TRAZADOS EN EL PLANO. Teoremas del cateto y de la altura. TEMA ti. Trazados fundamentales. Arco capaz Cuadrilátero inscriptible

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRAZADOS EN EL PLANO. Teoremas del cateto y de la altura. TEMA ti. Trazados fundamentales. Arco capaz Cuadrilátero inscriptible"

Transcripción

1 TRAZADOS EN EL PLANO en el plno Arco cpz Cudrilátero inscriptile Teorems del cteto y de l ltur Trzdos fundmentles TEMA ti. Ojetivos y orientciones metodológics El ojetivo de este tem es, en primer lugr, completr los conocimientos dquiridos en el tem "Trzdos fundmentles en el plno" del liro Diujo Técnico 1del curso psdo; en segundo lugr dquirir el concepto de "rco cpz" de un segmento jo un ángulo ddo y sus plicciones práctics. Finlmente estos prolems servirán de repso del concepto de "lugr geométrico". Fig. 1. L rquitectur utiliz los trzdos geométricos. DIBUJO TÉCNICO 11- Bchillerto 11

2 p p 4 1. Trzdo de l perpendiculr un semirrect en su extremo (Fig. 2) Se l semirrect O-t, de origen o. Se tomn cinco segmentos igules y se construye un triángulo rectángulo de ldos3, 4 y 5 (estos números se llmnpitgóricos, y que se verific = 52). Pr ello, se tomon = 3; con centro enn se trz el rco de rdio 5 y con centro en O se trz el rco de rdio 4; estos dos rcos se cortn en P L rectp que une los puntos O y P es l perpendiculr l semirrect t en su extremo o. 3 o Fig Trzdo de ls rects prlels otr un distnci dd (Fig.3) Recuérdese l definición de rects prlels: son dos rects coplnris que se cortn en el punto del infinito de ells, llmdo punto impropio. Se l rectr y hy que trzr ls rects s y u prlels ell l distnci t. Se tomn dos puntos culesquier R y S de l rect t y se trz por cd uno de ellos l perpendiculr ell. Con centros en R y S Yrdio t. se trzn los rcos que cortn ls perpendiculres nteriores en los puntos E, G, F YH. Ls rects s y u son ls prlels pedids Fig. 3. N ~. Trzdo de l rect que psndo por un punto P se concurrente con otrs dos rects r y s que se cortn fuer del diujo (Fig.4) Por P se trzn dos rects culesquierpn y PM, con lo cul se otiene el triángulo NMP A prtir de un punto culquier N' dej, se diuj el triángulo N'M'?, cuyos ldos sen prlelos los del triángulo nterior, estndo M' en s. L rect solución es P- P'. Fig Bisectriz de un ángulo cuyos ldos se cortn fuer del diujo (Fig. 5) Se el ángulo formdo por ls rectsry s, cuyo vértice.es inccesile. Se trz un secnte t culquier y se determinn ls isectrices,, e yd de los ángulos que form t con ry s; ests isectrices se cortn enpy Q; l rectpq es l isectriz uscd. En un triángulo, cd vértice y los puntos de intersección de ls isectrices. interiores y exteriores están en líne rect. Fig DIBUJO TÉCNICO II - Bchillerto

3 5. Trzdo de l isectriz de un ángulo mixtilíneo (Fig. 6) El ángulo está formdo por l rect r y el rco s de centro O; el vértice es el punto O'. Se tom un rdio culquier OA del rco sy se vn tomndo segmentos igulesa-1' = 1'-2'; igulmente, sore un perpendiculr r se vn tomndo segmentos igules los nteriores. L prlel por 1 ry el rco concéntrico l sque ps por 1' se cortn en P, punto de l ísectríz uscd, En l figur se hn determindo un serie de puntos que unidos con O' dn l curv isectriz. 6. Trzdo de l isectriz de un ángulo curvilíneo (Fig. 7) El procedimiento es el mismo que pr el ángulo mixtilíneo. Los dos rcos que formn el ángulo son y, de centros 0 1 y O 2 siendo V el vértice. Los rcos concéntricos los nteriores por los puntos 1,2, etc., vn dndo, l cortrse, puntos de l isectriz, tles como los MyN o Fig Construcción de ángulos con el compás (Figs. 8 13) En ls figurs siguientes se fíden seis nuevs construcciones, como complemento ls estudids en el ~urso psdo. -, - Angulo de 37 30'(Fig. 8): Se trz l isectriz f del ángulo AOi5 de 750. L solución es el ángulo Fé5A que formn ls rectsfy. - Ángulo de 105 (Fig. 9) Se otiene como sum de los ángulos de 90 y 150. Pr esto, se tom l cuerd BE = BD sore l prolongción del rcoab. L solución es el ánguloeoa que formn ls rects e y. - Ángulo de 120 (Fig. 10) Se construye como sum de los ángulos de 90 y 300. ~ El ánguloaoc es de 60, luego el ángulo que form l rect e == OC con l semirrect O- es de Ángulo de 135 (Fig. 11): Se construye como sum de los ángulos de 90 y 45 ; el ángulo que formn e y es de Fig. 7. Fig. 8. Fig Fig. 10. Fig, 11. DIBUJO TÉCNICO II - Bchillerto 13

4 ISO' 180' Ángulo de (Fig. 12): Se otiene como sum de los ángulos de 90 y 60 ; el ángulo que formn e y es de 150. o 180' Ángulo de 180 (Fig. 13) Es el ángulo llno y su construcción es inmedit. Ls semirrects O- y O- formn 180. Los ldos de este ángulo están en prolongción. Fig. 12. Fig. 13. / 8. Arco cpz (Figs. 14 y 15) Supongmos l circunferenci de centro O y en ell un cuerd P-O (Fig. 14). Si tommos puntos de est circunferenci, tles cml, N, M, etc., y los unimos con P y O, tenemos un serie de ángulos inscritos que son igules porque sus extremos rcn el mismo rco PSO de circunferenci. s Fig. 14. Arco cpz de un segmento P-O jo un ángulo A es el lugr geométrico de los puntos del plno desde los cules se ve este segmento jo el ángulo A (Fig. 14). N ~---«R M Pr construir el rco cpz del segmento P-O que se ve jo un ángulo A (Pig. 15), se tom el segmento P-O, se trz su meditriz m y se diuj l rectr que forme el ángulo A conp-o. L perpendiculr porp l ldo r del ángulo A cort en O l meditriz. El rco de circunferenci PRO de centro O y rdio OP = 00 es el rco cpz. Ouiere decir esto que tomndo puntos como 10sN y M Yuniéndolos con P y O, se otienen ángulos igules l A. El vlor del ánguloa, semiinscrito, del ángulo centrl E, ángulop-o-q es igul l mitd - S El rco P-S-O serí el rco cpz del segmento j un ángulo de A P-O ~ v r-; \ J Fig. 15. Fig Aplicción del rco cp en l construcción de un triángulo (Fig. 16) Los dtos del triángulo A opuesto l ldo. son los ldos y Yel ángulo Se puede otener el triángulo construyendo el rco cpz del segmento jo el ángulo A Si =, l hy dos soluciones, que son los triángulos AlEG y A'lEG, los cules se otienen hciendo centro en G y con rdio 1 cortndo el rco cpz, que es l circunferenci de centro O y rdio OE = OG. Si = ; igul l diámetro de l circunferenci que contiene el rco cpz, hy un sol solución, triángulo A 2 EG. Si =., myor que el diámetro de l circunferenci, el prolem no tiene solución. 14 DIBUJO TÉCNICO" - Bchillerto

5 10. Cudrilátero inscriptile (Figs. 17 y 18) Un cudrilátero es inscriptile cundo puede ser inscrito en un circunferenci. Un cudrilátero está inscrito en un circunferenci cundo sus cutro vértices están en ell (Fig. 17). De lo estudido en l construcción del rco cpz (Fig. 15) podemos deducir que, por ejemplo, los rcosba15 y Bci5 son rco cpz de l digonl BD y los vértices A y e, opuestos, tienen ángulos suplementrios, es decir, sumn Tmién son suplementrios los ángulos opuestos By D. Según esto se puede decir que todo cudrilátero convexo cuyos ángulos opuestos son suplementrios es inscriptile. En todo cudrilátero inscrito, son igules los ángulos que formn ls digonles con dos ldos opuestos (Fig. 18). Fig. 17. B Al =El; E 2 =e 2 ; el =DI; D2=A 2 Recíprocmente se puede decir que todo cudrilátero convexo es inscriptile, si cumple lgun de ls igulddes nteriores. Aplicción: Un cudrilátero es inscriptile en un circunferenci demostrndo culquier de ests dos propieddes: 1. Que los ángulos de dos vértices opuestos son suplementrios. 2. Que los ángulos formdos por ls digonl es con dos ldos opuestos son igules. Fig Construcción gráfic de l curt proporcionl tres segmentos, y e (Fig. 19) L curt proporcionl x tres segmentos expres sí: 1+=+1, y e se Est fórmul se construye en l figur plicndo el teorem de Thles. Fig Construcción gráfic de l tercer proporcionl dos segmentos y (Fig. 20) L tercer proporcionl x dos segmentos y se expres sí: 1+=+1 Se construye como en el cso nterior en el que se repite el segmento. Fig. 20. DIBUJO TÉCNICO II - Bchillerto 15

6 13. Construcción gráfic de l medi proporcionl dos segmentos y Primer procedimiento (Fig. 21). L medi proporcionl x dos segmentos y se expres sí: Fig. 21. proporción en l que se desconoce el medio común, o lo que es igul: X2 =.. Aplicmos el teorem de triángulos rectángulos que dice: un cteto es medi proporcionl entre l hipotenus y su proyección sore ell. Según esto, tommos el segmento y, superpuesto con él, el segmento; l semicircunferenci de diámetro nos permite otener el segmento x, medi proporcionl uscd. Segundo procedimiento (Fig. 22). x En l figur se otiene por otro procedimiento l medi proporcionl x los segmentos y, plicndo el teorem de triángulos rectángulos que dice: l ltur sore l hipotenus es l medi proporcionl entre los segmentos en que l divide. Fig. 22. \ Fig. 23. Tercer procedimiento (Fig. 23). En est figur se otiene l medi proporcionl x los segmentos y siendo que l potenci de un punto respecto de un circunferenci es igul l cudrdo de l tngente trzd desde el punto l circunferenci (este concepto de potenci se explic en el cpítulo siguiente). Según esto, colocdos los segmentos y como indic l figur, se trz l tngente desde el extremo común de y l circunferenci de diámetro Prolem (Fig. 24) Ddos dos puntos A y B Y un rect r que los sepr, encontrr en ést el punto P tl que l diferenci PA-PB se máxim. Se hll el simétrico del punto E respecto l rect r, punto E', y se une con A. El punto P es el pedido y l diferenci máxim es AB '. 15. Prolem (Fig. 25) Ddos dos puntos A y B Y un rect r tl que los dos puntos están en el mismo semiplno, encontrr en ést el punto P tl que l sum PA + PE se mínim. B o A' Se hll el simétrico del puntoa respecto r, y se une con el punto E. El puntop es el pedido y l sum mínim espa + PB. Fig. 24. Fig DIBUJO TÉCNICO 11- Bchillerto

7 16. Construcción de un cudrdo equivlente un pentágono regulr (Fig. 26) A L B Se trnsform el pentágono en el triángulo equivlente 1-M-N medinte ls prlels 5-M Y2-N ls digonles 1-4 y 1-3 del pentágono. Después, prtir del triángulo, se otiene el cudrdo equivlente: V =. /2; según esto, st construir l medi proporcionl entre l se y l mitd de l ltur pr tener el ldo L del cudrdo. p 17. Cudrtur del círculo (Fig. 27) Fig. 26. Se pide construir el cudrdo equivlente un círculo ddo. Aunque este prolem no es excto, y que interviene en el áre el número inconmensurle n, se puede otener gráficmente con stnte proximción. El áre del círculo es nr 2 y l del cudrdo uscdo es V. Igulndo ls dos superficies se tiene rrr- = V, o lo que es igul: V = nr.r. De quí se deduce que elldol del cudrdo que uscmos es medi proporcionl entre los segmentos tti y r. En l figur, se tom el rdio r y el segmento ttr, que es l rectificción de l semicircun- - - ferenci (sum de PR y PO), y se trz l semicircunferenci de diámetror + tti. El segmentol = AD es el ldo del cudrdo uscdo y con él se construye éste. Fig Construcción de un círculo equivlente un elipse (Fig. 28) Se iguln ls áres de ls dos figurs y tendremos: nr z = n; de esto se deduce r' =.. Bst hllr l medi proporcionl entre los semiejes y de l elipse pr otener el rdio r del círculo equivlente. En l figur, ON = OD = y OE = ; se trz l circunferenci de diámetro NE = - y l tngente ell desde O es el rdior = OPde l circunferenci equivlente l elipse. Fig. 28. DIBUJO TÉCNICO 11- Bchillerto 17

8 19. Teorems del cteto y de l ltur en un triángulo rectángulo (Fig. 29) En el prtdo 13, pr construir l medi proporcionl dos segmentos, hemos hecho plicción gráfic de estos dos teorems. En un triángulo rectángulo se consider l ltur l perpendiculr AD desde el vértice del ángulo recto l hipotenus CE. "Cd cteto es medi proporcionl entre l hipotenus y su proyección sore ell." m L segund expresión se deduce de considerr l semejnz entre los triángulos CAE y ADB. Los triángulos ADC y ADE son semejntes y su vez los dos son semejntes l CAE. Se deduce: m h h n "L ltur sore l hipotenus es medi proporcionl entre los segmentos en que l divide." Sumndo ls relciones nteriores result 2 ='m d ='n 2 +c 2 =m +00 =(m + n)= = 2 Fig. 29. L ltur divide l hipotenus en dos segmentos m y n que son ls proyecciones ortogonles de cd cteto sore ell. Los triángulos CAE y ADC son semejntes y de est semejnz se deduce el teorem: I 2 + c 2 = 2 I expresión que enunci el teorem de Pitágors: "El cudrdo de l hipotenus es igul l sum de los cudrdos de los ctetos." Un triángulo cuyos ldos sen proporcionles 3,4 Y 5 (números pitgóricos) es rectángulo, pues se verific que 52 = ACTIVIDADES 1. Ddo un ángulo de 22 30' construir otro igul que teng por vértice un punto ddo. 2. Por un punto ddo exterior un rect, trzr otr que forme con ell un ángulo igul otro ddo. 3. z.córno se construye un ángulo por medio del trnsportdor? 4. Dividir un ángulo en un número culquier de prtes igules (trnsportdor). 5. Dividir un ángulo recto en tres prtes igules. 6. Ddo un segmento AB = 4 cm, hllr el rco cpz del mismo jo ángulos de 45 y Emplendo l teorí del rco cpz construir un triángulo cuyos dtos son = 3 cm, = 4,5 cm ya = 300. Estudir l posiilidd de que según se myor o menor el vlor de, el prolem teng dos soluciones, un o ningun. 8. Construir el triángulo rectángulo del que se conoce l ltur h = 3 cm y l proyección m = 2,5 cm de un cteto sore l hipotenus. 9. Construir el triángulo rectángulo conociendo los segmentos m = 3 cm y n = 5 cm en que su ltur divide l hipotenus. 18 DIBUJO TÉCNICO II - Bchillerto

UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS

UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS RAZONES Y PROPORCIONES DEFINICIONES RAZÓN: L rzón entre dos números reles y, (0), es el cociente entre y, es decir. Tmién se escrie: /,, :. PROPIEDADES

Más detalles

Teorema de pitágoras Rectas antiparalelas

Teorema de pitágoras Rectas antiparalelas pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores

Más detalles

. Triángulos: clasificación

. Triángulos: clasificación . Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

A B C D E F G H I J USOS DE LA ESCUADRA Y EL CARTABÓN TB1. Grupo. Apellido Apellido, Nombre. Fecha. Título de la lámina

A B C D E F G H I J USOS DE LA ESCUADRA Y EL CARTABÓN TB1. Grupo. Apellido Apellido, Nombre. Fecha. Título de la lámina Emplendo l escudr y el crtbón rellen los tres espcios continución con prlels ls direcciones dds. Procur que l distnci entre ls prlels se l mism que l que te d el ejercicio y preséntlo cbdo tint negr. continución,

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

4. Geometría. 4.1 Ángulos. Construir un ángulo igual a otro con el auxilio de un compás. Trazado de la bisectriz de un ángulo utilizando compás.

4. Geometría. 4.1 Ángulos. Construir un ángulo igual a otro con el auxilio de un compás. Trazado de la bisectriz de un ángulo utilizando compás. Ministerio de Educción Universidd Tecnológic Ncionl Fcultd Regionl Rosrio Secretrí cdémic Áre Ingreso RIENTIÓN UNIVERSITRI 4. Geometrí 4.1 Ángulos ángulo convexo (< 180 ) ángulo llno = 180 ángulo cóncvo

Más detalles

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II) CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 GEOMETRÍA DEL ESPACIO I RPTA.: D RPTA.: D C RPTA.: A RPTA.: D

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 GEOMETRÍA DEL ESPACIO I RPTA.: D RPTA.: D C RPTA.: A RPTA.: D SEMN 1 GEOMETRÍ E ESPO 1. lcule el máximo número de plnos que quedn determindos con puntos no coplnres. ) ) ) ) E) 6 * (F) Porque puntos colineles no determinn un plno. * (F) Porque rects que se cruzn

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Seres procedimentles 1. Utiliz correctmente el lenguje lgerico, geométrico y trigonométrico.. Identific l simologí propi de l geometrí y l trigonometrí. 3. Identific ls uniddes

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

Problemas de fases nacionales e internacionales

Problemas de fases nacionales e internacionales Problems de fses ncionles e interncionles 1.- (Chin 1993). Ddo el prlelogrmo ABCD, se considern dos puntos E, F sobre l digonl AC e interiores l prlelogrmo. Demostrr que si existe un circunferenci psndo

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 196

9Soluciones a los ejercicios y problemas PÁGINA 196 PÁGIN 196 Pág. 1 P RCTIC Ángulos 1 Hll el vlor del ángulo en cd uno de estos csos: ) b) 11 37 48 48 c) d) 35 40 ) 37 b 11 b 180 11 68 180 37 68 75 b) 360 48 8 13 c) 40 b b 180 90 40 50 180 50 130 d) 35

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos Geometrí El punto El punto es un elemento geométrico dimensionl, no es un objeto físico; describe un posición en el espcio, determind en función de un sistem de coordends prestblecido. L rect L rect, o

Más detalles

GEOMETRÍA PLANA. VECTORES

GEOMETRÍA PLANA. VECTORES COPIRRI_Julio Césr bd Mrtínez-Los GEOMETRÍ PLN. VECTORES 1.- POLÍGONOS Polígono: Prte del plno limitd por un líne poligonl cerrd. Ldo: Segmento que une dos vértices consecutivos. En un polígono el número

Más detalles

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2

Guía de Sustentación Matemática. 1º medio A 3, 2. h) H. c) El cuarto cuadrante d) El segundo cuadrante 5, 2 Royl Americn School Profesor An Mendiet Guí de Sustentción Mtemátic 1º medio A Formndo persons: Responsles respetuoss honests y leles 1) Represent en el plno crtesino los siguientes puntos: ) A(-1) d)

Más detalles

Resolución de triángulos cualesquiera tg 15 tg 55

Resolución de triángulos cualesquiera tg 15 tg 55 Resuelve los siguientes triángulos: ) 3 cm 17 cm 40 ) 5 cm c 57 cm 65 c) 3 cm 14 cm c 34 cm ) c 3 +17 3 17 cos 40 c 1,9 cm 17 3 + 1,9 3 1,9 cos 9 56' '' 10 ( + ) 110 3' 5'' ) 5 + 57 5 57 cos 65 79,7 cm

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

1. Ejercicios Primera parte. 1. Clasifique en verdadero (V) o falso (F):

1. Ejercicios Primera parte. 1. Clasifique en verdadero (V) o falso (F): PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Progrm de Perfeccionmiento pr Profesores de Mtemátics del Nivel Secundrio Curso Piloto-Etp distnci 1. Ejercicios 1.1. Primer prte 1. Clsifique en verddero (V) o

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

DADO EL CUADRILÁTERO ABCD, COPIARLO A PARTIR DE A': Por copia de ángulos y segmentos

DADO EL CUADRILÁTERO ABCD, COPIARLO A PARTIR DE A': Por copia de ángulos y segmentos EL PLÍGN, PIRL PRTIR E ': Por tringulción E ' EL URILÁTER, PIRL PRTIR E ': Por copi de ángulos y segmentos ' EL HEXGN IRREGULR EF, PIRL PRTIR E ', N LS ENTRS y ' S: Por rdición ' F E EL URILTER E, PIRL

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Conceptos generles de ángulos, polígonos y cudriláteros Progrm Entrenmiento Desfío En l figur I se muestr un crtulin cudrd PQRS de ldo 1. Se doln los ldos SP y RQ por ls línes

Más detalles

Triángulos II: Líneas y Puntos Notables

Triángulos II: Líneas y Puntos Notables Triángulos : Línes y Puntos Notbles 1. ltur Segmento que prte de un vértice y cort en form perpendiculr l ldo opuesto o su prologción. t. rtocentro s el punto donde se intersectn ls tres lturs de un triángulo.

Más detalles

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad? PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.

Más detalles

Trigonometría. Prof. María Peiró

Trigonometría. Prof. María Peiró Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

ESPA 2. es limitado longitud. que no lleguen. a tocarse. que son secantes y no se. cortan son. paralelas. origen. perpendiculares.

ESPA 2. es limitado longitud. que no lleguen. a tocarse. que son secantes y no se. cortan son. paralelas. origen. perpendiculares. CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA 2 Mtemátics y Tecnologí Unidd 4 Línes rects. Ángulos. Polígonos. Teorem de Pitágors RECTAS, SEMIRRECTAS Y SEGMENTOS Dos puntos A y B determinnn un rect

Más detalles

MATEMÁTICAS-FACSÍMIL N 9

MATEMÁTICAS-FACSÍMIL N 9 MTEMÁTIS-FSÍMIL N 9. b b b ) - b ) b - ) b D) E) 6 cm ( b) =. El triángulo está inscrito en l mitd de l circunferenci. Si h c = cm y el ldo = 5cm. El rdio de l circunferenci es: ) cm ) 6 cm ) 6 cm O D)

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Una nueva unidad para medir ángulos: el radián

Una nueva unidad para medir ángulos: el radián Unidd. Trigonometrí Un nuev unidd pr medir ángulos: el rdián Hst hor hemos utilizdo pr medir los ángulos el sistem segesiml. Como y ses cd un de ls 60 prtes igules en ls que se divide l circunferenci se

Más detalles

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo pág.1 Medids de ángulos Ángulo es l porción del plno limitd por dos semirrects de origen común. Los ángulos se pueden medir en grdos sexgesimles o en rdines. Medids en grdos (uniddes sexgesimles): El grdo

Más detalles

POLÍGONOS. RELACIONES MÉTRICAS

POLÍGONOS. RELACIONES MÉTRICAS POLÍGONOS. RELIONES MÉTRIS OJETIVOS onocer ls crcterístics, fundmentos y prticulriddes que encierr el trzdo de polígonos: triángulos, cudri - láteros y métodos generles de construcción. 1 2 3 Verificr

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO TUTORIAL DE PREPARAIÓN MATEMATIA 009 RELAIONES MÉTRIAS EN EL TRIÁNGULO RETÁNGULO I.- MARO TEORIO DEPTO. DE MATEMATIA Ls relciones métrics en un triángulo rectángulo son 5 relciones plicles sólo este tipo

Más detalles

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del. TEMA 1. Construcciones geométricas básicas. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del. TEMA 1. Construcciones geométricas básicas. Departamento de Artes Plásticas y Dibujo DIUJO TÉNIO HILLERTO Lámins resuelts del TEM 1. nstruccines gemétrics básics. Deprtment de rtes lástics y Dibuj 75º 60º 30º Nmbre de lumn 45º Deprtment de rtes lástics urs G 01 Títul de lámin RLELS Y ERENDIULRES

Más detalles

Trigonometría: ángulos / triángulos. matemática / arquitectura

Trigonometría: ángulos / triángulos. matemática / arquitectura Trigonometrí: ángulos / triángulos mtemátic / rquitectur Grn pirámide de Guiz. Egipto. 2750.C. (h=146,62m / l=230,35m) Pirámide del Museo Louvre. Pris. 1989. rq. Ieoh Ming Pei. (h=20m / l=35m) Grn pirámide

Más detalles

Lados Vértice complementarios CONVEXO CÓNCAVO suplementarios

Lados Vértice complementarios CONVEXO CÓNCAVO suplementarios Geometrí Ánguos Un ánguo es región de pno imitd por dos semirrects con e origen común. IES Rmiro de Meztu Mdrid Ldos Vértice Csificción de os ánguos Compementrios y supementrios CÓNCAVO CONVEXO Dos ánguos

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

b a a 1 + = si denominamos x al cociente

b a a 1 + = si denominamos x al cociente Número de oro l número de oro es l relción de proporcionlidd entre dos ojetos (líne, plno o volumen) su símolo es φ y su vlor es de 1,61803. L proporción áure se logr l dividir un segmento en dos prtes

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

Identificación de propiedades de triángulos

Identificación de propiedades de triángulos Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

60 α α. 3 lados 2 lados 3 lados. α 1. (0 < α n. Rectángulo:

60 α α. 3 lados 2 lados 3 lados.  α 1. (0 < α n. Rectángulo: Personl Trinig for PSU nro.1. Prof. hef. Triángulos I: Propieddes ásics efinición dos los puntos,, ; se define triángulo como l reunión. P = punto interior Q = punto eterior ê 2 Q c P ê 1 φ b ê 3 Notción

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. 1 ENUNCIADOS 1 En el punto C hy td un cuerd de 5 m que sujet un cbr. Hll l superficie de l cs y l superficie de hierb que puede comer l cbr. m CASA m 10 m C 45 Investig: Qué relción hy entre ls superficies

Más detalles

Retos Matemáticos visuales

Retos Matemáticos visuales Retos Mtemáticos visules Bdjoz, 5 de junio de 207 Dpto. de Mtemátics Univ. de Extremdur Retos Mtemáticos visules Dpto. de Mtemátics Univ. de Extremdur «Retos Mtemáticos visules. 5 de junio de 207 Tem

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos.

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos. AREAS L noción de áre está socid l extensión o superficie de un figur. El áre es un número que nos dice que tn extens es un región y l expresmos en kilómetros cudrdos (Km ); metros cudrdos (m ); centímetros

Más detalles

TEMA 11: PROBLEMAS MÉTRICOS

TEMA 11: PROBLEMAS MÉTRICOS Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 6:CÓNICAS 1º BACHILLERATO ÍNDICE 1. INTRODUCCIÓN... 1.1. SUPERFICIE CÓNICA... 1.. CURVAS CÓNICAS... 5. CIRCUNFERENCIA... 6.1. ECUACIÓN COMPLETA DE UNA CIRCUNFERENCIA... 6.1.1.

Más detalles

Clase 1 El problema de la duplicación del cubo

Clase 1 El problema de la duplicación del cubo Clse 1 El problem de l duplicción del cubo 7 de febrero de 2012 El origen del problem de l duplicción del cubo tiene un origen mítico que se remont l siglo V.C en Atens con l muerte de su goberndor Pericles,

Más detalles

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:

Más detalles

Desafío. Guía Congruencia y semejanza de triángulos GUÍA DE EJERCITACIÓN AVANZADA GUICEN025MT22-A17V1

Desafío. Guía Congruencia y semejanza de triángulos GUÍA DE EJERCITACIÓN AVANZADA GUICEN025MT22-A17V1 PROGRM NTRNMINTO Guí ongruenci y semejnz de triángulos esfío n l figur djunt, el triángulo es rectángulo en y l rect L es simetrl del ldo. Si = 6 y = 8, entonces el perímetro del cudrilátero QP mide GUÍ

Más detalles

Senx a) 0 b) 1 c) 2 d) 2

Senx a) 0 b) 1 c) 2 d) 2 EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

OBJETIVO 1 DETERMINAR LAS RECTAS Y PUNTOS NOTABLES EN TRIÁNGULOS

OBJETIVO 1 DETERMINAR LAS RECTAS Y PUNTOS NOTABLES EN TRIÁNGULOS OJETIVO 1 DETERMINR LS RETS Y PUNTOS NOTLES EN TRIÁNULOS NOMRE: URSO: EH: RETS Y PUNTOS NOTLES DE UN TRIÁNULO Ls medins de un triánguo son s rects que unen cd uno de os vértices de triánguo con e punto

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Rectas y puntos notables en un triángulo.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Rectas y puntos notables en un triángulo. Figurs pns INTRODUCCIÓN Ls figurs pns y e cácuo de áres son y conocidos por os umnos de cursos nteriores. Conviene, sin embrgo, señr presenci de s figurs pns en distintos contextos rees y destcr importnci

Más detalles

Geometría. RESOLUCIÓN Sea n el número de lados de la base del prisma: C: Números de caras del prima V: Número de vértices A: Número de aristas

Geometría. RESOLUCIÓN Sea n el número de lados de la base del prisma: C: Números de caras del prima V: Número de vértices A: Número de aristas Geometrí SEMN PRISMS Y PIRÁMIDE. Clcule el número de crs de un prism donde el número de vértices más el número de rists es 50. ) 0 B) 0 C) 0 D) E) 8 V ' BSE Dto: L 86 Perimetro 86 = BSE V 6 V 59 Se n el

Más detalles

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices.

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices. GEOMETRÍ 1.- Determin ls medids de los ángulos desconocidos. ) b) " 31º " 20º 47º 2.- Dos ángulos de un triángulo miden 73º y 58º respectivmente. Determin el ángulo que formn sus bisectrices. 3.- uánto

Más detalles

TEMA 3 TRAZADO GEOMETRICO. CONICAS

TEMA 3 TRAZADO GEOMETRICO. CONICAS TEM 3 TRZDO GEOMETRICO. CONICS 1. CIRCUNFERENCIS...2 1.1 TNGENCIS...2 2. DIVISION DE CIRCUNFERENCIS...9 2.1 EN TRES Y SEIS PRTES IGULES...9 2.2 EN CUTRO Y OCHO PRTES IGULES...10 2.3 EN CINCO Y DIEZ PRTES

Más detalles