Análisis Espectral: Determinación de la Constante de Rydberg

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis Espectral: Determinación de la Constante de Rydberg"

Transcripción

1 Aálisis Espectral: Determiació de la Costate de Rydberg Objetivo Estudiar espectros de líeas de emisió de alguos elemetos, usado u espectrómetro de red y determiar la costate de Rydberg. Equipamieto - Goiómetro - Red de difracció - Lámpara de de Mercurio. - Tubo de descarga espectral de hidrógeo - Rayo laser Teoría Difracció θ Figura : difracció por ua red, co icidecia ormal La ecuació para ua red de difracció, e ua situació e que la luz icide ormal sobre la red, está dada por mλ = d seθ () dode m es el úmero de orde del espectro, d es el espaciamieto de la red, y θ el águlo de difracció, medido co respecto a la ormal a la red (Fig. ).

2 Emisió Cada elemeto tiee sus proprias lieas espectrales características. A fiales del siglo pasado Balmer ecotró empíricamete ua expresió que relacioaba las líeas espectras coocidas del átomo mas simple, hidrógeo. Esta expresió fue refudida por Rydberg e la siguiete ecuació: λ = R H ( ) =,, 5,... () dode : λ : logitud de oda de la líea espectral R H : costate de Rydberg : etero que correspode al úmero de orde de cada líea espectral e el serie de Balmer. (No es lo mismo que el orde del espectro). E 9 Niels Bohr formuló ua teoría para explicar el espectro del hidrógeo, basados e las ivestigacioes de Plack sobre la radiació del cuerpo egro, Bohr comezó supoiedo que el electró giraba e órbitas circulares alrededor del úcleo. Luego postuló la existecia de ciertas órbitas estables, e las cuales el electró puede permaecer si irradiar. E cada ua de ellas, la eergía del sistema electró-ucleo posee u valor característico para ese estado, si por algua razó el electró cambia de órbita, el átomo correspodiete absorberá o irradiará ua catidad determiada de eergía igual a la diferecia de eergía total etre sus estados iicial o fial, o sea h ν = E f - E i () Bohr tomado e cosideració que la eergía sólo podrá radiarse e determiadas frecuecias, que depede de la aturaleza del átomo, estableció la siguiete relació: λ = π m Z h e c e ( f i ) () dode m e : masa del electró Z : úmero atómico e : carga del electró h : costate de Plack c : velocidad de la luz f : úmero cuático del estado fial i : úmero cuático del estado iicial

3 Luego R H = π mz e h c, correspode a la costate de Rydberg. La ecuació () os permitirá calcular la costate de Rydberg si coocemos la logitud de oda de la líea espectral y su úmero de orde e la serie de Balmer. Motaje Experimetal El Goiómetro Para la medició de logitudes de oda asociadas a líeas de espectros de emisió se usará u espectrómetro, como el que se muestra esquemáticamete e la Figura. Este cosiste de u colimador co ua redija ajustable de etrada y u telescopio para observació, ambos motados radialmete e toro a ua plataforma circular, que posee u verier para medició de águlos. Sobre la plataforma se ubica la red de difracció. Existe diversos torillos de efoque y fijació, cuyo uso se describe a cotiuació. La fuete lumiosa se posicioa a la etrada de la redija. El propósito del colimador es proyectar u haz de luz paralelo sobre la red. El telescopio se usa e cojuto co u ocular co pelos-cruzados, para observar la luz difractada a distitos águlos, medidos co el verier. redija tubo del colimador fuete de luz cilidro del colimador red de difracció ocular verier θ tubo del telescopio cilidro del telescopio Figura: dibujo esquemático del espectrómetro, co sus partes

4 Los Tubos de descarga (See Appedix for more details) El espectro de radiació que sale de u tubo de descarga de gas cotiee todas las frecuecias que se puede obteer de las trasicioes etre dos estados de eergía cualesquiera. Así el espectro de radiació emitido por u gas e u tubo de descarga de gas da iformació directa sobre los iveles de eergía de u átomo. PARTE I: Determiació de la costate de la red de difraccío utilizado las lieas del espectro de Mercurio. Prepare el goiómetro para realizar óptimas medicioes. Pregutale al profesor o ayudate.. Poga la lámpara de Mercurio e la redija de etrada y mueva el cilidro del telescopio hasta que la image correspodiete al orde cero (ie image si dispersió) se vea. Mida esta posició cuidadosamete, su valor y su respectivo error. Cuáles so las vetajas y desvetajas de teer ua redija de etrada acha?. Mueva el cilidro del telescopio hasta que se vea las lieas espectrales de mercurio. Coviee observar uos cuatro órdees del espectro (dos co águlos positivos y dos co águlos egativos).idetifique la logitud de oda y el orde de cada líea. Mida los águlos (icluyedo la icerteza debida al error observacioal).. Utilizado el ecuacio haga u gràfico y calcule de uevo la costate de separació de la red usado las logitudes de oda coocidos de mercurio (ver apedice ). PARTE II: Determiació de la Costate de Rydberg utilizado el espectro visible de Hidrogeo. Use u tubo de descarga de hidrógeo como fuete de luz. Mida los águlos θ para las pricipales líeas visibles y calcule las logitudes de oda. Estas líeas so las primeras del serie de Balmer. Coviee observar tres lieas y uos cuatro órdees del espectro (dos co águlos positivos y dos co águlos egativos).

5 . Usado la ecuació y algú método gráfico, calcule (co errores) u valor para la costate de Rydberg. APENDICE : Los Logitudes de Oda Alguas líeas promietes del espectro de emisió del Mercurio so 05.8m, 5.8m, 56.m y 579. m. APENDICE : Los Tubos de Descarga Los átomos de u elemeto (hidrógeo, por ejemplo) puede ser excitados a estados de eergía mas altos bombardeádolos co u haz de electroes eergéticos. Esto se lleva a cabo e buea forma e u tubo de descarga de gases, que es u tubo cerrado que cotiee hidrógeo (o algú otro gas), a muy baja presió y los electrodos e su iterior. El cátodo se calieta para que emita electroes, los cuales so atraídos por el áodo. Los electroes adquiere así eergía móvil al moverse hacia el áodo y de vez e cuado choca co u átomo de hidrógeo ( u otro gas). E el proceso de choque parte de la eergía ciética de los electroes puede pasar al átomo llevado al electró (o electroes sí es otro gas) del Hidrógeo a u estado de eergía más alta. 5

Evolución del concepto de Átomo (Resumen)

Evolución del concepto de Átomo (Resumen) Evolució del cocepto de Átomo (Resume) Tomposo Propuso u p[átomo co cargad positive distribuida e ua esfera de 0-8 cm de diámetro co pequeñas partículas co carga egativa distribuidas e capas. La teoría

Más detalles

MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE 33 RPM. Introducción

MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE 33 RPM. Introducción MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE RPM. Itroducció Cuado sobre u disco de viilo de revolucioes se hace icidir luz solar o de ua bombilla, se detecta de forma muy débil, casi imperceptible, ua

Más detalles

CALIENTE AIRE HÚMEDO

CALIENTE AIRE HÚMEDO .- Itroducció.- CALIENTE AIRE HÚMEDO FUEGO AGUA SECO TIERRA FRIO.- Naturaleza eléctrica de la materia.-..- LOS RAYOS CATÓDICOS: La primera evidecia de partículas subatómicas se obtuvo e el estudio de la

Más detalles

Espectros de emisión y absorción.

Espectros de emisión y absorción. Espectros de emisió y absorció. Los espectros de emisió y absorció de luz por los átomos permitiero la justificació y ampliació del modelo cuático. Espectros de emisió: Caletar u gas a alta temperatura

Más detalles

Protón Neutrón Electrón

Protón Neutrón Electrón 1 Descubrimieto de las partículas subatómicas Tema 4. Estructura Atómica y Sistema Periódico Electró (Stoey, 1891) Protó (Rutherford, 1911) Neutró (Chadwick, 193) Crookes (1.875). rayos catódicos Viaja

Más detalles

Estructura de la materia

Estructura de la materia Estructura de la materia Modelo de Bohr Radiació electromagética logitud de oda λ frecuecia ν ν λ = c dode c es la velocidad de la luz (.998 x 0 8 m /s). Espectro electromagetico Logitud de oda (m) 380

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

Prácticas de Física Avanzada. Curso Difractometría.

Prácticas de Física Avanzada. Curso Difractometría. 1. Material. Prácticas de Física Avazada. Curso 2004-2005 4.- Difractometría. Láser de He-Ne. Objetivo de microscopio. Lete covergete de f' =+100 mm. Patalla de observació. Patallas co aberturas. Portadiapositivas

Más detalles

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa

Más detalles

Uniones en semiconductores

Uniones en semiconductores Uioes e semicoductores Comuicacioes: fibras ópticas Itroducció E la actualidad vivimos e u mudo lleo de iformació, que ya es parte iseparable de uestra cultura. La televisió, la telefoía móvil y las comuicacioes

Más detalles

Al comprobar que esto pasaba en todos los gases, se concluyó que los electrones formaban parte del átomo.

Al comprobar que esto pasaba en todos los gases, se concluyó que los electrones formaban parte del átomo. ESTRUCTURA DEL ÁTOMO Descubrimieto del electró Crookes observó que al itroducir dos electrodos (varillas metálicas) e u tubo de vidrio co u gas a muy baja presió y aplicar etre ellos ua diferecia de potecial

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

ESPECTRO ELECTROMAGNÉTICO

ESPECTRO ELECTROMAGNÉTICO ESPECTRO ELECTROMAGNÉTICO Óptica: estudia los feómeos relacioados co las odas de la regió del espectro cuyas logitudes de oda o frecuecias correspode a lo que llamamos el visible Sesibilidad del ojo humao:

Más detalles

Física atómica y nuclear

Física atómica y nuclear Física atómica y uclear Física de rayos X spectroscopia de la eergía de los rayos X LD Hojas de Física P6.3.5.5 studio de los espectros característicos e fució del úmero atómico de los elemetos: líeas

Más detalles

TEMA 7: ÒPTICA:Propagació de la llum

TEMA 7: ÒPTICA:Propagació de la llum TEM 7: ÒPTIC:Propagació de la llum Veiem els objectes perquè reflecteixe ua part de la llum que els arriba. Zoa il lumiada Llum Llum reflectida Focus de llum Ombra E u medi homogei, la llum es propaga

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 1 Reflexió y refracció e superficies plaas y curvas 1. a) U haz de luz se propaga e cierto tipo de vidrio. Sabiedo que la velocidad de la luz es c=3. 10 8 m/s, que

Más detalles

Saturación de fuerzas nucleares

Saturación de fuerzas nucleares Saturació de fuerzas ucleares Págia 1 Si cada ucleó ejerce la misma fuerza atractiva sobre todos los otros ucleoes de e el úcleo, etoces habrá A( A 1) 2 1 ucleó 0 ligaduras 2 ucleoes 1 ligaduras 3 ucleoes

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

SERIE 2. Interferencia

SERIE 2. Interferencia SERIE 2. Iterferecia 1. E el puto cuya coordeada se toma como z = 0, icide dos odas coheretes proveietes de algú tipo de experimeto de iterferecia: E = A0 cos(kz - ωt) 1 i E = A1 cos(kz - ωt + ϕ) 2 i.

Más detalles

Reflexión y refracción en superficies planas y curvas

Reflexión y refracción en superficies planas y curvas Física II (Biólogos y Geólogos) SERIE 1 Reflexió y refracció e superficies plaas y curvas 1. Cosidere u cojuto de 10 superficies plaas paralelas separadas etre sí por la misma distacia d. Cada par de superficies

Más detalles

En la formulación de Bragg se supone que los diferentes planos cristalinos reflejan especularmente la onda electromagnética.

En la formulación de Bragg se supone que los diferentes planos cristalinos reflejan especularmente la onda electromagnética. 8/03/009 Determiació de estructuras cristalias mediate difracció de Rayos X Para que la difracció de Rayos X sea observable, la logitud de oda de la radiació debe ser meor o del orde de las distacias iteratómicas

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 1 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras que,

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Práctica de Física AJUSTE DE UNA RECTA

Práctica de Física AJUSTE DE UNA RECTA Práctica de Física AJUSTE DE UNA RECTA Calcular el valor medio y error de ua serie de valores Ajustar los datos experimetales mediate ua depedecia lieal La determiació de ua magitud física está sujeta

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica Óptica geométrica. Objetivos Familiarizar al alumo co coceptos básicos e óptica geométrica, tales como los feómeos de reflexió, refracció o reflexió total. Comprobació de la Ley de Sell. Características

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

LECTURA 3 GENERACIÓN DE SEÑALES

LECTURA 3 GENERACIÓN DE SEÑALES UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE ELECTRÓNICA LECTURA 3 GENERACIÓN DE SEÑALES CURSO SIGLA LABORATORIO DE PROCESAMIENTO DIGITAL DE SEÑALES ELO 385 PROFESOR RODRIGO HUERTA CORTÉS AYUDANTE

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

UNIDAD 2 FUNDAMENTOS DE FÍSICA MODERNA

UNIDAD 2 FUNDAMENTOS DE FÍSICA MODERNA UNIDAD FUNDAMENTOS DE FÍSICA MODERNA 1. Radiació y materia: dualidad oda-corpúsculo. Pricipio de icertidumbre 3. Mecáica odulatoria Alados Arboledas, I.; Liger Pérez, E. (014) Ampliació de Física. FUNDAMENTOS

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

ÓPTICA. nnúcleo. naire

ÓPTICA. nnúcleo. naire ÓPTICA Septiembre 07. Preguta 4B.- Ua fibra óptica de vidrio posee u úcleo co u ídice de refracció de,55, rodeado por u recubrimieto de ídice de refracció de,45. Determie: a El águlo míimo β que debe teer

Más detalles

AUTÓMATAS Y SISTEMAS DE CONTROL

AUTÓMATAS Y SISTEMAS DE CONTROL º ITT SISTEMAS ELECTRÓNICOS º ITT SISTEMAS DE TELECOMUNICACIÓN º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 7: SISTEMAS DE SEGUNDO ORDEN. FUNCIÓN DE TRANSFERENCIA La fució

Más detalles

Electrones en la misma capa tiene el mismo número n. Electrones en una determinada sub-capa tiene el mismo número cuántico L.

Electrones en la misma capa tiene el mismo número n. Electrones en una determinada sub-capa tiene el mismo número cuántico L. Capítulo 9 a tabla periódica Cofiguracioes electróicas Reglas básicas para átomos de muchos electroes: Capas y subcapas. U sistema de partículas es estable cuado su eergía total es míima.. Sólo puede existir

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles

Problemas de fenómenos ondulatorios

Problemas de fenómenos ondulatorios Problemas de feómeos odulatorios.- Se tiee dos superficies plaas y reflectate que forma u águlo de 90º. Si llega u rayo de luz a ua de ellas co u águlo de 5º, calcula el águlo cuado se haya reflejado e

Más detalles

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS tructura de la Materia Grupo, Seetre 03- Prof. Iidoro García Cruz RCICIOS. La luz aarilla que eite ua lápara de odio tiee ua logitud de oda de 59. Calcular la frecuecia de eta radiació. Repueta: Sabeo

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Slide 1. Slide 2. Slide 3. # Categorias. Distribución de Frecuencia. Ejemplo: Taller de Reparaciones Hudson

Slide 1. Slide 2. Slide 3. # Categorias. Distribución de Frecuencia. Ejemplo: Taller de Reparaciones Hudson Slide 1 Ejemplo Práctico: Taller de Reparacioes Hudso Supoga que al admiistrador de u taller de reparacioes le gustaría teer ua mejor idea de la distribució de sus costos relacioados a comprar Autopartes

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas. Sistemas de partículas. Fuerzas iteriores y exteriores.. Cetro de masas. a) Propiedades diámicas del C b) Pricipio de coservació del mometo lieal de u sistema de partículas. 3.

Más detalles

Estructura de los Sólidos

Estructura de los Sólidos Estructura de los Sólidos Materia Codesada: Este termio iclue tato a los sólidos como a los líquidos La gracias esta e que e ambos estados las iteraccioes etre átomos moléculas so suficietemete fuertes

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

Óptica geométrica Espejos y lentes

Óptica geométrica Espejos y lentes 0-03-04 U i v e r s i d a d C a t ó l i c a d e l N o r t e D e p a r t a m e t o d e E s e ñ a z a d e l a s C i e c i a s B á s i c a s. Óptica geométrica Espejos y letes Uidad. Óptica geométrica La

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

14.1 Comprender los exponentes racionales y los radicales

14.1 Comprender los exponentes racionales y los radicales Nombre Clase Fecha 14.1 Compreder los expoetes racioales y los radicales Preguta esecial: Cómo se relacioa los radicales co los expoetes racioales? Resource Locker Explorar 1 Compreder los expoetes de

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Fundamentos físicos de la topografía

Fundamentos físicos de la topografía Fudametos físicos de la topografía Luis Muñoz Mato Liceciado e Física por la USC Título: Fudametos físicos de la topografía Autor: Luis Alberto Muñoz ISBN: 978 84 8454 789 1 Depósito legal: A 920-2009

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

Polarización de una onda

Polarización de una onda Polarizació La luz atural La luz se geera por u dipolo (ua carga eléctrica) que vibra a cierta frecuecia y por tato geera u campo eléctrico. ste campo implica, a su vez, el correspodiete campo magético

Más detalles

Movimiento oscilatorio armónico

Movimiento oscilatorio armónico Movimieto oscilatorio armóico Objetivo Estudio experimetal de sistemas oscilates libres y amortiguados. Aálisis de la depedecia de la frecuecias de oscilació co alguas propiedades del sistema, como ser

Más detalles

FUNCIÓN DE ONDA Y ECUACIÓN DE ONDA EN UNA DIMENSIÓN

FUNCIÓN DE ONDA Y ECUACIÓN DE ONDA EN UNA DIMENSIÓN Departameto de Matemáticas Física FUNCIÓN DE ONDA ECUACIÓN DE ONDA EN UNA DIMENSIÓN Fís. Jorge Eardo Aguilar Rosas El movimieto olatorio e u sistema se preseta cuado ua perturbació procida e u lugar del

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

ÓPTICA ) ) Se puede plantear un sistema de dos ecuaciones con dos incógnitas que permite calcular los índices de ambos medios.

ÓPTICA ) ) Se puede plantear un sistema de dos ecuaciones con dos incógnitas que permite calcular los índices de ambos medios. ÓPTICA Septiembre 06. Preguta 4B.- Dos rayos que parte del mismo puto icide sobre la superficie de u lago co águlos de icidecia de 0º y 45º, respectivamete. a Determie los águlos de refracció de los rayos

Más detalles

Estado Gaseoso. Prf. María Peiró

Estado Gaseoso. Prf. María Peiró Estado Gaseoso rf. María eiró Gas, es u estado de la materia formado por éculas que tiede a expadirse porque se mueve a a velocidad debido a su altísima eergía ciética, mateiedo a espacio etre ellas. ropiedades

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

BIBLIOTECA DEL PROFESORADO SOLUCIONARIO. Química BACHILLERATO SERIE INVESTIGA

BIBLIOTECA DEL PROFESORADO SOLUCIONARIO. Química BACHILLERATO SERIE INVESTIGA BAILLERATO SOLUIONARIO Química SERIE INVESTIGA BIBLIOTEA DEL PROFESORADO BIBLIOTEA DEL PROFESORADO Química SERIE INVESTIGA SOLUIONARIO El Solucioario Química, del proyecto Saber hacer, para.º curso de

Más detalles

6 Función de onda. 5.2 La relación de incertidumbre para la energía y el tiempo

6 Función de onda. 5.2 La relación de incertidumbre para la energía y el tiempo 5. a relació de icertidumbre para la eergía y el tiempo Existe tambié relacioes de icertidumbre para otras parejas de magitudes, ua de ellas es la eergía y el tiempo. Si la medida de la eergía E de ua

Más detalles

LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS. Naturaleza de la luz. Aálisis de los modelos corpuscular y odulatorio. Las teorías sobre la aturaleza de la luz arraca cietíficamete a fiales del siglo XVII, y casi

Más detalles

SALTOS HIDRÁULICOS. Mg.ARRF

SALTOS HIDRÁULICOS. Mg.ARRF SALTOS IDRÁULICOS 1 Fig..-Nomeclatura utilizada e saltos co turbias de reacció SALTOS IDRÁULICOS CONCEPTO DE SALTO EN TURBINAS IDRÁULICAS Saltos e la Turbia de reacció salto bruto o altura geométrica es

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Ejemplo de Diseño de un Reactor Batch

Ejemplo de Diseño de un Reactor Batch Ejemplo de Diseño de u Reactor Batch La zeolita es u cojuto de alumiosilicatos hidratados que es ampliamete utilizada como catalizador e la idustria. Usualmete se sitetiza a partir de solucioes acuosas

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

1. Óptica geométrica: conceptos básicos y convenio de signos.

1. Óptica geométrica: conceptos básicos y convenio de signos. . Óptica geométrica: coceptos básicos y coveio de sigos. Tal y como habíamos defiido previamete al estudio de las reyes de la reflexió y de la refracció, llamamos rayo a ua líea imagiaria perpedicular

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico Matemática GUINV004M2-A17V1 Guía: Operado e u uevo cojuto umérico Matemática - Segudo Medio Secció 1 Me cocetro Objetivos Idetificar los úmeros irracioales como úmeros decimales que tiee desarrollo ifiito

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

5-14 Ecuaciones de diseño importantes

5-14 Ecuaciones de diseño importantes 46 PARTE DOS Preveció de fallas R R R a) Figura 5-33 R b) Formas de las curvas de la gráfica R versus R. E cada caso, el área sombreada es igual a R se obtiee por itegració umérica. a) Curva típica de

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

1b percusión CÁLCULOS Y DIAGRAMAS 15%

1b percusión CÁLCULOS Y DIAGRAMAS 15% Laboratorio de Vibracioes Mecáicas Departameto de geiería Mecáica Práctica Determiació de mometos de iercia y PARTCPACON 5% 1b localizació del cetro PRESENTACÓN 1% de gravedad y de NVESTGACONES 1% percusió

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Fenómenos ondulatorios

Fenómenos ondulatorios Uidad Didáctica 7 Feómeos odulatorios .- Coceptos básicos. Frete de oda: es la superficie costituida por todos los putos de u medio que, e u mometo dado, se ecuetra e el mismo estado de vibració, es decir,

Más detalles

17.3 Intervalos de predicción para el promedio de m observaciones futuras

17.3 Intervalos de predicción para el promedio de m observaciones futuras 4 7.3 Itervalos de predicció para el promedio de m oservacioes futuras Para reducir la icerteza de las prediccioes o alcaza co aumetar idefiidamete el tamaño de la muestra e la que se asa el ajuste. Si

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

PRACTICAS DE ESTADO SÓLIDO: PRACTICA N o 2 VIBRACIONES DE UNA CADENA LINEAL MODOS ACÚSTICOS Y ÓPTICOS

PRACTICAS DE ESTADO SÓLIDO: PRACTICA N o 2 VIBRACIONES DE UNA CADENA LINEAL MODOS ACÚSTICOS Y ÓPTICOS .- NTRODUCCÓN PRACTCAS DE ESTADO SÓLDO: PRACTCA N o VBRACONES DE UNA CADENA LNEAL MODOS ACÚSTCOS Y ÓPTCOS Las vibracioes de los átomos e ua red cristalia puede, e determiadas codicioes, asimilarse a las

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

CAPÍTULO 10. EJEMPLOS DE DISEÑO PARA FUNDACIONES PROFUNDAS. agrupar datos de ensayos disponibles por capa de suelo

CAPÍTULO 10. EJEMPLOS DE DISEÑO PARA FUNDACIONES PROFUNDAS. agrupar datos de ensayos disponibles por capa de suelo 171 CAPÍTULO 10. EJEMPLOS DE DISEÑO PARA FUNDACIONES PROFUNDAS Diseño usado LRFD Al igual que el Capítulo 6 para fudacioes superficiales, el presete capítulo explica cómo utilizar los factores de resistecia

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 4 de diciembre de 00 E esta sesió os cetramos e los problemas dode aparece desigualdades etre úmeros Alguos de estos

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

Graficación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación

Graficación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación Modelos de ilumiació Graficació Modelos de Ilumiació E busca de realismo... Modelos de ilumiació Modelos de ilumiació 3 El color o basta... Y la suavidad... Modelos de ilumiació Modelos de ilumiació 5

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles