LA GESTIÓN DEL CONOCIMIENTO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA GESTIÓN DEL CONOCIMIENTO"

Transcripción

1 Plan de Formación 2006 ESTRATEGIAS Y HABILIDADES DE GESTIÓN DIRECTIVA MÓDULO 9: 9 LA ADMINISTRACIÓN ELECTRÓNICA EN LA SOCIEDAD DE LA INFORMACIÓN LA GESTIÓN DEL CONOCIMIENTO José Ramón Pereda Negrete Jefe de Área de Informática Departamento de Informática Tributaria (AEAT)

2 ÍNDICE 1. Conceptos y evolución 2. Diferentes enfoques de la GC: Sistemas de Gestión del Soporte del Conocimiento. Query & Reporting OLAP. Data Warehouse. Sistemas Basados en el Conocimiento. Minería de Datos. 3. Utilidad de la GC y aplicaciones de la misma 4. Herramientas la Sociedad de la Información 2

3 1. CONCEPTOS Y EVOLUCIÓN 1.1. Pirámide del conocimiento 1.2. Definición de conocimiento 1.3. Clasificación del conocimiento. Tipos Procesos de transferencia del conocimiento 1.5. Qué se entiende por GC. Definición Objetivos de la GC. Fases. Dificultades. la Sociedad de la Información 3

4 1. CONCEPTOS Y EVOLUCIÓN 1.1. Pirámide del conocimiento SABIDURÍA CONOCIMIENTO INFORMACIÓN DATOS la Sociedad de la Información 4

5 1. CONCEPTOS Y EVOLUCIÓN 1.1. Pirámide del conocimiento Datos (no responden a las preguntas sobre un problema) Información (responde a las preguntas quién, qué, cuándo, dónde ) Conocimiento (responde a cómo y por qué ) Sabiduría Obtención de forma guiada (Ejemplo: Análisis OLAP / Data Warehouse) Obtención de forma automática (Ejemplo: Minería datos) la Sociedad de la Información 5

6 1. CONCEPTOS Y EVOLUCIÓN 1.2. Definición de conocimiento Según el Diccionario de la RAE Entendimiento, inteligencia, razón natural Conjunto de saberes que se tienen sobre una ciencia o arte. Resultado de averiguar por el ejercicio de las facultades intelectuales la naturaleza, cualidades y relaciones de las cosas. Nonaka y Takeuchi: : creencias justificadamente ciertas y técnicas adquiridas empíricamente Informalmente: hechos y experiencias que permiten tomar la mejor decisión en cada momento la Sociedad de la Información 6

7 1. CONCEPTOS Y EVOLUCIÓN 1.3. Clasificación del conocimiento. Tipos. Tácito: : el que posee cada uno interiormente Explicitable No Explicitable Explícito: : el expresado de alguna forma Implícito: : conocimiento no evidente a primera vista ( oculto ) la Sociedad de la Información 7

8 1. CONCEPTOS Y EVOLUCIÓN 1.4. Procesos de transferencia del conocimiento De: A: Conocimiento TÁCITO Conocimiento TÁCITO SOCIALIZACIÓN Conocimiento EXPLÍCITO EXTERIORIZACIÓN Conocimiento EXPLÍCITO INTERIORIZACIÓN COMBINACIÓN la Sociedad de la Información 8

9 1. CONCEPTOS Y EVOLUCIÓN 1.4. Procesos de transferencia del conocimiento Socialización: : el conocimiento tácito individual se comparte con otra(s) persona(s), haciéndose colectivo Exteriorización: : el conocimiento tácito individual se explicita y se almacena Combinación: : diversos conocimientos explicitos se juntan para dar lugar a nuevos conocimientos explícitos Interiorización: : el conocimiento explícito es aprendido y asimilado por el individuo, que puede dar lugar a nuevo conocimiento tácito al sumarse a sus conocimientos y experiencias previas la Sociedad de la Información 9

10 1. CONCEPTOS Y EVOLUCIÓN 1.5. Qué se entiende por GC. Definición. Lo que opinan las empresas (inf. GC en España): Desarrollo y aprendizaje de las personas. Gestión de la información y su almacenamiento. Medición del capital intelectual Lo que opinan las empresas (42º congreso europeo de la calidad): Capacidad de la empresa de administrar los conocimientos de que dispone. Capacidad de la empresa de aprender (generar nuevos conocimientos). la Sociedad de la Información 10

11 1. CONCEPTOS Y EVOLUCIÓN 1.5. Qué se entiende por GC. Definición. Según Dutta y Meyer: Habilidad de las personas para entender y manejar la información utilizando la tecnología y la compartición del conocimiento. Más Informalmente: Administración (búsqueda, almacenamiento, recuperación, compartición,, transmisión,...) del conocimiento para su mejor aprovechamiento Requiere de una serie de medios que la faciliten. la Sociedad de la Información 11

12 1. CONCEPTOS Y EVOLUCIÓN 1.6. Objetivos de la GC. Fases. Dificultades. Objetivos de la GC: Fases: Adquirir conocimiento (conlleva costes) Aplicar conocimiento Identificar y capturar No existe: Crear Existe fuera: Adquirir Existe dentro: Retener Almacenar, organizar, integrar Distribuir Utilizar Evaluar Adaptar la Sociedad de la Información 12

13 1. CONCEPTOS Y EVOLUCIÓN 1.6. Objetivos de la GC. Fases. Dificultades. Dificultad del proceso: Desconocimiento Indefinición n de objetivos Resistencia al cambio Complejidad Alto coste Problemas fracasos (por la propia naturaleza del conocimiento y por forma errónea de abordar GC) la Sociedad de la Información 13

14 (o formas de abordarla) Concepto clave: automatización Conocimiento explícito No procesable automáticamente (procesable por las personas): Documentos (caja negra) Sistemas de gestión de los soportes del conocimiento Procesable automáticamente Sistemas de proceso del conocimiento No derivable: : Programas Derivable: Sistemas Basados en el Conocimiento (Sistemas Expertos): Reglas, Marcos, etc. Minería de datos (Data Mining) la Sociedad de la Información 14

15 Conocimiento explícito a tácito Conocimiento tácito a explícito (( tácito) Conocimiento tácito a tácito (( explícito) Conocimiento explícito a explícito Conocimiento implícito a tácito (( explícito) Conocimiento implícito a explícito Ventajas e inconvenientes Diferentes aproximaciones a la GC (relacionadas con lo anterior) siguientes apartados la Sociedad de la Información 15

16 2.1. Sistemas de Gestión del Soporte del Conocimiento BD Documentales (repositorios, indexación, localización y relevancia) Buscadores: Por categorías Por texto Mixtos Ingeniería lingüística (estructuración e interpretación, técnicas de resumen, etc.) la Sociedad de la Información 16

17 2.2. Query & Reporting 1er. estadio evolutivo Informes: resultado de preguntas a la BD costes: tiempo, consumo de recursos, Cuadros de mando: información resumida y ordenada (indicadores organizados) para facilitar la toma de decisiones la Sociedad de la Información 17

18 2.3. OLAP. Data Warehouse 2º estadio evolutivo OLAP Data Warehouse Data Warehouse (almacén de datos): sistema formado por un conjunto de datos (almacén / repositorio / base de datos) orientado al análisis y la toma de decisiones Data Mart ( mercado o tienda de datos ): subsistema del Data Warehouse,, especializado en una o varias partes del negocio y orientada a realizar determinados análisis y estudios sobre un subconjunto de los datos del Data Warehouse la Sociedad de la Información 18

19 2.3. OLAP. Data Warehouse Data Warehouse (continuación): Lleva asociado un conjunto de herramientas que permiten realizar análisis de la información en él contenida. Permite: Integrar y consolidar información de diversas procedencias. Proporcionar una visión tanto general como detallada del negocio, permitiendo ir dinámicamente de una a la otra. Analizar y contrastar, prácticamente on/line line, la información desde distintos criterios ó puntos de vista a voluntad del usuario. Éste tiene en sus manos la autonomía necesaria para definirlos, realizarlos y ejecutarlos para ver los resultados, sin s depender de nadie más. Ejemplos prácticos: estudios de situación, comparativos, evolutivos, etc. la Sociedad de la Información 19

20 2.3. OLAP. Data Warehouse OLAP (On( Line Analytical Processing) Es un proceso o procesamiento On Line Implica inmediatez e interactividad Analítico Análisis Global (del resumen al detalle) De medidas ó métricas... según diversas perspectivas y criterios... Implica multidimensionalidad la Sociedad de la Información 20

21 2.3. OLAP. Data Warehouse OLAP vs. OLTP (On( Line Transaction Processing) OLTP Criterio OLAP Inmediato Tiempo Respuesta No necesaria inmediatez Gestión del negocio Propósito Análisis del negocio Procesos (aplicaciones) Guiado por: Datos La Acción Orientado a: La Pregunta Actualizaciones y consultas Uso Sólo Consulta Simples / Estáticas / Previstas Consultas Complejas / Dinám. / Imprev. Detalle Datos a consultar Agregados y detalle Pocos registros por transac. Proceso Datos Muchos registros por trans. Relacional - Normalización Modelo Datos Multidimensional (Desnorm.) Dispersos / Heterogéneos Estado / Tipo Datos Integrados / Homogéneos En tiempo real Actualización Cargas periódicas Intenso y uniforme Uso / Carga Sistema Menos intenso y a ráfagas Gran número (+ concurr.) Usuarios Menor número y concurrencia Menos y más simples Requisitos Usuarios Necesid. más sofisticadas la Sociedad de la Información 21

22 2.3. OLAP. Data Warehouse Evolución terminológica EIS (Executive( Information Systems) Presentación intuitiva y distintos formatos gráficos que facilitan la elaboración de cuadros de mando DSS (Decision Support Systems) Incorporan funcionalidades de modelado y simulación (what( what-if) OLAP, Minería de datos Business Intelligence la Sociedad de la Información 22

23 2.4. Sistemas Basados en el Conocimiento Reglas de producción Sistemas que obtienen conocimiento por deducción a partir de una base de reglas aplicadas sobre unos hechos por un motor de inferencias Ejemplos: MYCIN y PROSPECTOR HECHOS Motor de Inferencias Nuevos conocimientos Base de REGLAS la Sociedad de la Información 23

24 2.4. Sistemas Basados en el Conocimiento Conchas (shells( shells) Herramientas pensadas para la cómoda y rápida construcción de sistemas basados en reglas. Aportan un motor de inferencias y facilitan la introducción y depuración de las reglas. Asimismo, tienen utilidades típicas de un sistema basado en reglas (preguntar por el origen de un nuevo conocimiento, etc.) Otros Marcos (frames( frames), guiones (scripts( scripts), la Sociedad de la Información 24

25 2.5. Minería de Datos Conjunto de técnicas que persiguen el descubrimiento automático de conocimiento (relaciones, tendencias, patrones y perfiles significativos) al aplicarse a grandes conjuntos de datos Utilizadas principalmente para clasificar y predecir Técnicas estadísticas Métodos y técnicas univariantes y multivariantes que permiten estudiar una o más variables medidas u observadas en una colección de individuos la Sociedad de la Información 25

26 2.5. Minería de Datos Análisis cluster Técnica estadística multivariante de clasificación automática de datos que trata de situar a los individuos en grupos homogéneos no conocidos de antemano Concepto de distancia (grado de similitud) entre individuos la Sociedad de la Información 26

27 2.5. Minería de Datos Árboles de decisión Técnica para el aprendizaje de modelos comprensibles de decisión, elaborados a partir de una muestra de datos Apropiados para expresar procedimientos Las opciones de una condición son excluyentes la Sociedad de la Información 27

28 2.5. Minería de Datos Reglas de asociación (análisis de la cesta de la compra) Técnicas que persiguen la búsqueda de asociaciones interesantes entre valores de variables que se dan frecuentemente a la vez Además de para esto, pueden utilizarse para: Establecer relaciones o vínculos entre individuos Identificar patrones secuenciales Identificar secuencias de eventos la Sociedad de la Información 28

29 2.5. Minería de Datos Algoritmos genéticos Técnica que persigue buscar las soluciones más aproximadas a problemas de búsquedas u optimizaciones. Inspirados en la biología evolutiva la Sociedad de la Información 29

30 2.5. Minería de Datos Lógica difusa Proviene de la teoría de conjuntos difusos Extensión de la lógica booleana para manejar el concepto de grado de verdad (ó grado de pertenencia a un conjunto) con valores en el intervalo [0,1] Se asemeja más a nuestra forma de valorar (razonamiento aproximado) la Sociedad de la Información 30

31 2.5. Minería de Datos Redes neuronales (artificiales) Qué son Sistema computacional formado por programas y estructuras de datos que trata de aproximarse al funcionamiento del cerebro humano, basándose en un modelo que emula a neuronas interconectadas en red que trabajan conjuntamente para producir como resultado una función de salida ante una determinada entrada En la práctica se trata de un análisis no lineal de datos para modelar relaciones complejas entre variables de entrada y salida al objeto de encontrar patrones dentro de los datos la Sociedad de la Información 31

32 2.5. Minería de Datos Redes neuronales (artificiales) Componentes y estructura de una red neuronal Tipos: La neurona Las capas de neuronas: De entrada Intermedias u ocultas De salida Supervisadas No Supervisadas la Sociedad de la Información 32

33 2.5. Minería de Datos Redes neuronales (artificiales) Funcionamiento de las RRNN supervisadas: fases Ventajas Diseño Entrenamiento Simulación o Ejecución Selección No requieren existencia de un modelo previo Obtención automática del conocimiento. Son robustas ante información errónea ó incompleta Se autoadaptan dinámicamente ante nuevos casos la Sociedad de la Información 33

34 3. UTILIDAD DE LA GC Y APLICACIONES A distintos ámbitos de negocio Facilitan y mejoran diferentes aspectos (estudios, predicciones, ) Aumentan eficiencia (ahorran tiempo y dinero) Ejemplos: CRM (Customer( Relationship Management) Webmining la Sociedad de la Información 34

35 4. HERRAMIENTAS Diversidad y especificidad de cometidos. Complejidad Alto coste: Económico De aprendizaje De puesta en marcha (desarrollo, adaptación, instalación, mantenimiento) De uso De tiempo Reto: simplificar y abaratar la Sociedad de la Información 35

36 CONCLUSIONES Distintos enfoques: elegir el más adecuado para cada caso, en función del objetivo deseado. Se pueden adoptar varios enfoques simultáneamente y combinarlos, pues son complementarios la Sociedad de la Información 36

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI INTRODUCCIÓN Se habla en multitud de ocasiones de Business Intelligence, pero qué es realmente? Estoy implementando en mi organización procesos de Business

Más detalles

Datawarehouse. Ing. Adan Jaimes Jaimes. Datawarehouse

Datawarehouse. Ing. Adan Jaimes Jaimes. Datawarehouse 1 Ing. Adan Jaimes Jaimes 2 Conceptos : Repositorio completo de datos, donde se almacenan datos estratégicos, tácticos y operativos, al objeto de obtener información estratégica y táctica Data-Marts: Repositorio

Más detalles

S s i t s em a s de d Inf n o f r o m a ió i n TIPOS DE SISTEMAS

S s i t s em a s de d Inf n o f r o m a ió i n TIPOS DE SISTEMAS Sistemas de Información TIPOS DE SISTEMAS La Empresa en la Sociedad de la Información: Impacto en las Organizaciones TICS TICS - COMPONENTES el factor humano los contenidos de la información el equipamiento

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

Gestión de la Información

Gestión de la Información Gestión de la Información Sociedad de la Información Recurso Información Sistemas de Información Tecnologías de la Información Internet ii Fundamentos de SI: Gestión de la Información 49 Un Sistema de

Más detalles

Evaluación de un sistema de información para mejorar la red de ventas Pág. 1 SUMARIO 1 A. TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN 3

Evaluación de un sistema de información para mejorar la red de ventas Pág. 1 SUMARIO 1 A. TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN 3 Evaluación de un sistema de información para mejorar la red de ventas Pág. 1 Sumario SUMARIO 1 A. TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN 3 A.1. Intranet...3 A.2. Extranet...4 A.3. Internet...4 A.4.

Más detalles

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

REPOSITORIO COR O P R OR O A R T A I T VO V

REPOSITORIO COR O P R OR O A R T A I T VO V REPOSITORIO CORPORATIVO Repositorio Corporativo Que es? Antecedentes? Por que lo necesito? Multiplicidad de sistemas Retraso en obtención de reportes Info 3 Info 2 Info 1 Redundancia Inconsistencia de

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI)

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) OFERTAS TECNOLÓGICAS 1) GESTIÓN ORGANIZACIONAL Y LOGÍSTICA INTEGRADA: TÉCNICAS Y SISTEMAS DE INFORMACIÓN 2) GESTIÓN

Más detalles

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Francisco J. Martín Mateos Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Qué es la (KE)? Definición de Wikipedia: La es una disciplina cuyo objetivo es integrar conocimiento

Más detalles

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico : 2014-I 1.6. Ciclo Académico 1.7. Horas de Clase 1.8. Créditos 1.9. Pre

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 12-O. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 21

Más detalles

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012.

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012 programa Plan 2008 Área Complementaria Carga horaria semanal Anual/ cuatrimestral Coordinador de Cátedra Objetivos

Más detalles

Botón menú Objetivo de la Minería de datos.

Botón menú Objetivo de la Minería de datos. Titulo de Tutorial: Minería de Datos N2 Botón menú: Introducción. Las instituciones y empresas privadas coleccionan bastante información (ventas, clientes, cobros, pacientes, tratamientos, estudiantes,

Más detalles

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Comunicación para Tecnimap 2010. EL BI APLICADO AL ANÁLISIS DE LAS VISITAS TURÍSTICAS Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Autor:

Más detalles

XerKa, vigilancia a medida y flexible

XerKa, vigilancia a medida y flexible XerKa es una solución software que apoya los procesos de Vigilancia Tecnológica e Inteligencia Competitiva de la empresa. Busca, filtra, analiza y clasifica información procedente de la red Interna e Internet

Más detalles

Sistemas de Data Warehousing

Sistemas de Data Warehousing Federación Médica del Interior (FEMI) Sociedad Uruguaya de Informática en la Salud (SUIS) Información en Salud Edición 2009 Sistemas de Data Warehousing Dr. Ing. Adriana Marotta (In.Co - F.Ing - UDELAR)

Más detalles

UNIVERSIDAD CARLOS III DE MADRID

UNIVERSIDAD CARLOS III DE MADRID : Grupo de Planificación y Aprendizaje PLG I V E R S ID A D U N I D III R D A M D E I C A R L O S II UNIVERSIDAD CARLOS III DE MADRID Grupo de Planificación y Aprendizaje Planificación de misiones espaciales

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios para la Gestión UNIDAD 3: APLICACIONES DE SISTEMAS Unidad 3 Aplicaciones de Sistemas Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración de la cadena de suministros. Sistemas

Más detalles

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones 1. La Información: Propiedades de la Información. Sistemas de Información. Bases de Datos. 2. Administración

Más detalles

Tema 3. MODELOS. 2.1 Apoyo Informático a la investigación experimental. 2.2 Modelos del cerebro: A. Realistas biológicos.

Tema 3. MODELOS. 2.1 Apoyo Informático a la investigación experimental. 2.2 Modelos del cerebro: A. Realistas biológicos. Tema 3. MODELOS 011 0 01 01 FUNDAMENTOS 1. Modelos computacionales. 2. Computación y Neurociencia. CONTENIDOS 2.1 Apoyo Informático a la investigación experimental. 2.2 Modelos del cerebro: A. Realistas

Más detalles

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile. Los futuros desafíos de la Inteligencia de Negocios Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.cl El Vértigo de la Inteligencia de Negocios CRM: Customer

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Universidad de Castilla-La Mancha Departamento de Informática El Diseño de Software para la Gestión del Conocimiento

Universidad de Castilla-La Mancha Departamento de Informática El Diseño de Software para la Gestión del Conocimiento CURSOS DE VERANO 2002 www.uclm.es/curve2002 (Vicerrectorado de Extensión Universitaria y del Campus de Cuenca) Universidad de Castilla-La Mancha GROKIS www.inf-cr.uclm.es/www/grokis (Group for Research

Más detalles

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres Sistemas Informacionales Sistemas informacionales: Sistemas de

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

LA UBICACIÓN DEL CONOCIMIENTO EN LAS ORGANIZACIONES

LA UBICACIÓN DEL CONOCIMIENTO EN LAS ORGANIZACIONES Cuadernos de Gestión del Conocimiento Empresarial Número 25. Septiembre de 2010 LA UBICACIÓN DEL CONOCIMIENTO EN LAS ORGANIZACIONES Por Fernando Piera Gómez, vicepresidente 1º de ATI Al final de la primera

Más detalles

IWG-101: Introducción a la Ingeniería. Departamento de Informática, UTFSM 1

IWG-101: Introducción a la Ingeniería. Departamento de Informática, UTFSM 1 IWG-101: Introducción a la Ingeniería Departamento de Informática, UTFSM 1 Gestión de Bases de Datos Gestión de Bases de Datos Base de datos una colección de datos relacionados organizados de manera de

Más detalles

BUSINESS INTELLIGENCE. www.sbi-technology.com

BUSINESS INTELLIGENCE. www.sbi-technology.com BUSINESS INTELLIGENCE www.sbi-technology.com SBI Technology SRL Maipú 1492 Piso 2 S2000CGT - Rosario Rep. Argentina Tel: (54 341) 530 0815 www.sbi-technology.com Copyright - SBI Technology SRL - Todos

Más detalles

INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL: LOS SISTEMAS EXPERTOS

INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL: LOS SISTEMAS EXPERTOS Introducción a los Sistemas Expertos 1 INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL: LOS SISTEMAS EXPERTOS ÍNDICE 1. INTRODUCCIÓN. EVOLUCIÓN HISTÓRICA 2. DEFINICIÓN Y CARACTERÍSTICAS DE LOS SE. 3. TIPOS Y

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER. 40 horas 60 días

CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER. 40 horas 60 días CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER DURACIÓN DÍAS DE CONEXIÓN 40 horas 60 días CONTACTO: formacion@fgulem.es El Campus Virtual ha sido concebido con una metodología dinámica e

Más detalles

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS 1. RESEÑA HISTORICA Las exigencias competitivas del mercado hacen que las organizaciones busquen mecanismos

Más detalles

Una breve introducción a las tecnologías de la información para la gestión del conocimiento

Una breve introducción a las tecnologías de la información para la gestión del conocimiento Una breve introducción a las tecnologías de la información para la gestión del conocimiento Ingeniero de Sistemas Grupo CCT CV. Universidad Politécnica de Valencia Departamento de Organización y Empresas

Más detalles

Web mining y obtención de información para la generación de

Web mining y obtención de información para la generación de Web mining y obtención de información para la generación de inteligencia Miguel Ángel Esteban (Universidad de Zaragoza) mesteban@unizar.es Instituto Juan Velázquez de Velasco de Investigación en Inteligencia

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

Data Warehousing - Marco Conceptual

Data Warehousing - Marco Conceptual Data Warehousing - Marco Conceptual Carlos Espinoza C.* Introducción Los data warehouses se presentan como herramientas de alta tecnología que permiten a los usuarios de negocios entender las relaciones

Más detalles

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse Data Warehouse and Data Mining José A. Royo http://www.cps.unizar.es/~jaroyo email: joalroyo@unizar.es Departamento de Informática e Ingeniería de Sistemas Por qué DW y DM? Mayor poder de procesamiento

Más detalles

ARIS Process Performance Manager

ARIS Process Performance Manager ARIS Process Performance Manager Supervisión de procesos continua en toda la empresa Muchas empresas se están dando cuenta de que la recopilación de indicadores clave de rendimiento sin vincularlos con

Más detalles

Herramientas Tecnológicas para Administración del Conocimiento

Herramientas Tecnológicas para Administración del Conocimiento Herramientas Tecnológicas para Administración del Conocimiento Originalmente publicado en Transferencia, año 15, No. 57, enero de 2002, pp 19-21 Gabriel Valerio La estructura de procesos clave del Centro

Más detalles

Clase 1 Módulo: Data Warehouse & Datamart Docente: Gustavo Valencia Zapata

Clase 1 Módulo: Data Warehouse & Datamart  Docente: Gustavo Valencia Zapata v.1.0 Clase 1 Docente: Gustavo Valencia Zapata Temas Clase 1: El Rol de TI en BI BI Retos de TI en BI Evolución de la Información Arquitectura de BI Referencias www.gustavovalencia.com Evolución de la

Más detalles

Alicia Iriberri Dirección de Tecnologías de Información. I.- Definición del foco estratégico

Alicia Iriberri Dirección de Tecnologías de Información. I.- Definición del foco estratégico Alicia Iriberri Dirección de Tecnologías de Información I.- Definición del foco estratégico II.- Establecimiento de mediciones a través del Balanced Scorecard (Tablero de Comando) III.- Despliegue del

Más detalles

Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas

Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas José Antonio Peláez Ruiz Ministerio de Administraciones Públicas Alfonso Martín Murillo BG&S

Más detalles

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA M.ª del Pilar Cantero Blanco Jefa de Servicio de Sistemas Informáticos. Subdirección General de Planificación

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Clasificación de Áreas y Subáreas para las inscripciones al Doctorado en Ciencias Informáticas

Clasificación de Áreas y Subáreas para las inscripciones al Doctorado en Ciencias Informáticas Área Algoritmos y Estructuras de Datos Arquitectura de computadoras Subárea - Algoritmos - Análisis de algoritmos - Estructuras de Datos - Verificación y certificación de programas - Lógicas para el desarrollo

Más detalles

v.1.0 Clase 1 Docente: Gustavo Valencia Zapata

v.1.0 Clase 1 Docente: Gustavo Valencia Zapata v.1.0 Clase 1 Docente: Gustavo Valencia Zapata Temas Clase 1: Introducción a la Inteligencia de Negocios Hitos y personajes Arquitectura de BI Evolución de la Información Inteligencia de Negocios (BI)

Más detalles

La importancia de los Sistemas de información de Marketing en las organizaciones

La importancia de los Sistemas de información de Marketing en las organizaciones La importancia de los Sistemas de información de Marketing en las organizaciones marzo 8, 2008 por Óscar Fajardo Por qué es necesario un Sistema de Información de marketing? Cerca de un 90 % de las empresas

Más detalles

BUSINESS INTELLIGENCE SYSTEMS (BIS)

BUSINESS INTELLIGENCE SYSTEMS (BIS) SEMINARIO BUSINESS INTELLIGENCE SYSTEMS (BIS) Una nueva filosofía de Management cuyo objetivo consiste en... Capturar, diseminar y reusar el conocimiento disperso que poseen las organizaciones y que junto

Más detalles

El almacén de indicadores de proceso de negocio en ejecución

El almacén de indicadores de proceso de negocio en ejecución X Congreso de Ingeniería de Organización Valencia, 7 y 8 de septiembre de 2006 El almacén de indicadores de proceso de negocio en ejecución Andrés Boza García 1, Angel Ortiz Bas 1, Llanos Cuenca Gonzalez

Más detalles

INGENIERÍA EN SISTEMAS COMPUTACIONALES

INGENIERÍA EN SISTEMAS COMPUTACIONALES INGENIERÍA EN SISTEMAS COMPUTACIONALES UNIDAD 1 Catedrático: JOSÉ RAMÓN VALDEZ GUTIÉRREZ Alumnos: AVILA VALLES JAIRO EDUARDO 08040265 Victoria de Durango, Dgo.Mex Fecha: 14/09/2012 Tabla de contenido INTRODUCCIÓN

Más detalles

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS Sistemas de Información para la Gestión UNIDAD 3: RECURSOS DE TECNOLOGÍA DE INFORMACIÓN Aplicaciones UNIDAD 2: RECURSOS DE TI Aplicaciones 1. Administración de bases de datos e información: Sistemas de

Más detalles

Experto TIC en Inteligencia Artificial para Programadores

Experto TIC en Inteligencia Artificial para Programadores Experto TIC en Inteligencia Artificial para Programadores Titulación certificada por EUROINNOVA BUSINESS SCHOOL Experto TIC en Inteligencia Artificial para Programadores Experto TIC en Inteligencia Artificial

Más detalles

BI BUSINESS INTELLIGENCE

BI BUSINESS INTELLIGENCE ESCUELA SUPERIOR POLITECNICA DEL LITORAL MAESTRÍA EN SISTEMAS DE INFORMACION GERENCIAL 7 ma. PROMOCIÓN BI BUSINESS INTELLIGENCE Grupo No. 1 Geannina Aguirre Henry Andrade Diego Maldonado Laura Ureta MATERIA:

Más detalles

9.1.Los sistemas expertos. 9.2.Las redes neuronales artificiales. 9.3.Sistemas de inducción de reglas y árboles de decisión.

9.1.Los sistemas expertos. 9.2.Las redes neuronales artificiales. 9.3.Sistemas de inducción de reglas y árboles de decisión. TEMA 9 TÉCNICAS DE INTELIGENCIA ARTIFICIAL PARA EL ANÁLISIS DE LA INFORMACIÓN CONTABLE 9.1.Los sistemas expertos. 9.2.Las redes neuronales artificiales. 9.3.Sistemas de inducción de reglas y árboles de

Más detalles

Comparación de características entre las ediciones Estándar y Enterprise

Comparación de características entre las ediciones Estándar y Enterprise Comparación de características entre las ediciones Estándar y Enterprise Enterprise Enterprise es una plataforma completa de datos para ejecutar aplicaciones de misión crítica OLTP (Online Transaction

Más detalles

DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM

DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM DESARROLLO E IMPLANTANCIÓN DE UN SISTEMA ACADEMICO PARA EL ICM Sergio Bauz Olvera 1, Washington Jama 2 1 Ingeniero en Estadística e Informática 2003 2 Director de Tesis de Grado, Ing. Washington Jama.

Más detalles

SQL Server Business Intelligence parte 1

SQL Server Business Intelligence parte 1 SQL Server Business Intelligence parte 1 Business Intelligence es una de las tecnologías de base de datos más llamativas de los últimos años y un campo donde Microsoft ha formado su camino a través de

Más detalles

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Programa de Capacitación y Certificación. INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Contenido PERFIL DE UN ESPECIALISTA EN BASES DE DATOS.... 3 6231. MANTENIENDO UNA BASE DE DATOS DE SQL SERVER 2008

Más detalles

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II Carlos A. Olarte Bases de Datos II Contenido 1 Introducción 2 OLAP 3 Data Ware Housing 4 Data Mining Introducción y Motivación Cómo puede analizarse de forma eficiente volúmenes masivos de datos? La consulta,

Más detalles

Academia de la carrera de Licenciatura Informática del Instituto Tecnológico Aguascalientes

Academia de la carrera de Licenciatura Informática del Instituto Tecnológico Aguascalientes 1. DATOS DE LA ASIGNATURA Nombre de la Asignatura: Sistemas de Soporte a la Decisión Carrera: Licenciatura en Informática Clave de la asignatura: IFS-0406 Horas teoría - horas práctica - créditos: 4-2-10

Más detalles

E-data. Transformando datos en información con Data Warehousing

E-data. Transformando datos en información con Data Warehousing Federico Plancarte Sánchez E-data. Transformando datos en información con Data Warehousing Tema 2 El soporte a la Decisión 2-1 Evolución del soporte a la decisión Diversas categorías del análisis del DS

Más detalles

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 FLUJO DE CAPACITACIÓN Prerrequisitos Fundamentos de Programación Sentencias SQL Server 2012 Duración: 12 horas 1. DESCRIPCIÓN

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

Unidad 5. Conceptos y Estructuras de Archivos

Unidad 5. Conceptos y Estructuras de Archivos Unidad 5 Conceptos y Estructuras de Archivos En todos los tiempos y más aún en la era en que vivimos, el hombre tiene cada vez mas necesidad de consultar una mayor cantidad de información para poder desarrollar

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE PRESENTACIÓN Ramón Díaz Hernández Gerente (1.990) Nuestro Perfil Inversión permanente en formación y nuevas tecnologías. Experiencia en plataforma tecnológica IBM (Sistema Operativo

Más detalles

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento Servicio Business Intellingence integrado con & Big Del dato al conocimiento Servicio BI integral: Business Intelligence es la habilidad para transformar los datos en información, y la información en conocimiento,

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a:

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a: Oracle Business Intelligence Enterprise Edition 11g. A lo largo de los siguientes documentos trataré de brindar a los interesados un nivel de habilidades básicas requeridas para implementar efectivamente

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

Carlos Daniel Quattrocchi

Carlos Daniel Quattrocchi PRESENTA Lic. Héctor Iglesias Licenciado en Informática. Profesional independiente, ha desempeñado la actividad en informática desarrollando e implementando sistemas, capacitando y asesorando a numerosas

Más detalles

Construcción de sistemas de soporte a la toma de decisiones

Construcción de sistemas de soporte a la toma de decisiones INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Construcción de sistemas de soporte a la toma de decisiones M. En C. Eduardo Bustos Farías 1 Desarrolla en Sistemas de Apoyo de Decisión Como

Más detalles

Servicio de Difusión de la Creación Intelectual (SeDiCI)

Servicio de Difusión de la Creación Intelectual (SeDiCI) Servicio de Difusión de la Creación Intelectual (SeDiCI) SeDiCI es el repositorio institucional de la Universidad Nacional de La Plata (UNLP), creado con dos objetivos prioritarios: Para atender al rol

Más detalles

Inteligencia Artificial para desarrolladores Conceptos e implementación en C#

Inteligencia Artificial para desarrolladores Conceptos e implementación en C# Introducción 1. Estructura del capítulo 19 2. Definir la inteligencia 19 3. La inteligencia de los seres vivos 22 4. La inteligencia artificial 24 5. Dominios de aplicación 26 6. Resumen 28 Sistemas expertos

Más detalles

Sistemas de Ayuda a la Decision Qué es un Sistema de Ayuda a la Decisión?

Sistemas de Ayuda a la Decision Qué es un Sistema de Ayuda a la Decisión? Sistemas de Ayuda a la Decision Qué es un Sistema de Ayuda a la Decisión? Luis Daniel Hernández Molinero Departamento de Ingeniería de la Información y las Comunicaciones Facultad de Informática Universidad

Más detalles

SQL SERVER 2008 R2 BI 07/07/2010 BUSINESS INTELLIGENCE

SQL SERVER 2008 R2 BI 07/07/2010 BUSINESS INTELLIGENCE Todo en la vida comienza con código VII Encuentro Desarrolladores Microsoft BUSINESS INTELLIGENCE Ana María Bisbé York Servicios Profesionales VII Encuentro Desarrolladores Microsoft Todo en la vida comienza

Más detalles

Propuesta de Métricas para Proyectos de Explotación de Información

Propuesta de Métricas para Proyectos de Explotación de Información Propuesta de Métricas para Proyectos de Explotación de Información Diego Martín Basso 1. Maestría en Ingeniería de Sistemas de Información. Universidad Tecnológica Nacional, FRBA Buenos Aires, Argentina

Más detalles

Business Intelligence

Business Intelligence Business Intelligence Curso 2012-2013 Departamento de Lenguajes y Sistemas Informáticos II http://www.kybele.es ISI/SI - 1 Introducción Nuestra misión: Hacer inteligente el negocio Buenos días. Soy Negocio.

Más detalles

ASIGNATURA: Tecnologías de Información y Comunicación II

ASIGNATURA: Tecnologías de Información y Comunicación II ASIGNATURA: Tecnologías de Información y Comunicación II 53 HORAS DESCRIPCIÓN DE LA ASIGNATURA: Esta asignatura proporciona al alumno las competencias y herramientas teóricas necesarias para la aplicación

Más detalles

Business Intelligence: Competir con Información

Business Intelligence: Competir con Información Business Intelligence: Competir con Información Reus, 16 de Noviembre de 2011 Página 1 Página 2 Sumario Sistemas de Información - Introducción Introducción Business Intelligence Datawarehouse OLAP Data

Más detalles

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY)

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) Autor: Lic. Manuel Ernesto Acosta Aguilera Entidad: Facultad de Economía, Universidad de La Habana Dirección: Edificio

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

Análisis de la aplicabilidad de medidas software para el diseño semi-automático de arquitecturas

Análisis de la aplicabilidad de medidas software para el diseño semi-automático de arquitecturas Análisis de la aplicabilidad de medidas software para el diseño semi-automático de arquitecturas A. Ramírez, J.R. Romero, S. Ventura Dpto. de Informática y Análisis Numérico. Universidad de Córdoba. XIX

Más detalles

Plataformas tecnológicas CRM de datos a conocimiento

Plataformas tecnológicas CRM de datos a conocimiento Rambla Catalunya, 124 2º 2ª 08008 BARCELONA Telf. 932 857 099 www.mk-r.es Plataformas tecnológicas CRM de datos a conocimiento Whitepaper nº3 - por Josep Ma. Abella El desarrollo de una estrategia relacional

Más detalles

ARQUITECTURA DE UNA BODEGA DE DATOS

ARQUITECTURA DE UNA BODEGA DE DATOS ARQUITECTURA DE UNA BODEGA DE DATOS Estructura de contenidos INTRODUCCIÓN... 3 1. ARQUITECTURA DE UNA BODEGA DE DATOS... 3 1.1 PROPIEDADES... 3 1.2 ARQUITECTURA DE UNA CAPA... 4 1.3 ARQUITECTURA DE DOS

Más detalles

Soluciones de virtualización de datos

Soluciones de virtualización de datos Soluciones de virtualización de datos Cómo obtener una ventaja competitiva gracias al uso de los datos El contexto de cambio vertiginoso en las diferentes actividades de negocio requiere en la actualidad

Más detalles

Plataformas tecnológicas CRM de datos a conocimiento Whitepaper 2007 - Por Josep Mª Abella y Jesús Mª Roca PLATAFORMAS TECNOLÓGICAS CRM Sumario Introducción El desarrollo de una estrategia relacional requiere

Más detalles

Máster en Gestión de Marketing

Máster en Gestión de Marketing Contenidos académicos del Máster en Gestión de Marketing - MMARQ Primer trimestre: 1. Técnicas cuantitativas: El objetivo de esta asignatura es familiarizarse con técnicas gráficas y analíticas de estadística.

Más detalles

INGENERíA EN INFORMÁTICA. Sistema de Información. (Concepto, Importancia, Tipos de Si, Actividades)

INGENERíA EN INFORMÁTICA. Sistema de Información. (Concepto, Importancia, Tipos de Si, Actividades) INGENERíA EN INFORMÁTICA Sistema de Información (Concepto, Importancia, Tipos de Si, Actividades) NOMBRE: Oscar Apata T. CARRERA: Ingeniería en Informática ASIGNATURA: Tecnologías de la Información II

Más detalles

TEMA 1. Introducción

TEMA 1. Introducción TEMA 1. Introducción Francisco José Ribadas Pena, Santiago Fernández Lanza Modelos de Razonamiento y Aprendizaje 5 o Informática ribadas@uvigo.es, sflanza@uvigo.es 28 de enero de 2013 1.1 Aprendizaje automático

Más detalles