Ejercicios de movimiento uniforme

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de movimiento uniforme"

Transcripción

1 Ejercicios de movimiento uniforme 1) Una persona recorre tres cuartos de circunferencia de radio 10 metros. Después recorre un cuarto de circunferencia en sentido contrario. a) Determina el espacio recorrido (e). b) Determina el desplazamiento ( Δ r ). c) Determina el desplazamiento a lo largo de la trayectoria ( Δ s ). 2) Determina el espacio recorrido y el desplazamiento del planeta Tierra alrededor del Sol durante un año. Considera que la órbita es una circunferencia, y que la distancia al Sol es de 150 millones de kilómetros. MU 3) Un móvil se mueve desde la posición -6 m. hasta la 39 m. en 20 segundos, de tal manera, que su vector velocidad permanece constante. a) Cómo es la trayectoria del movimiento? b) Escribe la ecuación del movimiento. 4) Un ciclista se desplaza a una velocidad constante de 20 Km/h. a) Si salió desde el kilómetro 5 de la trayectoria, escribe la ecuación del movimiento en función del tiempo. b) Por qué posición irá al cabo de una hora y media. c) Si salió a las 10:00 horas, qué espacio llevará recorrido a las 11:43 h? d) Dibuja una gráfica espacio-tiempo del movimiento. 5) Un tren blanco sale desde la estación B hacia la estación N situada a 200 Km a una velocidad de 100 Km/h. En el mismo instante, sale un tren negro desde la estación N hacia la B por la misma vía que el tren blanco a una velocidad de 120 Km/h. a) Realiza un esquema de la situación, en donde se establezca sobre la trayectoria el punto de referencia y el sentido positivo del movimiento. b) Escribe las ecuaciones que rigen el movimiento de cada tren. c) Determina cuánto tiempo tardan los trenes en encontrarse. d) Determina la posición a la que se encuentran. e) Realiza una gráfica espacio tiempo en la que aparezca el movimiento de los dos trenes. 6) Un tren rojo sale desde la estación R a una velocidad de 150 Km/h hacia otro tren verde, a 20 Km de distancia, que sale también en el mismo instante a 80 Km/h huyendo del tren rojo. Realiza los mismos apartados que el ejercicio anterior. 7) Un tren naranja sale desde la estación N a 60 Km/h. 45 minutos después, sale un tren amarillo desde la misma estación en busca del tren naranja a una velocidad de 90 Km/h. Realiza los mismos apartados que el ejercicio anterior. 8) Un tren marrón sale desde la estación M hacia la estación R a 150 Km, a una velocidad de 65 Km/h. 20 minutos después, desde la estación R sale un tren rosa hacia la estación M a 50 Km/h. Realiza los mismos apartados que el ejercicio anterior. 1

2 9) A continuación se representan las gráficas espacio-tiempo de dos móviles. a) Qué móvil ha mantenido un movimiento más rápido? Determina las velocidades. b) Escribe las ecuaciones que rigen los dos movimientos. c) Instante y posición a la que se encuentran los dos móviles. d) Instante de tiempo en el que el móvil B pasa por el origen de coordenadas. e) Espacio recorrido de los dos móviles. Podemos conocer los desplazamientos? MUA 10) Dibuja el vector velocidad y el vector aceleración en los dos casos siguientes: Un planeta en una órbita circular. Una piedra que ha sido soltada desde el reposo, y va cayendo. 11) Indica cómo será el movimiento de un cuerpo cuyos vectores velocidad y aceleración son los indicados en el dibujo. a v a v v a v a a v v a=0 a b c d e f g a v=0 12) Un coche acelera de 0 a 100 Km/h en 5 segundos. Determina la aceleración media. 13) Describe el movimiento que representa la gráfica de abajo, y realiza una gráfica posición-tiempo aproximada, teniendo en cuenta que el movimiento se inicia en la posición -20 m. 5 v(m/s) 6 16 t(s) 2

3 14) Un móvil tiene una velocidad de 15 m/s, y está sometido a una aceleración de 3 m/s 2 en el sentido contrario a la velocidad inicial. a) Determina la velocidad del móvil a los 10 s. b) En qué instante la velocidad era cero? c) Calcula el espacio recorrido y el desplazamiento en los 10 primeros segundos. 15) Un cuerpo está inicialmente en la posición 5 m, y con una velocidad en el sentido negativo de 20 m/s, está sometido a una aceleración de 2 m/s 2. a) Cuánto tiempo transcurrirá hasta que el cuerpo pasa por la posición 10 m? b) A qué velocidad pasará por este punto? c) Indica por último el espacio recorrido y el desplazamiento de este movimiento. 16) Una bici sale desde el punto A a una velocidad constante de 10 Km/h hacia el punto B. Una motocicleta sale desde el punto A un minuto después en busca de la bicicleta. Sale desde el reposo y con una aceleración constante de 5 m/s 2. a) Cuánto tiempo tarda en alcanzar la bicicleta? b) A qué distancia de A lo hará? 17) Un cuerpo se mueve a una velocidad en el sentido negativo de 20 m/s. Está sometido a una aceleración en el sentido positivo de 4 m/s 2. Inicialmente se encuentra en la posición 50 m. a) Ecuaciones del movimiento. b) Velocidad y posición a los 6 segundos. c) Posición más negativa que alcanzará. 18) Un coche que va a 120 Km/h frena hasta detenerse en 30 m. Con qué aceleración media ha frenado? 19) Interpreta el movimiento de la gráfica de la derecha, y realiza un gráfica s-t sabiendo que s 0 = 50 m. 10 v(m/s) 20) Se lanza hacia arriba una piedra a 20 Km/h. a) Determina la altura que alcanza. b) Velocidad a la que llega abajo t(s) 21) Desde una altura de 50 metros, se lanza hacia abajo una piedra a una velocidad de 5 m/s. Determina cuánto tiempo tarda en llega, y a qué velocidad lo hace. MCU 22) Una moto va a 90 Km/h, cuando toma una curva circular de 150 metros de radio. a) Con qué velocidad angular toma la curva? b) Cuánto es la aceleración centrípeta? 23) Un niño está subido en un tiovivo, y se mueve a 10 Km/h. El diámetro del tiovivo es de 5 m. Determina: a) La velocidad angular. b) El periodo y la frecuencia. c) Aceleración centrípeta. 24) Un fórmula uno traza una curva de radio 50 m de radio a 3 G, a qué velocidad toma la curva? 3

4 Aclaración: una aceleración 3 G, significa que la aceleración centrípeta es tres veces la aceleración gravitatoria. 25) Determina la aceleración centrípeta en los dos siguientes movimientos: a) La que tiene una persona que vive en el ecuador, y que se mueve con el giro de la Tierra sobre su propio eje. Radio de la Tierra, 6400 Km. b) La que siente una persona debido al movimiento de la Tierra alrededor del Sol. Distancia Tierra- Sol, 150 millones de kilómetros. 26) Una piedra está atada con una cuerda de 1,2 m de longitud. Se le da vueltas rápidamente, a un ritmo de 3 vueltas por segundo. a) Frecuencia y periodo del movimiento. b) A qué velocidad se mueve la piedra? c) Cuántas revoluciones por minuto da la piedra? 37) Un cuerpo gira media vuelta a una circunferencia de radio 3 metros en 9 segundos. Determina el ángulo que girará en 1,5 segundos si lo hace al doble de la velocidad angular que en el primer caso y la trayectoria circular tiene un radio de 6 metros. Y la velocidad en el segundo caso, será mayor o menor que la del primero? 28) Un coche está en la ciudad A y sale hacia la ciudad B a una distancia de 320 km medidos por la carretera a una velocidad de 90 km/h. En el mismo instante, una moto sale desde la ciudad B hacia la A por la misma carretera a 110 km/h. Determina la distancia de A (medida por la carretera) en la que se encuentran los dos vehículos. 29) Un coche está en la ciudad A y sale hacia la ciudad B a una distancia de 360 km medidos por la carretera a una velocidad de 72,0 km/h. Diez minutos más tarde, una moto sale desde la ciudad A hacia la B, por la misma carretera, a por la misma carretera a 122,4 km/h. Determina la distancia de A (medida por la carretera) en la que se encuentran los dos vehículos. 30) Un coche está en la ciudad A y sale hacia la ciudad B a una distancia de 520 km medidos por la carretera a una velocidad de 120 km/h. En el mismo instante, una moto sale desde la ciudad B hacia la A por la misma carretera a 85 km/h. Determina la distancia de A (medida por la carretera) en la que se encuentran los dos vehículos. 31) La gráfica s-t de la derecha se refiere al movimiento que describe un móvil. a) Describe brevemente cómo es el movimiento de este cuerpo y escribe la ecuación del movimiento. b) En qué instante pasa por la posición cero? 32) Un móvil sale desde la posición 30 m, y se mueve a velocidad constante. En el instante 50 s va por la posición -20 m. a) Realiza una gráfica s-t del movimiento. b) En qué instante pasará por la posición -40 m? 4

5 33) Desde una altura de 10 m se lanza verticalmente hacia arriba una piedra a 25 m/s. Determina: a) Altura máxima que alcanza la piedra (desde el suelo). b) Velocidad a la que llega la piedra al suelo. 34) Desde el fondo de un pozo de 5 m de profundidad se lanza verticalmente hacia arriba una piedra a 40 m/s. Determina: a) Altura máxima que alcanza la piedra (desde el suelo). b) Velocidad a la que llega la piedra al suelo. 35) Un cuerpo describe un MCU de radio 0,5 m dando 80 r.p.m. Determina: a) Velocidad angular del movimiento, en el S.I. b) Ángulo que girará (en radianes) en 0,4 s. 36) Un cuerpo describe un MCU de radio 60 cm m dando 40 r.p.m. Determina: a) La velocidad de un punto de la periferia del disco. b) Periodo del movimiento. 37) Un disco de radio 0,5 m describe un MCU a 95 r.p.m. Determina: a) Velocidad lineal de un punto de la periferia del disco. b) Frecuencia con la que gira el disco. Respuestas 1) La persona sale desde el punto A, y llega al B recorriendo el arco de circunferencia. Seguidamente, cambia de sentido y llega al punto C. La trayectoria del movimiento es el arco de circunferencia dibujado que va desde A hasta B. Vamos a tomar como sentido positivo del movimiento el que lleva la persona al principio. Es decir, el que va de A a B. Por tanto, la segunda parte del movimiento se realiza en sentido negativo, es decir, el que va de B a C. a) Recordemos que el espacio recorrido (e), es el espacio real que recorre un móvil (siempre es un valor positivo). Así, en este caso, la persona recorre ¾ de circunferencia y seguidamente ¼ más. Es decir, recorre una circunferencia completa de radio 10 metros. Por consiguiente: e=2π R=2π 10 62,832m b) El desplazamiento ( Δ r ) es en definitiva la distancia que hay en línea recta desde el punto inicial al final (es siempre un valor positivo). Es decir, desde A hasta B. Por consiguiente, el desplazamiento es el diámetro de la circunferencia. Δ r =2R=2 10=20m 5

6 c) El desplazamiento a lo largo de la trayectoria ( Δ s ) es la distancia que hay desde el punto inicial hasta el punto final a lo largo de la trayectoria. Puede ser positivo o negativo. En nuestro ejercicio, la distancia de A a C a lo largo de la trayectoria, es media circunferencia hacia el lado positivo. Así: Δ s= 62,832 =31,416 m 2 2) El espacio recorrido por la Tierra alrededor del Sol en un año, es la longitud de la trayectoria, es decir, la longitud de una circunferencia de radio R= Km. Por tanto, e=2π R=2π 1, , Km=942,5millones de Km Sin embargo, el desplazamiento, es cero, ya que es el módulo del vector desplazamiento, y el vector desplazamiento es cero puesto que la posición inicial coincide con la posición final, r=0. 3) a) Puesto que el vector velocidad es constante durante todo el recorrido, quiere decir, que no cambia ni su módulo, ni su dirección ni su sentido. Sabiendo que el vector velocidad es tangente a la trayectoria, quiere decirse, que la trayectoria es una línea recta. No puede haber curvas, sino, el vector velocidad cambiaría de dirección. v v v v No puede ser Así es b) Al ser la velocidad constante, lo es su módulo, o lo que es lo mismo la celeridad permanece constante. Luego se trata de un movimiento uniforme (MU). Por tanto, la ecuación del movimiento es del tipo s(t)=s 0 +vt. Sabemos que s 0 = 6 m. Y también que s(20)=39m. Esto nos permite calcular la velocidad del movimiento. 39= 6+v 20 v= =2,25 m s Por consiguiente, la ecuación del movimiento es: s(t)= 6+2,25t 4) a) Conocemos la velocidad ( v=20 Km/ h ), y la posición inicial ( s 0 =5 Km ). Entonces ya podemos escribir la ecuación del movimiento. Esta ecuación es la que nos dice la posición en función del tiempo. s t =s 0 vt=5 20t Hay que indicar que en esta ecuación no estamos trabajando en el Sistema Internacional de Unidades, sino que trabajamos en kilómetros y horas. b) Una hora y media, quiere decir, t=1,5 h. Simplemente sustituimos este valor en nuestra ecuación. Luego llega al kilómetro 35. s 1,5 =5 20 1,5=35 Km 6

7 c) A las 11:43, lleva una hora y cuarenta y tres minutos, que debemos expresar en horas. Calculemos la posición que está en este instante. t=1h 43 min=1h h= h s = ,33 Km 60 Si salió desde el kilómetro 5, y llega al kilómetro 39,33, entonces, el espacio recorrido es, e=δs=s( ) s 0 =39,33 5=34,33 Km Gabriel Villalobos 02/02/2017 Como vemos, para este caso, es lo mismo el espacio recorrido que el desplazamiento a lo lardo de la trayectoria. d) La gráfica espacio-tiempo es de esta manera. 39,33 s Km 5, t h 5) a) Vamos a tomar como punto de referencia la estación B, y sentido positivo, el que va de la estación B a la N. Podríamos tomar otros criterios si lo deseamos, y las ecuaciones nos saldrán distintas, aunque los resultados que obtengamos con dichas ecuaciones son los mismos. v B B 0 v N N b) La única ecuación que rige el MU es, s t =s 0 vt. Debemos plantear esta ecuación a los dos trenes, manteniendo nuestro criterio de referencia para los dos. Así, la velocidad del tren negro será negativa, mientras que la del tren blanco es positiva. Por otro lado, puesto que los dos trenes salen a la vez, sus cronómetros marcan la misma medida. Por eso, en lugar de escribir t B y t N, como los tiempos que marcan dichos relojes, escribiremos simplemente t. Por consiguiente: Ecuación del tren negro: s B t =100t Ecuación del tren negro: s N t = t Estamos trabajando en kilómetros y en horas. Luego el tiempo lo pondremos en horas. 7

8 c) Cuando los trenes se encuentren, se cumple que s B t 1 =s N t 1, donde hemos llamado t 1 al instante del encuentro. Así que, 100t 1 = t 1 t 1 = =0, 90 h= h=10 11 h 60min 1h = min= min 6 11 min t 1 =54min 6 60 s min 11 1 min =54min 32,7s d) Para determinar la posición en la que los trenes se encontrarán. Podemos utilizar la ecuación del tren blanco o del negro. Otra cosa a tener en cuenta, el tiempo hay que introducirlo en la ecuación expresado en horas. Es conveniente ponerlo exacto, sin redondeos. s Km s B =100 =90,909 Km ,9 B N t min e) Las unidades de los ejes pueden ser las que queramos. Utilizaremos las que creamos más representativas. 54,5 6) a) Ponemos la referencia cero en la estación R, y el sentido positivo el que va del tren rojo al verde. Llamamos d a la distancia inicial del tren verde con respecto a la estación R. v R R 0 d vv b) Ecuación del tren rojo: s R t =150t Ecuación del tren verde: s V t =20 80t c) Cuando los trenes se encuentren, se cumple que s R t 1 =s V t 1, donde hemos llamado t 1 al instante del encuentro. Así que, 150t 1 =20 80t 1 t 1 = = 2 7 h= 2 60 min h 7 1 h = min= 7 7 min 1 7 min t 1 =17 min 1 60 s min =17 min 8,6 s 7 1 min d) Utilizamos la ecuación del tren rojo. El tiempo lo introducimos en horas. 8

9 s B 2 7 =150 2 =42,857 Km 7 e) La gráfica espacio-tiempo es: 42,9 s Km 20 V R t min 17,1 7) En este ejercicio, los cronómetros que marcan el tiempo de marcha de los trenes, no coinciden, por eso, los representaremos por t N y t A. a) Ponemos la referencia cero en la estación N, y el sentido positivo el que llevan los trenes. v A N 0 t A t N v N b) Ecuación del tren Naranja: s N t N =60t N Ecuación del tren verde: s A t A =90t A Los tiempos están relacionados por la siguiente ecuación: t A =t N 0,75, expresado en horas. Para que las ecuaciones queden en función de una única variable, vamos a sustituir t A en s A ; s A t N =90 t N 0,75 = 67,5 90t N. Esta ecuación, escrita sí, sólo tiene sentido para tiempos de t N mayor o iguales a 0,75 horas. c) Cuando los trenes se encuentren, se cumple que s N t N1 =s A t N1, donde hemos llamado t N1 al instante del encuentro, según el reloj del tren naranja. Así que, 60t N1 = 67,5 90t N1 t N1 = 67,5 =2,25 h=2 h 15min d) Utilizamos la ecuación del tren naranja. El tiempo lo introducimos en horas. e) La gráfica espacio-tiempo es: s N 2,25 =60 2,25=135 Km 135 s Km 9 N A t h 0,75 2,25

10 8) En este ejercicio, los cronómetros que marcan el tiempo de marcha de los trenes, no coinciden, por eso, los representaremos por t M y t R. a) Ponemos el cero en la estación M, y sentido positivo el de la marcha del tren marrón. v M M 0 t M v R t R R b) Ecuación del tren marrón: s M t M =65t M Ecuación del tren rosa: s R t R =150 50t R Los tiempos están relacionados por la siguiente ecuación: t R =t M 1, expresado en horas. 3 Para que las ecuaciones queden en función de una única variable, vamos a sustituir t R en s R ; s R t M = t M 1 3 =166, 6 50t M = t M. Esta ecuación, escrita sí, sólo tiene sentido para tiempos de t M mayor o iguales a 0, 3 horas. c) Cuando los trenes se encuentren, se cumple que s M t M1 =s R t M1, donde hemos llamado t M1 al instante del encuentro, según el reloj del tren marrón. Así que, 65t M1 = t t = 500 M1 M = t M1 =1h h= h=1h min 620 h =1h 1h 23 min s min min=1h 26 min min =1h 26 min 57,4 s min d) Utilizamos la ecuación del tren marrón. El tiempo lo introducimos en horas. e) La gráfica espacio-tiempo es: s Km s M =65 =94,203 Km ,2 R M t h 0,33 1,45 9) a) El móvil A tiene dos tramos, el primero va desde el instante inicial hasta los 28,5 segundos, con una velocidad negativa, y luego hasta el instante 34,5 s con una velocidad positiva. El móvil B se desplaza desde el instante inicial hasta el 34,5 s con una velocidad positiva. 10

11 Veamos las velocidades: v A1 = 21 28,5 = 0,737 m s ; 6 v A2 = 34,5 28,5 =1 m s v B = ,5 =1,652 m s Por tanto, el B se desplaza más rápidamente. b) La ecuación del movimiento del móvil A debemos escribirla en dos trozos. s A t = { 21 0,737t, si 0 t 28,5 28,5 t, si t 28,5 } s B t = 28 1,652t c) Cuando se encuentren, se cumple que s A t 1 =s B t 1. Por tanto, 21 0,737t 1 = 28 1,652t 1 t 1 = ,652 0,737 =20,5s Para determinar la posición, podemos utilizar la ecuación del móvil que queramos. s B 20,5 = 28 1,652 20,5=5,87m d) Para calcular lo que se pide, debemos resolver s B t 2 = ,652t 2 =0 t 2 = 28 1,652 =16,9 s Gabriel Villalobos 02/02/2017 e) En su primer tramos, el móvil A ha recorrido 21 m, y en el segundo 6, así que el espacio recorrido es de 27 m. El móvil B recorre 28 más 29 m, es decir, 57 m. El desplazamiento de los dos móviles, no los conocemos, puesto que no conocemos la forma de la trayectoria. En el caso hipotético de que fuera una línea recta, el desplazamiento del móvil B coincidiría con su espacio recorrido. Y el desplazamiento del móvil A sería 15 m. 10) Un planeta en órbita circular, mantiene el módulo de su velocidad. Lo que no mantiene es su dirección, que va cambiando siempre al mismo ritmo. Por consiguiente, no tiene aceleración tangencial, y sí aceleración centrípeta, que se mantiene constante. Recordemos que la aceleración centrípeta es perpendicular la velocidad, apuntando al centro de curvatura. Por consiguiente, la aceleración, coincide íntegramente con la aceleración centrípeta. Un cuerpo cayendo desde el reposo, no curva, luego su aceleración centrípeta es cero. El módulo de su velocidad creciendo a ritmo constante, por eso, tiene aceleración tangencial en el mismo sentido que la velocidad. La aceleración con la que cae, es la gravedad del planeta. a v a va 11

12 Luego la aceleración está en forma íntegra como aceleración tangencial. a v 11) Recordemos que el vector velocidad es siempre tangente a la trayectoria, y que el vector aceleración, es siempre suma de dos aceleraciones perpendiculares entre sí: la aceleración tangencial, que es paralela a la velocidad, y la aceleración normal o centrípeta, que es perpendicular a la velocidad, apuntando hacia la parte cóncava de la curva que va describiendo el cuerpo. La aceleración tangencial mide lo rápido o lento que cambia el vector velocidad, mientras que la aceleración normal mide lo rápido o lento que cambia la dirección del vector velocidad. Así: a) Puesto que la aceleración es perpendicular a la velocidad, significa que la aceleración, no tiene su componente tangencial, es decir, la aceleración tangencial es cero, por consiguiente, el módulo del vector velocidad permanece constante. Sin embargo, sí tiene aceleración centrípeta, luego el cuerpo está curvando. Así que, este cuerpo se mueve siempre con la misma celeridad mientras curva. b) En este caso, la aceleración no tiene componente normal, por lo que el cuerpo no curva. Puesto que sólo tiene aceleración tangencial y en el mismo sentido que el vector velocidad, significa que el cuerpo va aumentando su celeridad. Así, este cuerpo se desplaza en línea recta mientras va aumentando su celeridad. c) Esta situación es la más general, el vector aceleración tiene componente tangencial y componente normal, luego el cuerpo va cambiando su celeridad mientras va curvando. Puesto que la aceleración tangencial tiene el mismo sentido que la velocidad, quiere decir, que la celeridad va aumentando. a n a t v a d) Este caso es análogo anterior. El cuerpo tiene aceleración tangencial y normal. La diferencia está en que la aceleración tangencial tiene el sentido contrario a la velocidad, por lo que la celeridad va disminuyendo mientras curva. v a t a n e) Esta situación es análoga a la b), sólo hay aceleración tangencial, pero en sentido contrario a la a 12

13 velocidad, luego este cuerpo va frenando mientras va en línea recta. f) Puesto que no hay aceleración, el cuerpo mantiene constante su velocidad. Gabriel Villalobos 02/02/2017 g) El cuerpo se muestra en reposo mientras tiene aceleración. Por eso, la velocidad del cuerpo irá cambiando continuamente. Por tanto, un instante después, el cuerpo ya no estará en reposo, y tendrá una velocidad en la misma dirección de la aceleración. Recordemos que el vector aceleración apunta hacia donde se produce el cambio de velocidad. Así, la aceleración, será enteramente tangencia. El cuerpo irá cada vez más rápido en línea recta. 12) Estamos suponiendo que el coche acelera en línea recta, así que toda la aceleración es tangencial. Debemos trabajar en unidades coherentes, por eso, vamos a poner la velocidad en el S.I. v=100 Km h =100 Km h Determinemos la aceleración media m 1 Km a m = v v 0 = t 1 h 3600 s = 250 m 9 s =27, 7 m s ,6 m s 13) Puesto que la gráfica velocidad-tiempo es una línea recta, quiere decir, que el movimiento es uniformemente acelerado, y la ecuación de este recta, nos va a permitir conocer la velocidad inicial y la aceleración, ya que v t =v 0 at. Observando el triángulo que queda en la gráfica a la derecha, podemos determinar la pendiente, que como sabemos, corresponde a la aceleración. La ecuación es de esta manera: v t =v 0 0,5 t. a= =0,5 m s 2 En la gráfica vemos, que para t=6 s, la velocidad es cero. Esto, nos permite calcular la velocidad inicial. Luego la ecuación es: v t = 3 0,5t. 0=v 0 0,5 6 v 0 = 3 m s La ecuación de la posición es: s t = 20 3t 0,25t 2, que como sabemos es la ecuación de una parábola. Puesto que la aceleración es positiva, la parábola tiene sus ramas hacia arriba. Podemos hacer una tabla de valores para representar aproximadamente la gráfica, pero nosotros vamos a calcular la posición de vértice, ya que la gráfica es simétrica respecto a este punto. El vértice en la gráfica, es el punto en el que la velocidad es cero, ya que es el punto donde se invierte el sentido del movimiento. v t = 3 0,5 t=0 t= 3 0,5 =6 s En el instante 6 segundos, el móvil se para, y está en la posición, 13

14 s 6 = , = 29m Vamos a ver ahora, en qué instante, el móvil pasa por el origen de coordenadas. s t = 20 3t 0,25t 2 =0 t= 3± ,25 20 =16,77 m 2 0,25 Hemos descartado la solución negativa, puesto que no tiene significado físico. 14) Si consideramos que la velocidad es positiva, entonces, la aceleración deberemos ponerla negativa: v 0 =15 m s ; a= 3 m s 2. Las ecuaciones que rigen el movimiento son: v t =15 3t ; s t =s 0 15t 1,5t 2 Puesto que no conocemos la posición inicial, vamos a tomar nuestro origen de sistema de referencia en el punto de inicio. Así s 0 =0. Así: s t =15t 1,5t 2. a) v 10 = = 15 m s. s(m) 6 16,77 t(s) b) v t =15 3t 0=15 3t t= 15 3 =5s c) Nos dicen que inicialmente el cuerpo tiene una velocidad y una aceleración en sentido contrario. Esto quiere decir que la aceleración es tangencial, o lo que es lo mismo, no tiene aceleración normal, por lo que el cuerpo no curva. Así, la trayectoria es recta, por lo que el módulo del vector desplazamiento coincidirá con el desplazamiento a lo largo de la trayectoria, salvo quizás el signo. Si sustituimos en la ecuación de la posición el tiempo por 10 segundos, obtenemos, 14

15 s 10 = , =0. Podríamos pensar que no ha recorrido espacio, pero sabemos, que lo que ha ocurrido es que el móvil se ha desplazado hacia el sentido positivo durante 5 segundos, en el que se detiene, y en los siguientes 5 segundos, vuelve a la posición de inicio. Vamos a ver dónde estará el móvil a los 5 segundos. s 5 =15 5 1,5 5 2 =37,5m. Por tanto, el espacio recorrido es el doble: L=75m. El desplazamiento y el desplazamiento a lo largo de la trayectoria son cero, puesto que el móvil vuelve al punto de partida; Δ r=δ s=s(10) s(0)=0 0=0 15) Los datos que tenemos son: s 0 =5m, v 0 = 20 m s, a=2 m s 2. Las ecuaciones del movimiento son: v t = 20 2t, s t =5 20t t 2. a) s t 1 =10 10=5 20t 1 t 2 1 t t 1 5=0 t 1 = 20± =20,25 s 2 Hemos descartado la solución negativa. b) v 20,25 = ,25=20,50 m s c) El móvil se mueve primero hacia el sentido negativo, y luego hacia el positivo. Debemos calcular el espacio recorrido por separado, y luego sumarlos. Vamos a ver en qué instante se para. v t 2 =0 0= 20 2t 2 t 2 =10s El espacio recorrido en los 10 primeros segundos es: L 1 = Δ s = s(t 2 ) s 0 = s(10) s 0 = = 100 =100m Debemos tomar valores absolutos, ya que el espacio recorrido, por definición, debe ser positivo. El espacio recorrido en el segundo tramo es: L 2 =Δ s=s(t 1 ) s(t 2 )=s(20,25) s(10)=10 ( )=105m Así que el espacio total recorrido es L=L 1 + L 2 = =205 m. La trayectoria es recta, según hemos razonado en el ejercicio anterior. Por lo que el vector desplazamiento va desde la posición 5 hasta la 10 metros a lo largo de la trayectoria. Es un vector cuyo módulo es Δ r=5m. El vector desplazamiento a lo largo de la trayectoria es también 5 m; Δ s=s(20,25) s(0)=10 5=5 m. 16) Vamos a poner el kilómetro cero en el punto A, y el sentido del movimiento positivo. Trabajamos en kilómetros y horas, así que debemos escribir la aceleración en tales unidades. a=5 m s 2 =5 m s 2 1 Km 1000 m La ecuación de la bicicleta es: s b t b =10t b 3600 s 2 1 h 2 = Hm h 2 Las ecuaciones de la motocicleta son: v m t m =64.800t m, s m t m =32.400t m 2. 15

16 La relación que hay entre los tiempos es t m =t b (En horas). Vamos a trabajar con un único cronómetro (el de la moto). Entonces, s b t m =10 t m a) Para calcular el instante en el que se encuentran, tenemos que resolver, s b t m =s m t m 10 t m 1 60 =32.800t 2 m 32800t 2 m 10 t m 1 6 =0 t 2,41176 m 10 3 h 8,7 s Según el cronómetro de la bici, será un minuto más, es decir 68,7 segundo. b) Utilizamos, por ejemplo, la ecuación de la bicicleta. s b 68, ,7 =10 0,191 Km 190m 3600 Está claro que hubiera sido más fácil haber trabajado en metros y segundos, pero aún así, está bien que se vea cómo se pueden trabajar con otras unidades. 17) Los datos que nos dan son los siguientes: v 0 = 20 m s ; a=4 m ; s s 2 0 =50m. a) Sustituimos nuestros datos en las ecuaciones del MRUA: v t =v 0 at v t = 20 4t s t =S 0 v 0 t 1 2 at2 s t =50 20t 2t 2 El movimiento es rectilíneo puesto que el móvil tiene su velocidad inicial y la aceleración paralelas. b) Nos piden v(6) y s(6). v 6 = =4 m s s 6 = =2m c) Determinamos primero el instante de tiempo en el que la posición es lo más pequeña posible, ya que el móvil se mueve en el sentido negativo frenándose, hasta que se detiene, y empieza a desplazarse hacia el sentido positivo aumentando su velocidad. En el instante mismo de darse la vuelta, la velocidad es cero, así que, 0=v t = 20 4t t=5s Veamos ahora la posición que ocupa a los cinco segundos. s 5 = =0 18) Escribamos los datos en unidades coherentes: v 0 =120 Km h 33,3 m s ; s 0 =0 ; s=30m ; v=0. Supongamos, que el movimiento es MRUA. Cuando calculemos la aceleración de frenada, ésta será la aceleración media. Ponemos las ecuaciones del MRUA, y las particularizamos para el mismo instante que el coche se 16

17 queda parado. Ponemos la referencia en el mismo instante que empieza a frenar. Así s 0 =0. En el mismo instante que el coche se para, su velocidad es cero y su posición 30 metros: v(t)=v 0 +at 0=33,3+at f s(t)=s 0 +v 0 t+ 1 2 at 2 30=33,3t f at 2 f Gabriel Villalobos 02/02/2017 Tenemos dos ecuaciones con dos incógnitas. Podemos resolverla despejando t de la primera ecuación, y sustituyéndola en la segunda. 30=33,3 33,3 a 1 2 a 33,3 a t f = 33,3 a 2 30= 33,32 33,32 a 2 a a= 33, , ,5 m s 2 Otra posibilidad, es sustituir t de la ecuación v t =v 0 at, y sustituirla en s t =S 0 v 0 t 1 2 at2. Se obtiene la siguiente ecuación: v 2 v 0 2 =2 a (s s 0 ). No hay que pensar que en el MRUA hay tres ecuaciones. En realidad sólo hay dos ecuaciones independientes, la tercera ecuación que hemos encontrado es una combinación de estas dos ecuaciones. Si queremos, podemos utilizar esta ecuación para resolver nuestro ejercicio. Se trata simplemente se sustituir nuestros datos, y despejar la aceleración ,3 2 =2 a ,3 2 =60 a a= 33,32 18,5 m 60 s 2 19) El móvil se desplaza con movimiento uniforme durante 10 segundos, a una velocidad de 10 m/s. Este movimiento empieza desde la posición -50 metros, es decir, 50 metros en el sentido negativo. Seguidamente, se mueve con movimiento uniformemente acelerado durante 20 segundos más. Observamos que la velocidad va disminuyendo, luego la aceleración es negativa. Llega un momento en el que el móvil se para y empieza a desplazarse en el sentido negativo aumentando su velocidad. A continuación, el móvil se desplaza a 2 m/s en sentido negativo. Es decir, es un movimiento uniforme de velocidad -2 m/s. El movimiento está descrito con unas ciertas imprecisiones que debemos determinar. Calculemos la posición al final del primer movimiento, es decir, a los 10 s. Puesto que es un movimiento uniforme, obedece a la ecuación: Calculemos s(10): Calculemos la aceleración del segundo tramo: s t =s 0 vt s t = 50 10t s 10 = =50m 17

18 a= = 0,6 m s 2 Gabriel Villalobos 02/02/2017 Vamos a determinar en qué instante se para. Para ello, utilizamos la ecuación de la velocidad del MUA: Tenemos que hacer v(t)=0. v t =v 0 at v t =10 0,6t 0=10 0,6t t= 10 0,6 16,7 s Luego a los 16,7 s de iniciarse el segundo tramo, o a ,7 = 26,7 s, el móvil se detiene para cambiar de posición. Veamos en qué posición se produce este cambio de sentido. Tengamos en cuenta, que al inicio del segundo tramo, la posición inicial es 50 m. s t =s 0 v 0 t 1 2 at 2 s t =50 10t 0,3t 2 s 20 = ,7 0,3.16,7 2 =133,3m Y ahora, calculemos hasta donde llega al final del tramo. Debemos calcular la posición a los 20 segundos del segundo tramo. s 20 = , =130m Podemos comprobar, que la velocidad al final del segundo tramo, es efectivamente la velocidad a la que se mueve el cuerpo en el tercer tramos. v 20 =10 0,6 20= 2 m s En el tercer tramo, la posición inicial es 130 metros, y puesto que es un movimiento uniforme, su ecuación es: s t =s 0 vt s t =130 2t Cuando transcurran 50 segundos, el cuerpo ha terminado el tercer tramo, y habrá llegado hasta: Veamos la gráfica s-t. s 50 = =30m 18

19 s(m) t(s) ) Se trata de un MRUA, cuya aceleración, es la de la gravedad, 9,8 m/s 2 hacia abajo. Vamos a poner el punto de referencia en el suelo, y el sentido positivo de movimiento, hacia arriba. Con este criterio, las ecuaciones de movimiento, son las siguientes. s(t)=5,56t 1 2 9,8t 2 v(t)=5,56 9,8t Si hubiéramos tomado otros criterios del punto de referencia y sentido positivo, nos hubieran salido otras ecuaciones, aunque el resultado de resolverlas sería el mismo. Vamos a poner la velocidad en el S.I. para que todos nuestros datos estén en metros y segundo. v=20 Km h =20 Km h 1000 m 1Km 1h 3600 s 5,56 m s a) Para averiguar la altura máxima, necesitamos saber en qué instante de tiempo, su velocidad es cero. v(t ')=5,56 9,8t '=0 t '= 5,56 9,8 0,567s Ahora tenemos que calcular la posición en ese instante. s(0,567)=5,56 0, ,8 0,5672 1,577m b) Calculemos el instante en el que llega abajo. En ese instante, su posición es cero. s(t ' ' )=5,56 t ' ' 1 2 9,8t ' ' 2 =0 t ' ' (5,56 4,9 t ' ')=0 5,56 4,9 t ' ' =0 t ' '= 5,56 4,9 1,135 s Si trabajamos con más precisión, podemos comprobar que el tiempo del instante de caída es el doble del de subir. Es decir, tarda lo mismo en subir que en bajar. 19

20 La velocidad a la que llega será: v (1,135)=5,56 9,8 1,135 5,56 m s. Es decir, llega a la misma velocidad que se lanza. El signo de la velocidad nos indica que la piedra está bajando. 21) Tenemos un MRUA. Vamos a seguir con el mismo criterio que el ejercicio anterior, es decir, sentido positivo hacia arriba, y la posición cero en el suelo. Con estos criterios, las ecuaciones son: s(t)=50 5t 4,9t 2 v(t)= 5 9,8 t Para averiguar en qué instante llega al suelo, hacemos la posición cero. s(t ' )=50 5 t ' 4,9 t ' 2 =0 t ' = 5± ( 5)2 4 ( 4,9)50 2,7 s 2 ( 4,9) Hemos descartado el tiempo negativo. La velocidad a la que llega es: v(2,7)= 5 9,8 2,7= 31,46 m s La velocidad sale negativa porque se mueve en el sentido negativo. 113 Km h. 22) Vamos a trabajar en el S.I. de unidades. Así que, la velocidad la expresaremos en m/s. v=90 Km h =9 Km 1h 1000 m h 3600s 1 Km = m 3600 s 25 m s a) Esta velocidad, es la velocidad lineal durante la curva. ω= v R = 25 rad 0, s b) a c = v2 R = ,2 m s 2 23) a) La relación entre la velocidad y la velocidad angular, viene dada por la expresión, = v R Antes de utilizar esta expresión, vamos a poner la velocidad en el S.I. v=10 Km h =10 Km 1h 1000m = m h 3600 s 1 Km 3600 s 2,78 m s Así que, ω= 2,78 rad 1,11 2,5 s Si tenemos curiosidad por saber cuántos grados grados gira en un segundo, deberemos expresar 1,11 rad a grados. 1,11rad=1,11rad 180º π rad 63,6º Luego gira 63,6º cada segundo. 20

21 b) Utilizamos las expresiones adecuadas. ω= 2π 2π T = T ω = 2π 1,11 5,7s f = 1 T = 1 0,18 Hz 5,7 c) Nos vamos a la expresión de la aceleración centrípeta. a c = v2 R = 2,782 2,5 =3,1 m s 2 24) Con la expresión de la aceleración centrípeta, podemos determinar la velocidad a la que va el fórmula uno, ya que conocemos el radio de la curva, y la aceleración centrípeta. Tenemos que saber, que una curva de fuerza 3 G, significa, que la fuerza centrípeta es tres veces la aceleración de la gravedad. a c = v2 R v= a c R= 3 9, ,3 m s =138 Km h 25) a) La aceleración centrípeta, la calculamos mediante la expresión La velocidad es a c = v2 R v= s t = 2 R T Sustituimos esta expresión en la de la aceleración centrípeta: a c = v2 R = 4 2 R 2 T 2 R = 4 2 R = T ,034 m 2 s 2 Es una aceleración demasiado pequeña para que la notemos, aunque sí se puede medir con instrumentos muy precisos. b) Este cálculo, es totalmente análogo al anterior. Utilizaremos la expresión que habíamos deducido. a c = 4 2 R = T ,006 m 2 s 2 Aún más pequeña. Luego es más difícil de detectar el movimiento de traslación de la Tierra alrededor del Sol que el giro de Ella en torno a su eje. 26) Se trata de un MCU de radio 1,2 m. a) Directamente, el dato que nos dan, es la frecuencia. Así que, f =3 Hz. El periodo es el inverso, T = 1 f =1 3 0,33 s b) La velocidad de la piedra, la podemos calcular de varias maneras, v= s t = 2 R 2 1,2 = T 0,33 22,8 m s =82 Km h c) Las revoluciones por minutos, si pensamos un poco, vemos que se trata de una frecuencia, ya que es el número de vueltas que da en un minuto (la unidad de tiempo es el minuto). f =3 Hz=3 vueltas 60 s vueltas =180 =180 rpm s 1 min min 21

22 27) Calculemos la velocidad angular en el primer caso. = t = rad rad 0,35 9 s s Entonces, la velocidad angular en el segundo caso es, '=2 =2 0,35=0,70 rad s El ángulo que girará en el segundo caso es, ω '= θ' θ' =ω' t ' =0,70 1,5=1,05 rad 60,2º t ' Como vemos, no ha hecho falta los radios de las circunferencias, puesto que la velocidad angular sólo tiene en cuenta el ángulo girado por unidad de tiempo. Calculemos las velocidades en los dos casos. = v R v= R=0,35 3=1,05 m s Mientras que en el segundo caso es, '= v' R ' v'= ' R '=0,70 6=4,20 m s En el segundo caso, la velocidad angular era el doble, pero la velocidad lineal es el cuádruple. Esto se debe a que la trayectoria circular que describe es de radio mayor (el doble). 22

MOVIMIENTO CIRCULAR UNIFORME.

MOVIMIENTO CIRCULAR UNIFORME. Física y Química 4 ESO MOVIMIENTO CIRCULAR Pág. 1 TEMA 4: MOVIMIENTO CIRCULAR UNIFORME. Un móvil posee un movimiento circular uniforme cuando su trayectoria es una circunferencia y recorre espacios iguales

Más detalles

s(t = 5) = = 65 m

s(t = 5) = = 65 m TEMA.- CINEMÁTICA.1.- ECUACIÓN DEL MOVIMIENTO..- VELOCIDAD MEDIA Y VELOCIDAD INSTANTÁNEA.3.- MOVIMIENTO RECTILÍNEO UNIFORME.4.- MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO.5.- CAÍDA LIBRE Y TIRO VERTICAL.6.-

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Descripción de los movimientos I

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Descripción de los movimientos I 1(6) Ejercicio 1 Un atleta recorre 100 metros en 12 segundos. Determina la velocidad media en m/s y en km/h Ejercicio 2 El movimiento de un cuerpo está representado por los datos recogidos en la siguiente

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

FÍSICA&QUÍMICA 4º ESO

FÍSICA&QUÍMICA 4º ESO CAMBIO DE UNIDADES RECUERDA: Unidades de longitud km hm dam m dm cm mm Unidades de superficie km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm 2 Unidades de volumen km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3 (1L = 1dm 3 ) Unidades

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Cinemática

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Cinemática 1.1 Ejercicio 1 La rapidez de un móvil se mide en m/s en el SI y, en la práctica en Km/h. a. Expresar en m/s la rapidez de un coche que va a 144 Km/h b. Cuál es la velocidad de un avión en Km/h cuando

Más detalles

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL

Más detalles

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN

Más detalles

TEMA 7. EL MOVIMIENTO FÍSICA Y QUÍMICA 4º ESO

TEMA 7. EL MOVIMIENTO FÍSICA Y QUÍMICA 4º ESO TEMA 7. EL MOVIMIENTO FÍSICA Y QUÍMICA 4º ESO ÍNDICE: 1. Magnitudes escalares y vectoriales. 2. El movimiento. 2.1. Posición y vector de posición. 2.2. Trayectoria, espacio recorrido y desplazamiento.

Más detalles

EJERCICIOS DE CINEMÁTICA 4º E.S.O.

EJERCICIOS DE CINEMÁTICA 4º E.S.O. EJERCICIOS DE CINEMÁTICA 4º E.S.O. Tema 1 del libro: Conceptos:. Sistema de referencia..trayectoria, desplazamiento, velocidad, aceleración. Movimiento rectilíneo uniforme.. Movimiento rectilíneo uniformemente

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS 1. Un automóvil circula con una velocidad media de 72 km/h. Calcula qué distancia recorre cada minuto. 2. Un ciclista recorre una distancia de 10 km

Más detalles

Problemas de Cinemática

Problemas de Cinemática Problemas de Cinemática 1.- Elige razonadamente las afirmaciones que creas ciertas para un movimiento rectilíneo uniforme: a) La distancia al origen aumenta en cada segundo en una misma cantidad. b) La

Más detalles

s(m) t(s) TEMA 1: EL MOVIMIENTO CARACTERÍSTICAS DEL MOVIMIENTO

s(m) t(s) TEMA 1: EL MOVIMIENTO CARACTERÍSTICAS DEL MOVIMIENTO TEMA 1: EL MOVIMIENTO CARACTERÍSTICAS DEL MOVIMIENTO 1. Por qué se dice que todos los movimientos son relativos?. Responde de forma razonada las siguientes cuestiones: a. Cómo se clasifican los movimientos

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

Colegio Diocesano San José de Carolinas Privado Concertado

Colegio Diocesano San José de Carolinas Privado Concertado Problemas MRU 1) A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? Solución: 20 m/s 2) En el gráfico, se representa un movimiento rectilíneo uniforme, averigüe gráfica y analíticamente

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

Cinemática. 1 Movimiento Rectilíneo Uniforme. 2 Movimiento Rectilíneo Uniformemente Acelerado. 3 Tiro Vertical. 4 Tiro Horizontal.

Cinemática. 1 Movimiento Rectilíneo Uniforme. 2 Movimiento Rectilíneo Uniformemente Acelerado. 3 Tiro Vertical. 4 Tiro Horizontal. Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Cinemática Rev 01 Cinemática 1 Movimiento Rectilíneo Uniforme 2 Movimiento Rectilíneo Uniformemente Acelerado 3 Tiro Vertical 4 Tiro

Más detalles

1. Conceptos básicos para estudiar el movimiento.

1. Conceptos básicos para estudiar el movimiento. Contenidos Tema 4: EL MOVIMIENTO 1. CONCEPTOS BÁSICOS PARA ESTUDIAR EL MOVIMIENTO. 2. LA VELOCIDAD 3. ECUACIÓN DEL MOVIMIENTO 4. MOVIMIENTO RECTILÍNEO Y UNIFORME (M.R.U.) 5. LA ACELERACIÓN 6. MOVIMIENTO

Más detalles

1. CARACTERÍSTICAS DEL MOVIMIENTO.

1. CARACTERÍSTICAS DEL MOVIMIENTO. Tema 1. Cinemática. 1 Tema 1. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA CONCEPTOS BÁSICOS Se dice que un objeto está en movimiento cuando su posición cambia respecto a un sistema de referencia que se considera

Más detalles

TEMA 2: MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO.

TEMA 2: MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO. Física y Química 4 ESO M.R.U.A. Pág. 1 TEMA : MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO. Un móvil posee aceleración cuando su velocidad cambia con el tiempo, o dicho de otra manera, cuando su velocidad

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

Movimiento. Cinemática

Movimiento. Cinemática Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento

Más detalles

4º E.S.O. FÍSICA Y QUÍMICA 7. EL MOVIMIENTO. Dpto. de Física y Química. R. Artacho

4º E.S.O. FÍSICA Y QUÍMICA 7. EL MOVIMIENTO. Dpto. de Física y Química. R. Artacho 4º E.S.O. FÍSICA Y QUÍMICA 7. EL MOVIMIENTO R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Magnitudes que describen el movimiento 2. La velocidad 3. Movimiento rectilíneo uniforme (MRU) 4. La

Más detalles

Repaso. U.D.1. Estudio del movimiento

Repaso. U.D.1. Estudio del movimiento Repaso. U.D.1. Estudio del movimiento 1. Puede suceder que el desplazamiento de un vehículo sea cero y, sin embargo, el espacio recorrido por ese vehículo sean 1 m?. La gráfica representa el movimiento

Más detalles

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato Unidad 2: Cinemática Mecánica: Cinemática, Dinámica y Estática 2.1. Movimiento. Relatividad del movimiento. Sistema de referencia Tipos de movimiento: Traslación, rotación y su combinación. Cuerpo en traslación:

Más detalles

MOVIMIENTO CIRCULAR UNIFORME

MOVIMIENTO CIRCULAR UNIFORME MOVIMIENTO CIRCULAR UNIFORME Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos

Más detalles

3.- La representación gráfica del movimiento de un cuerpo es la que aparece en la figura. Contesta las siguientes cuestiones:

3.- La representación gráfica del movimiento de un cuerpo es la que aparece en la figura. Contesta las siguientes cuestiones: T2.- CINEMÁTICA 1.- Un caracol se desplaza a la velocidad de 5 mm cada segundo. a) Calcular la distancia recorrida por él en media hora ; b) cuál será su velocidad media? y su velocidad instantánea? 2.-.

Más detalles

Física y Química 4ºESO

Física y Química 4ºESO CINEMÁTICA 1. Generalidades La Cinemática es el estudio del movimiento sin atender a las causas que lo producen. Para estudiar el movimiento es necesario emplear un determinado tipo de magnitudes, por

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

CINEMÁTICA I (4º E.S.O.) Estudio de gráficas de movimientos

CINEMÁTICA I (4º E.S.O.) Estudio de gráficas de movimientos CINEMÁTICA I (4º E.S.O.) Estudio de gráficas de movimientos 1. En las gráficas que se dan a continuación, identifica el tipo de movimiento en cada tramo, calcula sus características y escribe las ecuaciones

Más detalles

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos MRU MRUA CINEMÁTICA 4º E.S.O. Caída y lanzamiento de cuerpos Movimiento Rectilíneo Uniforme 1. Un corredor hace los 400 metros lisos en 50 seg. Calcula la velocidad en la carrera. Sol: 8m/s. 2. Un automovilista

Más detalles

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento circular Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

HOJA Nº 10. CINEMÁTICA - 2

HOJA Nº 10. CINEMÁTICA - 2 HOJA Nº 10. CINEMÁTICA - 2 1. Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante t=0, parte del origen x=0. a. Dibuja

Más detalles

UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA

UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA ÍNDICE 1. La percepción del tiempo y el espacio 2. Descripción del movimiento 2.1. Instante e intervalo de tiempo 2.2. Posición

Más detalles

TEMA 2: EL MOVIMIENTO

TEMA 2: EL MOVIMIENTO TEMA 2: EL MOVIMIENTO 1.- Introducción. 2.- Características del movimiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazamiento. 2.4.- Velocidad. 2.5.- Aceleración. 1.- INTRODUCCIÓN La Cinemática es

Más detalles

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición, Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO. Problemas sobre Cinemática (I)

FÍSICA Y QUÍMICA 1º BACHILLERATO. Problemas sobre Cinemática (I) FÍSICA Y QUÍMICA 1º BACHILLERATO Problemas sobre Cinemática (I) 1) Un móvil describe un movimiento rectilíneo en el cual la posición en cada instante está dada por la ecuación: x( t) = t 2 4t. a) Construir

Más detalles

t (s) t (s) t (s) Determina a partir de ellos la velocidad con que se mueve cada uno de ellos.

t (s) t (s) t (s) Determina a partir de ellos la velocidad con que se mueve cada uno de ellos. CINEMÁTICA 1- Representa en un gráfico posición - tiempo el movimiento de un tren, visto por un observador desde el andén, si: a) Inicialmente el tren se encuentra a 0m y se acerca uniformemente. b) A

Más detalles

Decimos que un objeto se mueve con un movimiento circular si su trayectoria es una circunferencia.

Decimos que un objeto se mueve con un movimiento circular si su trayectoria es una circunferencia. Movimiento circular La trayectoria de un móvil sabemos que puede tener formas muy diversas. Hasta ahora hemos estudiado el caso más simple de trayectoria, la rectilínea. Ahora vamos a dar un paso más y

Más detalles

Ecuaciones movimiento circular

Ecuaciones movimiento circular La velocidad angular? de un móvil es igual al cociente del ángulo? que describe en su movimiento, dividido por eltiempo que tarda en recorrerlo. El ángulo? está dado en radianes. De las fórmulas del movimiento

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO MOVIMIENTO CIRCULAR UNIFORME (M.C.U)

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO MOVIMIENTO CIRCULAR UNIFORME (M.C.U) 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO MOVIMIENTO CIRCULAR UNIFORME (M.C.U) Es el movimiento de una partícula que describe una circunferencia recorriendo espacios

Más detalles

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Descripción del movimiento 1.- Enumera todos aquellos factores que te parezcan relevantes para describir un movimiento. 2.- Es verdadera

Más detalles

Movimiento Circular. Matías Enrique Puello Chamorro 27 de enero de 2014

Movimiento Circular. Matías Enrique Puello Chamorro  27 de enero de 2014 Movimiento Circular Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 27 de enero de 2014 Índice 1. Introducción 3 2. Movimiento circular uniforme 4 3. Cinemática del movimiento circular 5

Más detalles

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo

Más detalles

TEMA 1: MOVIMIENTO RECTILÍNEO UNIFORME.

TEMA 1: MOVIMIENTO RECTILÍNEO UNIFORME. Física y Química 4 ESO M.R.U. Pág. 1 TEMA 1: MOVIMIENTO RECTILÍNEO UNIFORME. La cinemática es la parte de la física que estudia el movimiento de los cuerpos. Cuando un cuerpo cambia de posición a lo largo

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

PROBLEMAS DE CINEMÁTICA. 4º ESO

PROBLEMAS DE CINEMÁTICA. 4º ESO Velocidad (km/h) Espacio(km) PROBLEMAS DE CINEMÁTICA. 4º ESO 1. Ordena de mayor a menor las siguientes cantidades: 12 km/h; 3 5 m/s; 0 19 km/min 3 5 m/s 1km/1000 m 3600 s/1h = 12 6 m/s 0 19 km/min 60 min/1h

Más detalles

1. Magnitudes características del movimiento: trayectoria, posición, desplazamiento, espacio recorrido, velocidad y aceleración.

1. Magnitudes características del movimiento: trayectoria, posición, desplazamiento, espacio recorrido, velocidad y aceleración. BLOQUE 2. Fuerzas y movimientos. Tema 2: Características generales del movimiento 1. Magnitudes características del movimiento: trayectoria, posición, desplazamiento, espacio recorrido, velocidad y aceleración.

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

1. Características del movimiento

1. Características del movimiento CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU)

MOVIMIENTO CIRCULAR UNIFORME (MCU) MOVIMIENTO CIRCULAR UNIFORME (MCU) Ángulo Es la abertura comprendida entre dos radios abiertos que limitan un arco de circunferencia. B _ r θ _ r A Θ= desplazamiento angular r = vector de posición A =

Más detalles

1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo.

1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo. EJERCICIOS de CINEMÁTICA 1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo. 2. De las gráficas de la figura, cuáles corresponden a un MRU? Cuáles a un MUA? Por qué? Hay alguna

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

TALLER DE REFUERZO FISICA ONCE

TALLER DE REFUERZO FISICA ONCE TALLER DE REFUERZO ESTUDIANTE: GRADO FECHA: ACTIVIDAD NUMERO 2 1. En el instante que un automóvil parte del reposo con aceleración constante de 2 m/s 2, otro automóvil pasa a su lado con velocidad constante

Más detalles

Ejercicios resueltos de MRUA

Ejercicios resueltos de MRUA Ejercicios resueltos de MRUA 1) La trayectoria de un móvil viene determinada por la expresión r = 2t 2 i + 2j - 8tk m a) Halla las ecuaciones de la velocidad y la aceleración del móvil y di qué tipo de

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILINEO UNIFORME La trayectoria es una línea recta la velocidad no cambia en dirección ni en módulo, por lo que no hay ningún tipo de aceleración. Ecuación del movimiento: S = V.t Gráficas

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? Física y Química CINEMÁTICA 4º ESO La CINEMÁTICA es la parte de la Física que estudia el moimiento de los cuerpos sin atender a la causa que los produce y sin considerar, tampoco, la masa del objeto móil,

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles

Ejercicios de Cinemática en una Dimensión y dos Dimensiones

Ejercicios de Cinemática en una Dimensión y dos Dimensiones M.R.U Ejercicios de Cinemática en una Dimensión y dos Dimensiones 1. Dos automóviles que marchan en el mismo sentido, se encuentran a una distancia de 126km. Si el más lento va a 42 km/h, calcular la velocidad

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

FÍSICA Y QUÍMICA 1ª Bachillerato CINEMÁTICA 1 Página 1

FÍSICA Y QUÍMICA 1ª Bachillerato CINEMÁTICA 1 Página 1 Página 1 CINEMÁTICA 1: ECUACIONES GENERALES DEL MOVIMIENTO 1. Calcula el vector de posición y su módulo para los siguientes puntos del plano XY: P 1 (2,3), P 2 (-4,1) y P 3 (1,-3). Las coordenadas se dan

Más detalles

Introducción a la Física Newtoniana

Introducción a la Física Newtoniana ANÁLISIS DIMENSIONAL Ø QUÉ ES: L (longitud), T (tiempo), M (masa), Q (carga), Spin, Ø POR QUÉ ES IMPORTANTE. (Todo cantidad física se expresa como una combinación de estas unidades básicas) Ø UNIDADES

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL CURSO: SEGUNDO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves,

TRABAJO DE RECUPERACIÓN PARCIAL CURSO: SEGUNDO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: SEGUNDO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

Problemas de Cinemática Física y Química. 4º de ESO

Problemas de Cinemática Física y Química. 4º de ESO Problemas de Cinemática Física y Química. 4º de ESO 1.- El ruedo de una plaza de toros tiene un diámetro de 40 m. Calcula cuánto espacio recorre y cuánto se desplaza un torero cuando: a) Da media vuelta

Más detalles

FUERZAS Y MOVIMIENTO. Descripción del movimiento Fuerza y movimiento Fuerza gravitatoria

FUERZAS Y MOVIMIENTO. Descripción del movimiento Fuerza y movimiento Fuerza gravitatoria Fuerza y movimiento Fuerza gravitatoria FUERZAS Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 Calcula

Más detalles

Física TEMA 1. 4º E.S.O. Física. Física

Física TEMA 1. 4º E.S.O. Física. Física 1 INTRODUCCIÓN AL MOVIMIENTO. CINEMATICA TEMA 1 4º E.S.O.. ESQUEMA DE LA UNIDAD. 2 1. CARACTERISTICAS DEL MOVIMIENTO. 1.1 SISTEMAS DE REFERENCIA. 1.2 TRAYECTORIA. 1.3 MAGNITUDES ESCALARES Y VECTORIALES.

Más detalles

PROBLEMAS RESUELTOS TEMA: 1

PROBLEMAS RESUELTOS TEMA: 1 PROBLEMAS RESUELTOS TEMA: 1 1. Un guardacostas tiene el combustible justo para ir con su lancha desde la costa hasta una isla; éste es un viaje de 4 h en contra de la corriente. Al llegar, resulta que

Más detalles

Física 4º E.S.O. 2015/16

Física 4º E.S.O. 2015/16 Física 4º E.S.O. 2015/16 TEMA 3: El movimiento rectilíneo Ficha número 6 1.- Las ecuaciones de los movimientos de dos móviles que se mueven por la misma trayectoria, en las unidades del S.I. son respectivamente:

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

1) A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? Solución: 20 m/s

1) A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? Solución: 20 m/s Problemas MRU 1) A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? Solución: 20 m/s 2) Un móvil viaja en línea recta con una velocidad media de 1.200 cm/s durante 9 s, y luego

Más detalles

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular.

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular. Movimiento circular La Luna se mueve casi en forma circular alrededor de la Tierra. La Tierra se mueve casi circularmente alrededor del Sol, a ese movimiento le llamamos de traslación. Y, además, la Tierra

Más detalles

Física: Movimiento circular uniforme y velocidad relativa

Física: Movimiento circular uniforme y velocidad relativa Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO DECIMO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO DECIMO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO DECIMO IDENTIFICACIÓN AREA: Ciencias naturales. ASIGNATURA: Física. DOCENTE. Juan Gabriel Chacón c. GRADO. Decimo. PERIODO: Segundo UNIDAD: Movimiento rectilíneo

Más detalles

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular 42 UNIDAD II 2 Cinemática 2.1 Movimiento rectilíneo 2.2 Movimiento bajo aceleración constante 2.3 Movimiento circular 2.4 Movimiento curvilíneo general 43 UNIDAD II 2 CINEMATICA. La Cinemática (del griego

Más detalles

Movimiento II. Objetivos. Esta unidad continúa con el estudio del movimiento realizado en Movimiento (I).

Movimiento II. Objetivos. Esta unidad continúa con el estudio del movimiento realizado en Movimiento (I). Movimiento II Objetivos Esta unidad continúa con el estudio del movimiento realizado en Movimiento (I). Se pretende que conozcas y profundices en el significado de los términos: vector aceleración media,

Más detalles

C O N C E P T O S B Á S I C O S D E M O V I M I E N T O

C O N C E P T O S B Á S I C O S D E M O V I M I E N T O DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. GUÍA DE REPASO: CINEMÁTICA NOMBRE alumno(a): CURSO: III medio C O N C E P T O S B Á S I C O S D E M O V I M I E N T O En física, se dice que un

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

CUERPOS EN MOVIMIENTO

CUERPOS EN MOVIMIENTO CUERPOS EN MOVIMIENTO OBJETIVOS Se trata de responder, entre otras, a las siguientes preguntas: Cómo se mueven los cuerpos? qué es la trayectoria? cómo se representan los movimientos? qué es un movimiento

Más detalles

2. Un móvil viaja con una velocidad constante de 20m/seg durante 4seg Cuánto espacio recorrió? v = 20m/seg t = 4seg. x =?

2. Un móvil viaja con una velocidad constante de 20m/seg durante 4seg Cuánto espacio recorrió? v = 20m/seg t = 4seg. x =? COLEGIO COOPERATIVO SAN ANTONIO DE PRADO PROGRAMA SEMIESCOLARIZADO-SEDE MARIA CANO MARQUEZ AREA DE CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL CLEI 5 DOCENTE: JORGE ANTONIO FLÓREZ VÁSQUEZ. ESTUDIANTE: EL

Más detalles

Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA

Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA 1 Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA La parte de la Física que estudia el movimiento se denomina Mecánica, y está constituida por dos disciplinas: - Cinemática: estudia el movimiento sin atender

Más detalles

TEMA 4: CINEMÁTICA DEL PUNTO MATERIAL

TEMA 4: CINEMÁTICA DEL PUNTO MATERIAL TEMA 4: CINEMÁTICA DEL PUNTO MATERIAL 1. El movimiento Hay dos formas de enfocar el estudio del movimiento de los cuerpos: Cinemática: el estudio se realiza prescindiendo de las causas que originan el

Más detalles

TEMA 3: El movimiento rectilíneo

TEMA 3: El movimiento rectilíneo Física y Química Curso 2011/12 4º E.S.O. TEMA 3: El movimiento rectilíneo 1.- Las ecuaciones de los movimientos de dos móviles que se mueven por la misma trayectoria, en las unidades del S.I. son respectivamente:

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

MOVIMIENTO EN DOS DIMENSIONES (TIRO PARABÓLICO)

MOVIMIENTO EN DOS DIMENSIONES (TIRO PARABÓLICO) MOVIMIENTO EN DOS DIMENSIONES (TIRO PARABÓLICO) En este apartado que se refiere al movimiento curvilíneo, es decir que la trayectoria de los cuerpos no es una línea recta sino una curva, se tratan los

Más detalles

II - MOVIMIENTO: TAREAS - resueltas

II - MOVIMIENTO: TAREAS - resueltas II - MOVIMIENTO: TAREAS - resueltas Movimiento en dos dimensiones en la superficie de la tierra. II.1 En los campeonatos mundiales de lanzamiento de huesos de olivas de 2005 celebrados en Cieza, Juanjo

Más detalles

MOVIMIENTO CIRCULAR UNIFORME ( MCU )

MOVIMIENTO CIRCULAR UNIFORME ( MCU ) MOVIMIENTO CIRCULAR UNIFORME ( MCU ) 1 Una cosa que da vueltas tiene movimiento circular. Por ejemplo, un trompo, una calesita o las agujas del reloj. Si lo qué está girando da siempre el mismo número

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014 Universidad de Atacama Física 1 Dr. David Jones 11 Junio 2014 Vector de posición El vector de posición r que va desde el origen del sistema (en el centro de la circunferencia) hasta el punto P en cualquier

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD 1. El observador A está pescando en la orilla de un río el observador B está sobre una balsa que es arrastrada por la corriente del

Más detalles