Curvas de.5 = α.5 nvel uncón cuadratca PD uncón cuadratca ndefnda Punto de slla J(, ) = + + J(, ) = (, )' J = + J eg =, J(, ) = J(, ) = (, )' 8 J = J eg = 6,

7 Convedad Convedad sen() S J () y J () son funcones conveas en el conunto conveo, entonces J () + J () tambén es convea en S J () y J () son funcones conveas y acotadas superormente en el conunto conveo, entonces J() = ma { J (), J ()} tambén es convea en S J () y J () son funcones cóncavas y acotadas nferormente en el conunto conveo, entonces J() = mn { J (), J ()} tambén es cóncava en S J() es convea en el conunto conveo, entonces J(A+b) es convea S J() es una funcón convea en el conunto conveo, y s V(.) es una funcón convea (defnda en el rango de J) y no decrecente, entonces V[J()] es tambén convea en. O ben J() es concava y V convea y no crecente. En el ntervalo (,π] ver la convedad de: 5 8 ep( sen() + ) (( ) + 4) +, ma + sen() log( sen() ) (( ) ) log + Caa convea (Conve hull) Resumen La caa convea H de es el mínmo conunto conveo que contene a H Para estudar su convedad en un punto puede estudarse el correspondente Hessano Una funcon con hessano contnuo, defnda sobre un conunto conveo (con al menos un punto nteror) es convea s, y solo s, el hessano es una matrz postva sem-defnda en Un conunto defndo por las epresones g () y h ()= es conveo s las g son conveas y las h lneales Optmzacón en un conunto conveo Tpos de problemas de optmzacón mn J() h() = g() S J es convea y el conunto es tambén conveo, un mínmo local es tambén un mínmo global S todas las restrccones de desgualdad son conveas contrburán a generar un conunto conveo. Las restrccones de gualdad, s no son lneales, no serán en general conveas con lo que el problema puede tener varos mínmos locales. mn J() R n mn J() h() = Optmzacón sn restrccones Optmzacón con restrccones de gualdad Multplcadores de Lagrange

8 Tpos de problemas de optmzacón Tpos de problemas de optmzacón mnb' A c Programacón lneal (LP) funcón de coste y restrccones lneales mn J() h() = g() Programacón no lneal (NLP) funcón de coste y / o restrccones no-lneales mn' H A c + b' Programacón cuadrátca (QP) funcón de coste cuadrátca y restrccones lneales mn J(, y) h(, y) = g(, y) n R, y Z Programacón mta entera (MINLP) algunas de las varables son reales y otras enteras Tpos de problemas de optmzacón mnj(,z) dz = f(z,) dt g() r(z) mn{j (), J (),...J()} Ω Optmzacón dnámca Parte de las restrccones venen dadas por ecuacones dferencales s Optmzacón multobetvo Hay varas funcones de costo a mnmzar smultáneamente

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu CONENIDO PROBLEMAS DE PROGRAMACIÓN NO LINEAL IPOS DE PROBLEMAS NLP CLASIFICACIÓN DE MÉODOS

Más detalles

CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES

CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES Bernardello, Alca Blanca y Vcaro, Aldo Omar Departamento de Matemátca Facultad de Cencas Económcas de la Unversdad de Buenos

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

Optimización con restricciones. Prof. Cesar de Prada ISA-UVA

Optimización con restricciones. Prof. Cesar de Prada ISA-UVA Optmacón con restrccones Prof. Cesar de Prada ISA-UVA prada@autom.uva.es Indce Restrccones Problemas con restrccones de gualdad Multplcadores de Lagrange Problemas generales NLP Condcones de Karus-Kun-Tucer

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Optimización multicriterio. Andrés Ramos Universidad Pontificia Comillas

Optimización multicriterio. Andrés Ramos Universidad Pontificia Comillas Optmzacón multcrtero Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu Contendo 1. Conceptos báscos 2. Métodos contnuos 3. Métodos dscretos Escuela Técnca

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

1).- Para > 0, B= {x R L : p. x I} = {x R L

1).- Para > 0, B= {x R L : p. x I} = {x R L Pontfca Unversdad Católca del Perú Programa de Maestría en Economía Curso: Mcroeconomía Intermeda Profesores: Clauda Barrga & José Gallardo Asstente: César Gl Malca Propedades de las funcones de demanda

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel...

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel... CONTENIDO 5 Métodos teratvos para la resolucón de ecuacones algebracas lneales 95 5.1 Método de Gauss-Jacob................................ 95 5.2 Método de Gauss-Sedel................................

Más detalles

Introducción a la Optimización Multiobjetivo

Introducción a la Optimización Multiobjetivo Introduccón a la Optmzacón Multobjetvo Optmzacón Multobjetvo (MOP) Práctcamente en cualquer área y en una varedad de contetos se presentan problemas con múltples objetvos que se contraponen entre sí A

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

TEMA 5. INTERPOLACION

TEMA 5. INTERPOLACION Tema 5: Interpolacón TEM 5. INTERPOLCION. Introduccón. Nomenclatura. Interpolacón lneal 4. Interpolacón cuadrátca 5. Interpolacón por splnes cúbcos. RESUMEN 7. Programacón en Matlab Cálculo numérco en

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD

OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD OPIMIZACIÓN CON RESRICCIONES DE IGUALDAD Localzacón de óptos de funcones sujetas a restrccones en fora de gualdad écnca de los ultplcadores de Lagrange Forulacón estándar del problea f =,,..., Se consderarán

Más detalles

Cátedra Investigación Operativa

Cátedra Investigación Operativa Cátedra Investgacón Operatva Prof. Ttular Prof. Adunto JTP JTP Dr. Ing. Jorge E. Núñez Mc Leod Ing. Horaco Day Ing. Roberto Martín (lcenca) Ing. Romna Calvo Olvares Clases: Aula: Vernes 9:-: hs. Teórco-práctcos

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization) Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

Captura de objetos móviles sobre una recta *

Captura de objetos móviles sobre una recta * Morfsmos, Vol. 18, No. 1, 2014, pp. 45 55 Captura de objetos móvles sobre una recta * Lus E. Urbán Rvero Rafael López Bracho Francsco J. Zaragoza Martínez Resumen En el problema del agente vajero eucldano

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

TEMA 4. TEORÍA DE LA DUALIDAD.

TEMA 4. TEORÍA DE LA DUALIDAD. Investgacón Operatva TEMA. TEORÍA DE LA DUALIDAD. TEMA. TEORÍA DE LA DUALIDAD..... INTRODUIÓN... ALGORITMO DUAL DEL SIMPLEX.... EJEMPLO.... EJEMPLO.... EJEMPLO... TEORÍA DE LA DUALIDAD.... PROLEMA PRIMAL

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS ESCUELA: CARRERA: ESPECALDAD: COORDNACON: DEPARTAMENTO: UPCSA NGENERA EN TRANSPORTE ACADEMAS DE MATEMATCAS CENCAS BASCAS ASGNATURA: MATEMATCAS APLCADAS : TMMA SEMESTRE: 4 CREDTOS: 8 VGENTE: ENERO 2000

Más detalles

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado.

Equilibrio fásico. (b) El sistema heterogéneo se considera aislado. Termodnámca del equlbro Equlbro fásco Profesor: lí Lara En el área de Ingenería Químca exsten muchos procesos ndustrales en los cuales está nvolucrado el equlbro entre fases. Una de estas operacones es

Más detalles

1.1 INTRODUCCIÓN: LA INTEGRAL DEFINIDA

1.1 INTRODUCCIÓN: LA INTEGRAL DEFINIDA 3. INTEGRALES OBLES En este trabao se extende el concepto de la ntegral de una funcón real de varable real a funcones de varas varables, comenzando en este capítulo con ntegrales de funcones de dos varables;

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

UNA REVISIÓN DEL ESTADO DEL ARTE EN OPTIMIZACIÓN.

UNA REVISIÓN DEL ESTADO DEL ARTE EN OPTIMIZACIÓN. Document downloaded from http://www.elsever.es, da 5/09/017. hs cop s for personal use. An transmsson of ths document b an meda or format s strctl prohbted. ISSN: 1697-791. Vol. 4, Núm. 1, Enero 007, pp.

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTORY OF

RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTORY OF RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTOR OF ELECTRONIC PARTS) Una empresa fabrca tres tpos de componentes electróncos,

Más detalles

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X.

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X. Conceptos de Probabldad A contnuacón se presenta una revsón no ehaustva y a manera ntroductora de conceptos báscos de la teoría de probabldades. Un estudo proundo y ormal de estos se puede hacer en Mood

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación Tema 5: Incumplmento de las Hpótess sobre el Térmno de Perturbacón TEMA 5: INCMPLIMIENTO DE LAS HIPÓTESIS SOBRE EL TÉRMINO DE PERTRBACIÓN 5.) Introduccón 5.) El Modelo de Regresón Lneal Generalzado 5.3)

Más detalles

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico

Electromagnetismo. El campo de las cargas en reposo: el campo electrostático. Campo eléctrico Electromagnetsmo El campo de las cargas en reposo: el campo electrostátco Andrés Cantarero. Curso 2005-2006. ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electrostátco.

Más detalles

4º IEM Gestión de operaciones 25/06/2013 GESTIÓN DE PRODUCTOS FINANCIEROS (3.5 PUNTOS)

4º IEM Gestión de operaciones 25/06/2013 GESTIÓN DE PRODUCTOS FINANCIEROS (3.5 PUNTOS) 4º IEM Gestón de operacones GESTIÓN DE PRODUCTOS FINANCIEROS (3.5 PUNTOS) El gestor de una empresa dspone de un mllón de euros para nvertr durante un año. Analzado el mercado de productos fnanceros consdera

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Unversdad Dego Portales Profesor: Carlos R. Ptta Hasta este momento nos hemos enfocado en juegos en los cuales cualquer nformacón que es conocda por un jugador es conocda por todos los demás (es decr,

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Determinación de H-matrices. R. Bru, C. Corral, I. Gimenez, J. Mas

Determinación de H-matrices. R. Bru, C. Corral, I. Gimenez, J. Mas XX Congreso de Ecuacones Dferencales y Aplcacones X Congreso de Matemátca Aplcada Sevlla, 24-28 septembre 2007 (pp. 1 8) Determnacón de H-matrces R. Bru, C. Corral, I. Gmenez, J. Mas Insttut de Matemàtca

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales Métodos Matemá5cos en la Ingenería Tema. Ecuacones no lneales Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

Control Predictivo basado en Modelos (MPC)

Control Predictivo basado en Modelos (MPC) Control Predctvo basado en Modelos (MPC) Prof. Cesar de Prada Dto. Ingenera de Sstemas Automátca Unversdad de Valladold, Esaña e-mal: rada@autom.uva.es web:htt//www.sa.ce.uva.es Tendencas en la ndustra

Más detalles

Algunos Problemas Resueltos I - MA110 Algebra Escuela de Ingeniería, FCFM, U. de Chile. Aux.Cristian Figueroa R.

Algunos Problemas Resueltos I - MA110 Algebra Escuela de Ingeniería, FCFM, U. de Chile. Aux.Cristian Figueroa R. Algunos Problemas Resueltos I - MA0 Algebra Escuela de Ingenería, FCFM, U. de Chle. Aux.Crstan Fgueroa R. Problemas Sumas.- Encuentre el valor de las sguentes sumas: (a (b (c. k ( +. k0 ( n. k Problemas

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF

Modelos dinámicos de formación de precios y colusión. Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Carlos S. Valquez IEF Modelos dnámcos de formacón de precos y colusón Enfoques empleados en el análss de la nteraccón repetda entre empresas: Juegos repetdos.

Más detalles

x i y p i h i h p i P i x p i O i

x i y p i h i h p i P i x p i O i Capítulo T NÁLISIS CINEMÁTIC DE SISTEMS MULTICUER.5 CINEMÁTIC LN Coordenadas de un punto pertenecente a un elemento lo largo de este apartado a partr de ahora se van a utlzar las coordenadas de punto de

Más detalles

CAMPOS DE VELOCIDADES DE LOS DISCOS

CAMPOS DE VELOCIDADES DE LOS DISCOS CAMPOS DE VELOCIDADES DE LOS DISCOS Los dscos galáctcos se modelan como anllos crculares concéntrcos. S Ω es la velocdad angular del anllo y r el vector que va hasta el centro, sendo n el vector untaro

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Introducción. Escuela Técnica Superior de Ingeniería Informática. Universidad de La Laguna. Fernando Pérez Nava

Introducción. Escuela Técnica Superior de Ingeniería Informática. Universidad de La Laguna. Fernando Pérez Nava Reconocmento de Patrones Introduccón Tema : Reconocmento Estadístco de Patrones Por qué una aproxmacón estadístca en el RP? La utlzacón de característcas para representar una entdad provoca una pérdda

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

SOBRE CIERTAS REDES DE UNIDADES DINÁMICAS ACOPLADAS POR IMPULSOS

SOBRE CIERTAS REDES DE UNIDADES DINÁMICAS ACOPLADAS POR IMPULSOS SOBRE CIERTAS REDES DE UNIDADES DINÁMICAS ACOPLADAS POR IMPULSOS ELEONORA CATSIGERAS Presentacón en IV Coloquo de Matemátca, del 18 al 20 de dcembre, 2013 Se presentará un modelo matemátco abstracto de

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

Sobre el uso de las desigualdades variacionales para el cálculo del problema de complementariedad no lineal

Sobre el uso de las desigualdades variacionales para el cálculo del problema de complementariedad no lineal Sobre el uso de las desgualdades varaconales para el cálculo del problema de complementaredad no lneal Blanco Louro, A., Lema Fernández, Carmen S., Pedrera Andrade, Lus P. Departamento de Economía Aplcada

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

MODELOS OPERATIVOS DE GESTIÓN

MODELOS OPERATIVOS DE GESTIÓN Equaton Secton (Next) MODELOS OPERATIVOS DE GESTIÓN Begoña Vtorano Septembre 2009 ÍNDICE MODELOS DE PROGRAMACIÓN MATEMÁTICA PARA GESTIÓN.... Modelos característcos de programacón matemátca para gestón.....

Más detalles

Valoración de opciones financieras por diferencias finitas

Valoración de opciones financieras por diferencias finitas Valoracón de opcones fnanceras por dferencas fntas José Mª Pesquero Fernández Dpto. Nuevos Productos - Tesorería BBVA mpesquero@grupobbva.com Indce INDICE. Introduccón. La ecuacón dferencal 3. Dferencas

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto

Análisis Matemático en la Economía: Optimización y Programación. Augusto Rufasto Análss Matemátco en la Economía: Optmzacón y Programacón arufast@yahoo.com-rufasto@lycos.com www.geoctes.com/arufast-http://rufasto.trpod.com La optmzacón y la programacón están en el corazón del problema

Más detalles

CERCHAS Y PROGRESIONES

CERCHAS Y PROGRESIONES CERCHAS Y PROGRESIONES I.C. Rcardo Correa Urbe acultad de Ingenería Cvl - Bogotá UNIVERSIDAD SANTO TOMÁS Cerchas y Progresones CONSEJO EDITORIA P. José Antono Balaguera Cepeda, O.P. Rector General P. Pedro

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

Universitas Scientiarum ISSN: Pontificia Universidad Javeriana Colombia

Universitas Scientiarum ISSN: Pontificia Universidad Javeriana Colombia Unverstas Scentarum ISS: 0-7483 revstascentfcasjaverana@gmal.com Pontfca Unversdad Javerana Colomba Aranda, Mosés; Molna, Fabo; Moreno, Vladmr EL PROBLEMA DEL CUMPLEAÑOS, UA GEERALIZACIÓ Unverstas Scentarum,

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria Economía Industral Tema. La demanda de la ndustra Objetvo del tema Entender el modelo económco de comportamento del consumdor, fnalmente resumdo en la funcón de demanda. Comprender el carácter abstracto

Más detalles

Tema 3: Procedimientos de Constrastación y Selección de Modelos

Tema 3: Procedimientos de Constrastación y Selección de Modelos Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes

Más detalles

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO)

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO) Tema 8: DESIGUALDAD, REDISTRIBUCIÓN Y POBREZA Xsco Olver 20610 - Economía del Benestar (2º GECO) Motvacón Benestar: el objetvo últmo del Estado es maxmzar el benestar El benestar se obtene a partr de las

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles