+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i

Tamaño: px
Comenzar la demostración a partir de la página:

Download "+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i"

Transcripción

1 OCIOES de ESTADÍSTICA En las tablas estadísticas se pueden tabular, entre otros, los siguientes aspectos: La frecuencia absoluta ( f i ), es decir, el número de veces que aparece un determinado valor en un estudio estadístico. La suma de las frecuencias absolutas es igual al número total de datos (): f 1 + f 2 + f 3 + = f i = La frecuencia relativa ( h i ), es decir, el cociente entre la frecuencia absoluta y el número total de datos, : h i = f i La suma de las frecuencias relativas es igual a 1. La frecuencia relativa porcentual ( p i ): es la frecuencia relativa expresada en tantos por ciento. Se obtiene multiplicando la frecuencia relativa por 100: p i =h i 100 La frecuencia absoluta acumulada ( F i ), es decir, la suma de todas las frecuencias absolutas de todos los valores inferiores o iguales al valor considerado i : F i = f i La frecuencia relativa acumulada ( H i ), es decir, la suma de todas las frecuencias relativas de todos los valores menores o iguales al valor considerado i : H i = h i La frecuencia relativa porcentual acumulada ( P i ): es la suma de todas las frecuencias relativas porcentuales menores o iguales que el dato considerado. P i = p i Ejemplo: La talla de calzado de 20 niños es: 43; 42; 41; 39; 41; 37; 40; 43; 44; 40; 39; 39; 38; 41; 40; 39; 38; 39; 39; 40. Construye la tabla de frecuencias y porcentajes. Valores x i f i h i = f i Porcentajes p i =h i 100 F i =Σ f i H i =Σ h i P i =Σ p i ,05 5% 1 0,05 5% ,10 10% 3 0,15 15% ,30 30% 9 0,45 45% ,20 20% 13 0,65 65% ,15 15% 16 0,80 80% ,05 5% 17 0,85 85% ,10 10% 19 0,95 95% ,05 5% % 1 Suma =Σ f i =20 f i =1 Σ p i =100

2 Matemáticas de ivel II de E.S.P.A. OCIOES de ESTADÍSTICA Si la variable es continua o, siendo discreta toma muchos valores diferentes, los datos se agrupan en intervalos o clases. Estos intervalos tienen todos, la misma amplitud, siendo la marca de clase (x i), de cada intervalo, el punto medio de cada uno. Para formar los intervalos se procede de la siguiente manera: úmero de intervalos: se obtiene del valor resultante de redondear a un entero la raíz cuadrada del número total de datos: nº intervalos = Amplitud de cada intervalo: Para determinar la amplitud de cada intervalo, se calcula el recorrido, es decir, la diferencia entre el dato de mayor valor y el de menor valor. A continuación se busca un valor igual o superior al recorrido que sea múltiplo del número de intervalos. La amplitud de cada intervalo se obtiene de dividir este valor entre el número de intervalos. Ejemplo: El peso en kg de 20 niños es: 66,5; 59,2; 60,1; 64,2; 70; 50; 41,6; 47,9; 42,8; 55; 52,2; 50,3; 42,2; 61,9; 52,4; 49,2; 41,6; 38,7; 36,5; 45. Crea una tabla agrupando los datos en 6 intervalos de amplitud 7. El número de intervalos es 20=4,47 4 El recorrido es 70-36,5=33,5. Buscamos el primer múltiplo de 4 mayor que 33,5; es el 36. Longitud= recorrido nº de intervalos = 36 4 =9 El extremo inferior del primer intervalo se calcula dividiendo entre dos la resta obtenida entre el recorrido estimado y el recorrido calculado: (36 33,5 ):2=1,25 36,5 1,25=35,25 Intervalo Marca de clase (x i) Recuento (f i) h i p i H i F i P i [35-44) 39,5 6 6/ / [44-53) 48,5 7 7/ / [53-62) 57,5 4 4/ / [62-71] 66,5 3 3/ /20= Suma =20 2

3 Matemáticas de ivel II de E.S.P.A. OCIOES de ESTADÍSTICA Ejemplo: Dibuja el histograma y el polígono de frecuencias acumuladas para la siguiente tabla que muestra los resultados de un test realizado a los empleados de una fábrica: Altura (x i) f i F i [38-44) 7 7 [44-50) 8 15 [50-56) [56-62) [62-68) [68-74) 9 82 [74-80] 6 88 Actividades 4. Los pesos en kilogramos de los 40 jóvenes son los siguientes: (a) Haz una tabla de frecuencias agrupando los datos. (b) Representa la tabla anterior mediante un histograma y dibuja sobre éste un polígono de frecuencias. 3

4 OCIOES de ESTADÍSTICA Solución (a) (b) Intervalo Marca de clase Recuento (frecuencia) [38,5-44,5) 41,5 2 [44,5-50,5) 47,5 6 [50,5-56,5) 53,5 11 [56,5-62,5) 59,5 12 [62,5-68,5) 65,5 6 [68,5-74,5] 71,5 3 Diagrama de sectores Otro tipo de gráfico usado muy frecuentemente en los medios de comunicación es el diagrama de sectores o de tarta. Es muy útil para ilustrar la división de una población en sus diversas partes, y la proporción de la totalidad que representa cada parte. Consiste en dividir un círculo en tantos sectores como valores tenga la variable, asignando a cada sector una amplitud proporcional a la frecuencia de cada valor. Se utiliza para representar frecuencias de cualquier tipo de variable siempre que no tome demasiados valores diferentes, en cuyo caso se perdería el impacto visual que este tipo de gráfico pretende conseguir. Veamos un ejemplo: Ejemplo: En un centro deportes municipal hay inscritas 120 personas en los siguientes deportes: 4 Deportes º de inscritos Baloncesto 20 Balonmano 14 Fútbol 48 Atletismo 16 atación 22 Total 120 El diagrama de sectores correspondiente a esta variable es:

5 Matemáticas de ivel II de E.S.P.A. OCIOES de ESTADÍSTICA Observa que cada frecuencia que aparece en la tabla se representa por un sector de la tarta, de tamaño proporcional al valor de la frecuencia. Para dibujar este gráfico se ha hecho lo siguiente: Se ha dividido 360º entre 120, que es la suma de todas las frecuencias: =3 º Se multiplica cada frecuencia por este resultado. Por ejemplo, para el baloncesto: Se dibuja con el transportador el sector circular correspondiente a la medida obtenida =60 Actividades 5. En un edificio de 16 vecinos, el número de televisores por vivienda es: 0, 1, 1, 2, 1, 3, 2, 1, 1, 1, 2, 2, 3, 0, 3, 2. Haz una tabla de frecuencias y dibuja el dibuja el diagrama de sectores. Solución º de televisores frecuencias porcentajes p i =h i 100 grados sexagesimales , , ,25 112, ,75 67,5 Totales =

6 OCIOES de ESTADÍSTICA 4. Parámetros estadísticos Sirven para sintetizar la información proporcionada por una tabla o gráfico estadístico logrando una visión global de lo que acontece. Los hay de tres tipos: de centralización, de dispersión y de posición. 4.1 Medidas de centralización Indican los valores más representativos de un conjunto de datos; en particular, en torno a qué valor (centro) se distribuyen los datos. Las más utilizadas son la media aritmética, la mediana y la moda. Media aritmética La media aritmética, x, es el cociente entre la suma de todos los valores e la variable y el número total de datos: x= x i f i En el caso de variables continuas o cuando los datos están agrupados en intervalos, se toma como valor de la variable la marca de clase. Moda La moda, Mo, es el valor que tiene mayor frecuencia absoluta. En el caso de una variable continua, hablaremos de intervalo modal o tomaremos la marca de clase. Si hay más de un valor con la máxima frecuencia, entonces no hay moda propiamente dicha aunque, en ocasiones se habla de distribución bimodal o trimodal. Mediana La mediana, M e, una vez ordenados los datos, es el valor del dato que ocupa la posición central, o la media de los dos datos centrales, en el caso de que el número de datos sea par. La mediana divide los datos en dos partes, de forma que el 50% de los datos son menores que la mediana y el otro 50% son mayores. (En este sentido, además de ser una medida de centralización, lo es también de posición). Si la variable es continua, hablaremos de intervalo mediano o consideraremos la marca de clase. Ejemplo: Una encuesta realizada a 10 parejas en la que se les preguntaba sobre el número de hijos que tienen presenta los siguientes datos: 0, 1, 1, 3, 2, 0, 1, 2, 2, 1. Forma una tabla estadística con estos datos y calcula la media, la moda y la mediana. Para calcular los parámetros estadísticos, es conveniente formar una tabla como la siguiente: 6 º de hijos x i frecuencias absolutas f i x i f i Totales =Σ f i =10 13 Esta tabla facilita el cálculo de los parámetros estadísticos:

7 Matemáticas de ivel II de E.S.P.A. OCIOES de ESTADÍSTICA Media: x i f i x= = =1,3 Moda: El dato de mayor frecuencia es 1: Mo=1 hijo Mediana: Observando la tabla de los porcentajes acumulados, vemos que el 50% corresponde al dato 1: Me=1 hijo Ejemplo: Obtener la media, moda y mediana de los datos estadísticos recogidos en la siguiente tabla: Intervalos f i Intervalos Marca de clase x i f i x i f i F i P i ,5 3 37, ,5 5 87, , , , , , Σ x i f i =597,5 Media: x i f i x= = 597,5 25 =23,9 Moda: El dato de mayor frecuencia es 22,5: Mo=22,5 4.2 Medidas de dispersión Mediana: Observando la tabla de los porcentajes acumulados, vemos que el 50% corresponde al dato cuya marca de clase es 22,5: Me=22,5 Son medidas que permiten conocer como están de disgregados o alejados del centro los datos de un estudio estadístico. Generalmente, ese centro es la media aritmética de la distribución. Rango o recorrido (R) El rango o recorrido es la diferencia existente entre el valor mayor y el menor de la distribución. Realmente no es una medida muy significativa en la mayoría de los casos: R=Máximo valor mínimo valor Varianza σ 2 La varianza es la media de los cuadrados de las desviaciones de los datos respecto de la media. Se calcula por la expresión: 7 2 σ 2 f = i x i x 2

8 OCIOES de ESTADÍSTICA Desviación típica La desviación típica se define como la raíz cuadrada positiva de la varianza: = 2 f σ = σ 2 i x i x 2 Tiene la ventaja, respecto de la varianza, de que se mide en la misma unidad que la variable. Coeficiente de variación (CV) El coeficiente de variación CV es el cociente de la desviación típica entre la media: CV = σ x o tiene unidades y se utiliza para comparar la dispersión entre distintas variables estadísticas. Cuanto más pequeño sea el coeficiente de variación más agrupados están los datos en torno a su media. Veamos un ejemplo sobre el cálculo de todos estos parámetros. Ejemplo:El número de preguntas acertadas por 100 opositores en un test de 30 cuestiones se presenta agrupado en la tabla siguiente: úmero de aciertos Marca de clase x i Frecuencia absoluta f i [0,5) 2,5 3 [5,10) 7,5 10 [10,15) 12,5 25 [15,20) 17,5 38 [20,25) 22,5 16 [25,30) 27,5 8 Total 100 Calcula la media, moda, mediana, varianza, desviación típica y coeficiente de variación. El cálculo de estos parámetros se facilita si añadimos las siguientes columnas a la tabla: 8 úmero de aciertos Marca de clase x i Frecuencia absoluta f i Frecuencias acumuladas F i x i f i x i f i [0,5) 2, ,5 18,75 [5,10) 7, ,5 [10,15) 12, ,5 3906,25 [15,20) 17, ,5 [20,25) 22, [25,30) 27, Total = f i =100 x i f i =1640 x i2 f i =30275

9 Matemáticas de ivel II de E.S.P.A. OCIOES de ESTADÍSTICA Media x= x i f i = 1640 =16, Moda o intervalo modal Es el intervalo o marca de clase de mayor frecuencia: M o =[20,25 ) o bien M o =22,5 Mediana o intervalo mediano Para calcular la mediana es conveniente obtener la tabla de porcentajes acumulados con el fin de ver a qué intervalo pertenece el 50% de los datos. o obstante, podemos servirnos de la columna de frecuencias acumuladas. En ésta la frecuencia 50 corresponde al intervalo [15,20) cuya marca de clase es 17,5. Por tanto, podemos decir que el intervalo mediano es M e =[15,20 ) o bien M e =17,5. Varianza Desviación típica 2 σ 2 f = i x i x 2 = (16,40 )2 =33,79 σ = σ 2 = 33,79=5,81 Coeficiente de variación CV = σ x = 5,81 16,40 =0,35=35 Se observa que el coeficiente de variación es moderadamente grande. Esto indica que los datos presentan una agrupación relativamente pequeña respecto de las medidas centrales, es decir, que no están demasiado desagrupados. Esto se puede visualizar en el histograma que se muestra al margen. Veamos con un ejemplo la utilización del coeficiente de variación: Compara la dispersión en dos variables: la primera mide el peso de los elefantes x e =2000kg y σ e =100kg, y la otra mide el peso de los ratones, con x r =0,05 kg y σ r =0,02kg. Al comparar las desviaciones típicas, es mayor la de los elefantes. Sus coeficientes de variación son 0,05 para los elefantes y 0,4 en los ratones. Por tanto, la dispersión es mayor en los ratones. (Cuanto menor es el coeficiente de variación menor es la dispersión de los datos). A veces, el coeficiente de variación se expresa en %. Según eso, el C.V. de los elefantes sería del 5% mientras el de los ratones del 40%. 4.3 Medidas de posición Una medida de posición es un valor de la variable que nos informa del lugar que ocupa un dato dentro del conjunto ordenado de valores. Las más utilizadas son los cuartiles, la mediana y los percentiles o centiles. 9

10 OCIOES de ESTADÍSTICA Actividades 2. Los goles marcados por un equipo de fútbol en los 10 últimos partidos han sido: 1, 0, 3, 1, 0, 2, 1, 2, 4, 2. Haz una tabla de frecuencias relativas, absolutas y porcentajes para estos valores. Solución: Valores x i f. absoluta f i f. relativa h i = f i Porcentajes p i =h i ,2 20% 1 3 0,3 30% 2 3 0,3 30% 3 1 0,1 10% 4 1 0,1 15% Totales =10 f i =1 100% 3. Elaborar una tabla de frecuencias absoluta, frecuencias relativas, frecuencias absolutas y relativas acumuladas, porcentajes y porcentajes acumulados con las estaturas de 40 adolescentes (Reparte los datos en intervalos de igual longitud): Solución: º de intervalos: 40=6,32 6 Recorrido: =29 Tomamos el primer múltiplo de 6 superior a 29: 30 Amplitud del intervalo: 30 6 =5 El extremo inferior del primer intervalo se calcula dividiendo entre dos la resta obtenida entre el recorrido estimado y el recorrido calculado: (30 29 ):2=1:2=0, ,5=148,5 10

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B)

(Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) Estadística (Se corresponde con el tema 14 del libro de Oxford de 4ºESO Opc. B) 1. Conceptos Básicos La Estadística es la ciencia que se encarga de recopilar y ordenar datos referidos a diversos fenómenos

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Estadística para el análisis de los Mercados S2_A1.1_LECV1

Estadística para el análisis de los Mercados S2_A1.1_LECV1 5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar

Más detalles

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.

Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud. 1. TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística Es la ciencia que estudia conjunto de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas y otros parámetros tales como

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

Apuntes y ejercicios de Estadística para 2º E.S.O

Apuntes y ejercicios de Estadística para 2º E.S.O Apuntes y ejercicios de Estadística para 2º E.S.O 1 Introducción La Estadística es la ciencia que se encarga de recoger, organizar, describir e interpretar datos referidos a distintos fenómenos para, posteriormente,

Más detalles

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD

2º ESO UNIDAD 14 ESTADÍSTICA Y PROBABILIDAD º ESO UNIDAD 1 ESTADÍSTICA Y PROBABILIDAD 1 1.- CONCEPTOS BÁSICOS Estadística.- Es la ciencia que estudia conjuntos de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Guía de Matemática Cuarto Medio

Guía de Matemática Cuarto Medio Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas

Más detalles

9.1. Nociones básicas.

9.1. Nociones básicas. TEMA 9. ESTADÍSTICA 9.1. ociones básicas. Población y muestra. Fases y tareas de un estudio estadístico. Tipos de muestreo. Representatividad de las muestras. 9.2. Variable discreta y continua. Tablas

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS

II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,

Más detalles

REPASO DE ESTADÍSTICA DESCRIPTIVA

REPASO DE ESTADÍSTICA DESCRIPTIVA ÍNDICE: 1.- Tipos de variables 2.- Tablas de frecuencias 3.- Gráficos estadísticos 4.- Medidas de centralización 5.- Medidas de dispersión REPASO DE ESTADÍSTICA DESCRIPTIVA 1.- Tipos de variables La estadística

Más detalles

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.

ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra. ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Ejercicios de estadística.

Ejercicios de estadística. Ejercicios de estadística..- Los siguientes números son el número de horas que intervienen alumnos en hacer deporte durante un mes:, 7,,, 5, 6, 7, 9,,, 5, 6, 6, 6, 7, 8,,, 5, 8 a) Calcula las tablas de

Más detalles

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO)

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO) CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN Matemáticas PAI 5 (4ºESO) Ejercicio 2 Actividad de aula 3 Medidas estadísticas Recupera la tabla de frecuencias que realizaste en el ejercicio 2 de la actividad de

Más detalles

Curs MAT CFGS-15

Curs MAT CFGS-15 Curs 015-16 MAT CFGS-15 ESTADÍSTICA Tablas de frecuencia. Distribución de frecuencias La distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos,

Más detalles

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha: Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es:

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es: La estadística es una materia dedicada a la recopilación, organización, estudio y análisis de datos de un hecho en particular. La estadística descriptiva tabula, representa y describe una serie de datos

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo.

UNIDAD: ESTADISTICA. La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. UNIDAD: ESTADISTICA La estadística se ocupa de recopilar datos, organizarlos en tablas y gráficos y analizarlos con un determinado objetivo. La estadística puede ser descriptiva o inferencial. La estadística

Más detalles

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1 8 Estadística 81 Distribuciones unidimensionales Tablas de frecuencias En este tema nos ocuparemos del tratamiento de datos estadísticos uestro objeto de estudio será pues el valor de una cierta variable

Más detalles

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va

Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Métodos Matemá-cos en la Ingeniería Tema 5. Estadís-ca descrip-va Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas Datos no agrupados: x 1, x 2,...,x n x= x 1 +x 2 +... x n n n i=1 = n Ejemplo: dados los valores: X = 1, 4, 16, 11, 3, 6, su media es

Más detalles

1. Definición de Estadística

1. Definición de Estadística 1. Definición de Estadística La Estadística es la parte de las Matemáticas que estudia una serie de datos, los recuenta, los ordena y los clasifica, para poder hacer comparaciones y sacar conclusiones.

Más detalles

UNIDAD 6 Medidas de tendencia central

UNIDAD 6 Medidas de tendencia central UNIDAD Medidas de tendencia central UNIDAD MEDIDAS DE TENDENCIA CENTRAL = EJEMPLO. ó Al estudiar la información estadística de los histogramas y los polígonos de frecuencia, se puso en evidencia un significativo

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

TEMA 8: ESTADÍSTICA DESCRIPTIVA.

TEMA 8: ESTADÍSTICA DESCRIPTIVA. I.E.S. Salvador Serrano de Alcaudete Departamento de Matemáticas º ESO 0 / TEMA 8: ESTADÍSTICA DESCRIPTIVA. 8. Introducción. La palabra ESTADÍSTICA procede del vocablo Estado, pues era función principal

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

UNIREFUERZO JORNADA FIN DE SEMANA AÑO (enunciado)

UNIREFUERZO JORNADA FIN DE SEMANA AÑO (enunciado) UNIREFUERZO JORNADA FIN DE SEMANA AÑO 2015-07-31 (enunciado) PRIMERA PARTE: PARTE TEORICA (10 puntos) A continuación se presentan 5 enunciados. Subraye la respuesta correcta: 1.) Cuál es el nombre de la

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DESCRIPTIVA DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N 1: CONCEPTOS BASICOS DEFINICIÓN DE ESTADÍSTICA La Estadística trata del recuento, ordenación y clasificación

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

CUADERNO Nº 11 NOMBRE: FECHA: / / Estadística. Representar e interpretar gráficos estadísticos, y saber cuando es conveniente utilizar cada tipo.

CUADERNO Nº 11 NOMBRE: FECHA: / / Estadística. Representar e interpretar gráficos estadísticos, y saber cuando es conveniente utilizar cada tipo. Estadística Contenidos 1. Hacer estadística Necesidad Población y muestra Variables 2. Recuento y gráficos Recuento de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización y posición

Más detalles

Distribuciones de Frecuencia

Distribuciones de Frecuencia Distribuciones de Frecuencia Datos Agrupados en Intervalos Cuando se trata con una gran cantidad de datos es conveniente agruparlos en intervalos o clases adecuados. Es aconsejable escoger estos intervalos

Más detalles

Estadística. La Estadística es la parte de las Matemáticas que estudia una serie de datos para compararlos y sacar conclusiones.

Estadística. La Estadística es la parte de las Matemáticas que estudia una serie de datos para compararlos y sacar conclusiones. Estadística 3. ESTADÍSTICA. 3.1. Conceptos básicos. La Estadística es la parte de las Matemáticas que estudia una serie de datos para compararlos y sacar conclusiones. Población: Es el conjunto total de

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

Población, muestra y variable estadística

Población, muestra y variable estadística Población, muestra y variable estadística La estadística es la parte de las Matemáticas que estudia cómo recopilar y resumir gran cantidad de información para extraer conclusiones. La población de un estudio

Más detalles

Tema 1: Análisis de datos univariantes

Tema 1: Análisis de datos univariantes Tema 1: Análisis de datos univariantes 1 En este tema: Conceptos fundamentales: muestra y población, variables estadísticas. Variables cualitativas o cuantitativas discretas: Distribución de frecuencias

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION

TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Margarita Ospina Pulido Edición: Nicolás Acevedo Cruz Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Margarita Ospina Pulido Edición: Nicolás Acevedo Cruz Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Margarita Ospina Pulido Edición: Nicolás Acevedo Cruz Rafael Ballestas Rojano Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas Enero de 2015 Universidad

Más detalles

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central nos proporcionan la descripción significativa de un conjunto de observaciones. Como su nombre lo indica, son datos de una variable que tienden

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

Organización de Datos

Organización de Datos Organización de Datos Mtro. Romeo Altúzar Meza 3:16:06 p. m. Introducción Siendo el dato el material que se debe procesar, es decir, la materia prima de la estadística, el primer paso es entonces la recolección

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

PÁGINA 120. Pág. 1. Unidad 12. Estadística

PÁGINA 120. Pág. 1. Unidad 12. Estadística 1 Soluciones a las actividades de cada epígrafe PÁGINA 1 1 Un fabricante de tornillos desea hacer un control de calidad. Para ello, recoge 1 de cada tornillos producidos y lo analiza. a) Cuál es la población?

Más detalles

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística

Más detalles

FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES

FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES 1º. La edad de Pedro es el doble de la de Juan. Expresa esta función mediante una fórmula y haz una tabla con algunos de sus puntos. 2º. Relaciona cada texto

Más detalles

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000 INTRODUCCIÓN La estadística día a día esta ocupando un lugar importante en nuestra sociedad colaborando así al progreso humano y su bienestar. Aunque en sus comienzos era aplicada únicamente a asuntos

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL 1 Medidas de tendencia central http://www.hiru.com/es/matematika/matematika_05900.html Las características globales de un conjunto de datos estadísticos pueden resumirse mediante

Más detalles

Unidad Nº 3. Medidas de Dispersión

Unidad Nº 3. Medidas de Dispersión Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

Trabajo de Estadística 3º ESO

Trabajo de Estadística 3º ESO Pasos para realizar el trabajo Trabajo de Estadística 3º ESO 1º Organizarse en grupos de 2-3 personas 2º Elegir el problema a estudiar: Variable estadística cuantitativa discreta 3º Determinar la Población

Más detalles

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz Análisis de datos y gestión n veterinaria Tema 1 Estadística descriptiva Prof. Dr. José Manuel Perea Muñoz Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, de Septiembre

Más detalles

ESTADÍSTICA APLICADA A LA COMUNICACIÓN CAMPUS VIRTUAL OCW PRÁCTICA 7: MEDIDAS UNIVARIANTES SOLUCIONES

ESTADÍSTICA APLICADA A LA COMUNICACIÓN CAMPUS VIRTUAL OCW PRÁCTICA 7: MEDIDAS UNIVARIANTES SOLUCIONES ESTADÍSTICA APLICADA A LA COMUNICACIÓN CAMPUS VIRTUAL OCW PRÁCTICA 7: MEDIDAS UNIVARIANTES SOLUCIONES 1. La siguiente tabla presenta la distribución del número de miembros en los hogares de Araba. Contesta

Más detalles

68 Bioestadística: Métodos y Aplicaciones. curtosis<0 curtosis=0 curtosis>0. Figura 2.10: Apuntamiento de distribuciones de frecuencias

68 Bioestadística: Métodos y Aplicaciones. curtosis<0 curtosis=0 curtosis>0. Figura 2.10: Apuntamiento de distribuciones de frecuencias 68 Bioestadística: Métodos y Aplicaciones curtosis0 Figura 2.10: Apuntamiento de distribuciones de frecuencias 2.6. Problemas Ejercicio 2.1. En el siguiente conjunto de números,

Más detalles

Estadística descriptiva y métodos diagnósticos

Estadística descriptiva y métodos diagnósticos 2.2.1. Estadística descriptiva y métodos diagnósticos Dra. Ana Dorado Díaz Consejería de Sanidad Diplomado en Salud Pública Diplomado en Salud Pública - 2 Objetivos específicos 1. El alumno aprenderá a

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 5 Todos iguales, todos diferentes

Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 5 Todos iguales, todos diferentes Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 5 Todos iguales, todos diferentes No sé si te habrás parado a pensar que todos formamos parte de estudios de empresas, gobiernos o instituciones.

Más detalles

PROGRAMA DE REFUERZO 3º Evaluación

PROGRAMA DE REFUERZO 3º Evaluación COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Media: x= OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Estadística. Población y muestra.

Media: x= OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Estadística. Población y muestra. Estadística INTRODUCCIÓN La presencia de la Estadística es habitual en multitud de contextos de la vida real: encuestas electorales, sondeos de opinión, etc. La importancia de la Estadística en la sociedad

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Estadistica Aplicada a la Educación CODIGO: HOC220

Estadistica Aplicada a la Educación CODIGO: HOC220 REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO DE MEJORAMIENTO PROFESIONAL DEL MAGISTERIO NUCLEO ACADEMICO TACHIRA Estadistica Aplicada a la Educación CODIGO:

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4 M.Sc. JIMMY DELGADO VILLCA 1. PARAMETRO Y ESTADIGRAFO Se entiende por parámetro a una característica o atributo de la población, en otras palabras se la puede entender

Más detalles

EJERCICIOS Tema 5 La información que recibimos

EJERCICIOS Tema 5 La información que recibimos EJERCICIOS Tema 5 La información que recibimos 1.- Califica las siguientes preguntas como abiertas o cerradas: a) Elige un lugar para tomar un baño: Playa - Piscina b) Indica que color o colores del arco

Más detalles

Gráficos estadísticos. Estadígrafo

Gráficos estadísticos. Estadígrafo Tema 12: Estadística y probabilidad Contenidos: Gráficos estadísticos - Estadígrafos de tendencia central Nivel: 4 Medio Gráficos estadísticos. Estadígrafo 1. Distribución de frecuencias Generalmente se

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA

Más detalles

DOCUMENTO 7: PARÁMETROS DE CENTRALIZACIÓN.

DOCUMENTO 7: PARÁMETROS DE CENTRALIZACIÓN. DOCUMENTO 7: PARÁMETROS DE CENTRALIZACIÓN. En la estadística se manejan gran cantidad de datos. Uno de los fines de la estadística descriptiva es el de resumir o sintetizar esas grandes cantidades de datos

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Angel Francisco Arvelo Luján es un Profesor Universitario Venezolano en el área de Probabilidad y Estadística, con más de 40 años de experiencia en las más reconocidas universidades

Más detalles

Temas de Estadística Práctica

Temas de Estadística Práctica Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: Medidas de tipo paramétrico Resumen teórico Medidas de tipo paramétrico Medidas de tendencia central Medidas

Más detalles