Sucesiones y series numéricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sucesiones y series numéricas"

Transcripción

1 Sucesión Se llama sucesión a una función f : N R que a cada natural n asocia un número real a n. Se denota por {a n } o (a n), o {a 1,a 2,...,a n,...}. Ejemplos 1, 4 3, 9 7, 16 15,..., n 2 2 n 1,... {0.3,0.33,0.333,...} a n = 2 n para n N {1,1 + 2, ,..., n,...} a 1 = 1, a 2 = 1, a n = a n 1 + a n 2, n 3. Sucesión definida de forma recurrente o inductiva. José Vicente Romero Bauset Tema 1 1

2 Se dice que {a n } es creciente si a n a n+1 para todo n, y estrictamente creciente si a n < a n+1 para todo n. Análogamente, se dice que {a n } es decreciente si a n a n+1 para todo n, y estrictamente decreciente si a n > a n+1 para todo n. Ejemplos En estos casos, se dice que {a n } es monótona. a n+1 a n 1 sucesión creciente si a n > 0 a n+1 a n 1 sucesión decreciente si a n > 0 a n = 3n n, a n = n n + 2, a n = ( 1)n n 2 José Vicente Romero Bauset Tema 1 2

3 Se dice que {a n } es acotada superiormente (inferiormente) si existe K R tal que a n K (a n K) para todo n N. Decimos que {a n } está acotada si lo está superior e inferiormente, es decir, si existen K 1,K 2 R tales que K 1 a n K 2 para todo n N; o equivalentemente, si existe A > 0 tal que a n A para todo n N. Ejemplos a n = n,a n = 1 n José Vicente Romero Bauset Tema 1 3

4 Definición de sucesión convergente Una sucesión {a n } es convergente si existe un valor l al cual la sucesión se va acercando cada vez más. Definición de sucesión convergente Se dice que {a n } converge a l si, dado ε > 0, existe N 0 N tal que si n N 0 entonces a n ]l ε,l + ε[, es decir a n l < ε. Otra definición equivalente {a n } converge a l si, dado ε > 0, todos salvo un número finito de los términos de la sucesión (es decir {a 1,...,a N0 1}) están dentro de la banda horizontal dada por las rectas y = l ε, y = l + ε. Ejemplo { 1 } n converge a 0. José Vicente Romero Bauset Tema 1 4

5 Si a n converge a a, se escribe ĺım n a n = a, y se dice que a es el ĺımite de a n. Sucesión divergente Se dice que una sucesión {a n } diverge si no converge. Hay varias posibilidades, la sucesión puede ser divergente a + ( M > 0 n 0 / a n > M n > n 0 ) divergente a finitamente oscilante (acotada pero no convergente) infinitamente oscilante (no acotada, pero no diverge a + ni a ) Proposición i) Si {a n } es una sucesión (de números reales) convergente, entonces el ĺımite es único. ii) Si {a n } converge, entonces está acotada. José Vicente Romero Bauset Tema 1 5

6 Propiedades de los ĺımites Supongamos que {a n } converge a l y {b n } converge a t (donde l,t R). Entonces se cumple: Si α,β R, entonces αa n + βb n converge a αl + βt. a n converge a l. a n b n converge a lt. Si t 0, entonces a n converge l b n t (b n 0). b Si a n > 0 y l > 0, entonces a n n converge l t. Si a n > 0 y l > 0, entonces log b (a n ) converge log b l. Si l = 1 y b n tiende a ±, entonces ĺım a n b n = e ĺım b n(a n 1) n. n Si a n < b n, y a n a, b n b entonces a b. Si a n a, b n b y a < b, entonces existe N 0 tal que a n < b n para todo n N 0. José Vicente Romero Bauset Tema 1 6

7 Propiedades de los ĺımites Si a n > 0, a n tiende a + y b n tiende a 0, entonces ĺım (a n) b n = ĺım e b n lna n n n Si a n > 0, a n tiende a 0 y b n tiende a 0, entonces ĺım (a n) b n = ĺım e b n lna n n n Criterio del Emparedado Sean {a n }, {b n } y {c n } tres sucesiones con a n b n c n para todo n N. Si ĺım a n = ĺım c n = l R, entonces ĺım b n = l. n n n Ejemplos n c = 1, c > 0 ĺım n ĺım n n n = 1 ĺım n bn = 0, 0 < b < 1 José Vicente Romero Bauset Tema 1 7

8 Propiedades de los ĺımites a n Si a n = f (x n ) y b n = g(x n ), y ĺım es una indeterminación n b n del tipo 0 0 o, la indeterminación se puede resolver aplicando la regla de L Hôpital. Se dice que {a n } es un infinitésimo si ĺıma n = 0. En tal caso, los siguiente son equivalentes (es decir, su cociente tiende a 1): a n ln(1 + a n ) sena n tana n e a n 1 1 cosa n = a2 n 2 Diremos que {a n } es un infinito si ĺıma n =. Por ejemplo, a n = n,a n = n n,a n = n!. Fórmula de Stirling: n! n n e n 2πn José Vicente Romero Bauset Tema 1 8

9 n n! n n e n 2 πn n! José Vicente Romero Bauset Tema 1 9

10 Ejemplos n ĺım 2 3 n 3 n ( 5n ) ĺım + 3 3n n ( n 3 + n 2 3 ) n 3 n 2 ĺım n ĺım n ĺım n ĺım n 3 ( n n 2 ( ln(n + 1) lnn ) 2n 3 n+1 ( 1 + 3n 5 + 3n ) n lnn ) n 2 3n 1 José Vicente Romero Bauset Tema 1 10

11 Ejemplos ĺım n ln n n 1 1 n n! ĺım n n n ĺım n ( 5n 3 + 4n 1 ) 1 ln(n 2 +7n 5) José Vicente Romero Bauset Tema 1 11

12 Teorema la convergencia monótona Una sucesión {a n } monótona de números reales es convergente si y sólo si es acotada. Además: a) Si {a n } es una sucesión creciente acotada, entonces ĺım n a n = sup{a n }. b) Si {a n } es una sucesión decreciente acotada, entonces ĺım n a n = inf{a n }. a) Si {a n } es creciente y no acotada, entonces ĺım n a n = +. b) Si {a n } es decreciente y no acotada, entonces ĺım n a n =. Ejemplos a n = 1 n a n = ln 1 n José Vicente Romero Bauset Tema 1 12

13 Sea {a n } sucesión tal que ĺım n a n = 0, entonces ĺım n a n = 0. Sean {a n } y {b n } dos sucesiones tales que ĺım a n = + y n {b n } está acotada. Entonces ĺım a n + b n = + n Sean {a n } y {b n } dos sucesiones tales que ĺım a n = + y n existe un n 0 N tal que a n b n para todo n n 0, entonces ĺım b n = +. n Sea {a n } una sucesión tal que ĺım a n = + y sea {b n } una n sucesión tal que existe un α > 0 y existe n 0 N tal que α b n para todo n n 0, entonces ĺım a n b n = +. n José Vicente Romero Bauset Tema 1 13

14 Criterios Criterio de Stolz del cociente: Si ĺım a n = ĺım b n = 0 y {b n } es estrictamente monótona ó n n la sucesión {b n } es monótona divergente a n a n 1 a n si ĺım = l ĺım = l n b n b n 1 n b n Criterio de la media aritmética: a 1 + a a n si ĺım a n = l ĺım = l. n n n Criterio de la media geométrica: si ĺım a n = l ĺım n a 1 a 2...a n = ĺım a n. n n n Criterio de la raíz: a n si a n > 0 y ĺım = l ĺım n a n = l. n a n 1 n Criterio de Stolz de la raíz: Si a n > 0 b n es monótona creciente y divergente si ĺım n b n+1 bn an+1 a n José Vicente Romero Bauset Tema 1 14 = l ĺım n bn a n = l.

15 Serie Si {a n } es una sucesión en R, la serie numérica (ó serie ) generada por {a n } es la sucesión S n definida por S 1 = a 1 S 2 = a 1 + a 2 = S 1 + a 2 a n términos general de la serie S n sumas parciales. S n = a a n = S n 1 + a n La serie es convergente (divergente) si la sucesión {S n } es convergente (divergente). José Vicente Romero Bauset Tema 1 15

16 Ejemplos a n = 1 n a n = r n (serie geométrica) Teorema 1 2 n La serie geométrica Proposición Si n= a n converge entonces ĺım a n = 0. n r n converge si y sólo si 1 < r < 1. José Vicente Romero Bauset Tema 1 16

17 Series de términos no negativos Sea {a n } una sucesión de números reales con a n 0. Entonces {S n }, la sucesión de sumas parciales, es monótona creciente. Por tanto, estudiar si {S n } converge equivale a estudiar si está acotada. Criterio de Comparación Si a n 0, b n > 0 para todo n N: Si existe n 0 tal que a n b n para todo n n 0 y convergente, entonces a n es convergente. a n Si existe el ĺımite ĺım = L, entonces: n b n Si L = 0, la convergencia de Si L = +, la convergencia de b n implica la de a n implica la de Si L > 0, las dos series tienen el mismo carácter. José Vicente Romero Bauset Tema 1 17 b n es a n. b n.

18 Ejemplos 1 n p, p < 1 sen 1 n n El caracter de la serie finito de términos Criterio de condensación de cauchy a n no cambia si se modifican un número n=0 Sea a n > 0 para todo n N y {a n }decreciente. Entonces la serie a n es convergente si, y sólo si, la serie 2 n a 2 n es convergente. José Vicente Romero Bauset Tema 1 18

19 Ejemplos a n = 1 Serie armónica generalizada np 1 a n = n (lnn) p sen 1 n n Criterio del cociente o de D alambert Sea a n > 0 para todo n N. Entonces: Si a n+1 a n Si a n+1 a n > c 1 n n o, entonces c < 1 n n o, entonces a n diverge. a n converge. José Vicente Romero Bauset Tema 1 19

20 Corolario Sea a n > 0 para todo n N. Entonces a n+1 si ĺım > 1, entonces n a n si ĺım n a n+1 a n < 1, entonces a n diverge. a n converge. a n+1 ĺım = 1 no se puede afirmar nada. n a n Ejemplos 1, n x n n!, 1 n 2, x n n α (n!) 2 3 n (2n)! José Vicente Romero Bauset Tema 1 20

21 Criterio de la raíz o de Cauchy Sea a n > 0 para todo n N. Entonces: Si a n c > 1 n n o, entonces Si a n c < 1 n n o, entonces Corolario Sea a n > 0 para todo n N. Entonces si ĺım n n a n > 1, entonces si ĺım n n a n < 1, entonces ĺım n a n diverge. a n diverge. a n converge. a n converge. n an = 1 no se puede afirmar nada. José Vicente Romero Bauset Tema 1 21

22 Ejemplos 1, n n 4 e n2, 1 n 2 3 n n 3 r n+ n, r > 0, Series telescópicas ( n n 1 ) n Sea a n R para n N. Se dice que la serie a n es telescópica si existe una sucesión {b n } de números reales tal que, o bien 1 a n = b n b n+1 n N, o bien 2 a n = b n+1 b n n N José Vicente Romero Bauset Tema 1 22

23 Series telescópicas (tipo 1) S n = a 1 + a a n = = (b 1 b 2 ) + (b 2 b 3 ) + + (b n b n+1 ) = = b 1 b n+1 a n = ĺım S n = ĺım (b 1 b n+1 ) = b 1 ĺım b n n n n Series telescópicas (tipo 2) a n = ĺım S n = ĺım (b n+1 b 1 ) = ĺım b n b 1 n n n José Vicente Romero Bauset Tema 1 23

24 Ejemplos ( n ) + 1 n, 1 4n 2 1 2n + 3 n(n + 1)3 n, 1 n(n + 1)(n + 2) 1 (m + n)(m + n + 1) 1 n(n + k) ( ( ) n ( ) ) n+1 n n + 1 José Vicente Romero Bauset Tema 1 24

25 Nota Algunas series se pueden sumar haciendo una descomposición en fracciones simples. Ejemplos n=3 n + 12 n 3 + 5n 2 + 6n 1 (2n + 1)(2n + 3) 5n 6 n 3 3n 2 + 2n José Vicente Romero Bauset Tema 1 25

26 Descomposición en fracciones simples Sea p(x) el cociente de dos polinomios tales que δp < δq. Si q(x) γ 1,...,γ k raíces reales de q(x) = 0 con multiplicidad m 1,...,m k α 1 ± β 1 i,...,α l ± β l i raíces complejas con multiplicidad n 1,...,n l (m m k + 2(n n l ) = δq) entonces, p(x) se puede descomponer en suma de fracciones simples: q(x) p(x) q(x) = A A1 2 x γ 1 (x γ 1 ) A1 m 1 (x γ 1 ) m 1. + Ak 1 x γ k + Ak 2 (x γ k ) A k m k (x γ k ) m k + B1 1 x + C 1 1 Bn 1 (x α 1 ) 2 + β x + Cn 1 [(x 1 α1 ) 2 + β1 2 ] n1. + Bl 1 x + C 1 l Bn l (x α l ) 2 + βl l x + Cn l [(x l αl ) 2 + βl 2 ] nl José Vicente Romero Bauset Tema 1 26

27 Convergencia absoluta Sea {a n } una sucesión de números reales. Se dice que la serie a n es absolutamente convergente si la serie a n es convergente. Teorema Si una serie converge absolutamente, entonces converge. Series alternadas Se dice que la serie a n es alternada si a n a n+1 < 0. Las series alternadas se pueden escribir de la forma a n = ( 1) n b n o a n = ( 1) n+1 b n, con b n > 0. José Vicente Romero Bauset Tema 1 27

28 Criterio de Leibniz Supongamos que la serie a n es alternada con a n = ( 1) n b n, siendo {b n } monótona decreciente y que tiende a cero. Entonces la serie a n converge. Criterio de Abel (no examen) Si la serie a n converge y la sucesión {b n } es monótona acotada, entonces la serie a n b n converge. José Vicente Romero Bauset Tema 1 28

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada

Más detalles

Series numéricas y de potencias. 24 de Noviembre de 2014

Series numéricas y de potencias. 24 de Noviembre de 2014 Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios

Más detalles

Sucesiones. Convergencia

Sucesiones. Convergencia Sucesiones. Convergencia Sucesión: Es una aplicación de IN en IR: f : IN IR n = f (n) En vez de f (n) se escribe a n, que se denomina término general de la sucesión. A la sucesión se le representa por:

Más detalles

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números Capítulo 4 Sucesiones y series numéricas 4.1. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s 1,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

TEMA 4: SUCESIONES EN R.

TEMA 4: SUCESIONES EN R. TEMA 4: SUCESIONES EN R. 4.0. INTRODUCCIÓN. El concepto de límite desempeña un papel fundamental en todo el Cálculo Infinitesimal. En este tema introduciremos este concepto de la forma más sencilla posible:

Más detalles

Tema 2: Series numéricas

Tema 2: Series numéricas Tema 2: Series numéricas Una serie infinita (o simplemente serie) es una suma formal de infinitos términos a + a 2 + a 3 + + + Al número se le denomin-ésimo término de la serie Se llama sucesión de sumas

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas Capítulo 4 Sucesiones y series numéricas 4.. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

C alculo Noviembre 2010

C alculo Noviembre 2010 Cálculo Noviembre 2010 Series numéricas. Sucesiones Definición Una sucesión es una aplicación a : IN IR. Denotamos simplificadamente a n en vez de a(n). El límite de la sucesión (a n ) es l R si para

Más detalles

DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n -

DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n - DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n - Una sucesión asigna a cada número natural un número

Más detalles

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L. 147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 Si intentamos sumar los términos de una sucesión infinita {a n } obtenemos

Más detalles

Sucesiones y Series Sucesiones

Sucesiones y Series Sucesiones Capítulo 6 Sucesiones y Series 6.. Sucesiones En particular estudiaremos las sucesiones de números reales, es decir, las que verifican la siguiente definición. Definición 6... Llamaremos sucesión a la

Más detalles

Apuntes. Apuntes. fâvxá ÉÇxá wx aøåxüéá extäxáa. Sucesiones. cüéuäxåtá ÜxáâxÄàÉá. Universidad

Apuntes. Apuntes. fâvxá ÉÇxá wx aøåxüéá extäxáa. Sucesiones. cüéuäxåtá ÜxáâxÄàÉá. Universidad fâvxá ÉÇxá wx aøåxüéá extäxá cüéuäxåtá ÜxáâxÄàÉá Universidad fâvxá ÉÇxá wx aøåxüéá extäxáa ctz Çt D PROBLEMAS RESUELTOS 1.- Dada la sucesión de números reales con 1.1 Estudiar su monotonía 1.2 Probar que

Más detalles

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

CRITERIOS DE CONVERGENCIA

CRITERIOS DE CONVERGENCIA CRITERIOS DE CONVERGENCIA 1.- CRITERIO DE COMPARACIÓN ( MEDIANTE ACOTACIÓN ) Sea una Serie de Términos positivos, y una Serie ( Auxiliar ) de términos positivos. P Si œ n 0 ù y CONVERGE CONVERGE P Si œ

Más detalles

1/58. Sucesiones < >

1/58. Sucesiones < > 1/58 Sucesiones Concepto de sucesión 2/58 Es más fácil reconocer una sucesión que definirla. Decimos, por ejemplo, que: x n D 1 C 1 n n ; y n D n sen.1=n/; z n D 1 C 1 2 C C 1 n son sucesiones. ara cada

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

TEMA 4. Sucesiones de números reales.

TEMA 4. Sucesiones de números reales. Cálculo I E.T.S.I. de Minas Curso 2008-2009 TEMA 4. Sucesiones de números reales. Definición. Una sucesión de números reales es una aplicación que a cada número natural n 1leasignaunúnico número real x

Más detalles

Cálculo Integral Series de potencias. Universidad Nacional de Colombia

Cálculo Integral Series de potencias. Universidad Nacional de Colombia Cálculo Integral Series de potencias Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Series de potencias Una serie de potencias alrededor

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

Análisis Matemático 1 para estudiantes de Ingeniería

Análisis Matemático 1 para estudiantes de Ingeniería Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de

Más detalles

Series de números complejos

Series de números complejos Análisis III B - Turno mañana - Series 1 Series de números complejos 1 Definiciones y propiedades Consideremos una sucesión cualquiera de números complejos (z n ) n1. Para cada n N, sabemos lo que quiere

Más detalles

Enumerar suficientes términos de la sucesión como para que quede claro como seguir. a n 0 : 1; 2; 4; 8; 16;

Enumerar suficientes términos de la sucesión como para que quede claro como seguir. a n 0 : 1; 2; 4; 8; 16; Clase 3 Series de potencias 3.. Introducción Al hojear casi cualquier libro de matemática universitaria, habitualmente nos encontramos con el símbolo de sumatoria. Lo mismo sucede con muchos libros específicos

Más detalles

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites 1. Definición de límite DEF. Sea f : A R R y a A Se dice que l R es el límite de f cuando x tiende a a, si para todo entorno de l, existe un entorno

Más detalles

Límite de una sucesión

Límite de una sucesión Límite de una sucesión Idea intuitiva del límite de una sucesión En la sucesión a n = 1/n, observamos que los términos se van acercando a cero. Consideremos que 0 es el límite de la sucesión porque: 1

Más detalles

Problemas resueltos Series Numéricas

Problemas resueltos Series Numéricas Problemas resueltos Numéricas Ximo Beneyto3 Genius, a good idea in Maths Tema : numéricas. Problemas PROBLEMAS RESUELTOS 1. De una serie conocemos el término general de su suma parcial de orden "n",. Se

Más detalles

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad. Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones

Más detalles

TEMA 3. SERIES NUMÉRICAS

TEMA 3. SERIES NUMÉRICAS TEMA 3. SERIES NUMÉRICAS 3.1 DEFINICIÓN DE SERIE DE NÚMEROS REALES Definición: Dada una sucesión de números reales x n, se considera una nueva sucesión s n de la forma : s 1 x 1 s 2 x 1 x 2 s 3 x 1 x 2

Más detalles

TEMA 4. Series de potencias

TEMA 4. Series de potencias TEMA 4 Series de potencias. Introducción En el tema anterior hemos estudiado la aproximación polinómica local de funciones mediante el polinomio de Taylor correspondiente. En particular, vimos para la

Más detalles

Series y sucesiones de números complejos

Series y sucesiones de números complejos 1 Universidad Simón Bolívar. Preparaduría nº 8. christianlaya@hotmail.com ; @ChristianLaya. Series y sucesiones de números complejos Definición: una sucesión de números complejos tiene un límite si para

Más detalles

Límites y Continuidad

Límites y Continuidad Tema 2 Límites y Continuidad Introducción En este tema se trata el concepto de límite de una función real de variable real y sus propiedades, así como algunas de las técnicas fundamentales para el cálculo

Más detalles

Apunts. Ejercicios resueltos de series numéricas. Series numéricas. Continuitat. Prof Ximo Beneyto

Apunts. Ejercicios resueltos de series numéricas. Series numéricas. Continuitat. Prof Ximo Beneyto Series numéricas Ejercicios resueltos de series numéricas Prof Ximo Beneyto PROBLEMES RESOLTS 1. De una serie sabemos el término general de su suma parcial de orden "n",. Se pide : 2. Hallar a n y formar

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, que llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Integrales impropias múltiples

Integrales impropias múltiples Integrales impropias múltiples ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Caracterización de la integrabilidad impropia 2 3.

Más detalles

Inducción y recursividad

Inducción y recursividad Capítulo Inducción y recursividad.. Proposiciones Definición (Proposición) Una proposición es una colección de símbolos sintácticos a la cual se le puede asignar uno y solo un valor de verdad: verdadero

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesiones de números reales Llamaremos sucesión de números reales a una función a : IN IR. Notaremos a(n) =a n. Para referirnos a la sucesión cuyo término n-ésimo es a n usaremos la notación {a n }. 1.

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS B. SUCESIONES B.1 Diversos conjuntos numéricos. En

Más detalles

T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar y demostrar.

T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar y demostrar. EXAMEN TEÓRICO FINAL I T1. Dado y = f(x). Definir función continua en un punto, en un intervalo abierto y en un intervalo cerrado. T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar

Más detalles

EJERCICIOS DE SUCESIONES. Estudia la monotonia, la convergencia o divergencia y las

EJERCICIOS DE SUCESIONES. Estudia la monotonia, la convergencia o divergencia y las EJERCICIOS DE SUCESIONES Estudia la monotonia, la convergencia o divergencia y las cotas de las sucesiones 1a n = 1, 2, 3, 4, 5,...n 2a n = -1, -2,-3, -4, -5,... -n 3a n = 2, 3/2, 4/3, 5/4,..., n+1 /n

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes

Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes Tema XIV: SUCESIONES Y SERIES DE NÚMEROS REALES XIV.1. Sucesiones. Sucesiones convergentes 1. Sucesiones DEF. Una sucesión infinita de números reales es una función cuyo dominio es N y su imagen un subconjunto

Más detalles

Tema 5: Convergencia y acotación. Subsucesiones. Operaciones con sucesiones convergentes.

Tema 5: Convergencia y acotación. Subsucesiones. Operaciones con sucesiones convergentes. Cálculo I Tema 5: Convergencia y acotación. Subsucesiones. Operaciones con sucesiones convergentes. Sucesiones Definición Una sucesión de números reales es una función f : N R. En lugar de notarlas de

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

XII Olimpiada Colombiana de Matemática Universitaria

XII Olimpiada Colombiana de Matemática Universitaria XII Olimpiada Colombiana de Matemática Universitaria Ronda Final - Solucionario Abril 5 de 8 1. Como es conocido arctan 1 = π. Se denotan α = arctan, β = arctan 3. Calculando tan α+tan β tanα + β = 1 tan

Más detalles

1 Sucesiones. Ejemplos. a n = n. a n = n! a n = p n. a n = 2n3 + n n a n = ln(n) a n = n n

1 Sucesiones. Ejemplos. a n = n. a n = n! a n = p n. a n = 2n3 + n n a n = ln(n) a n = n n Sucesiones De nición. Una sucesión, a, es una función que tiene como dominio el conjunto de los números naturales y como contradominio el conjunto de los números reales: a : N! R. Se usa la siguiente notación:

Más detalles

UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS

UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS UNIDAD 2 Sucesiones y número e. Logaritmos ÍNDICE DE CONTENIDOS 1. Sucesiones de números reales............................... 35 1.1. Progresiones aritméticas y geométricas....................... 36 1.2.

Más detalles

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces Parte III Series Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces a n = a a a : : : a n : : : es una serie. Los números a ;

Más detalles

2 o BACHILLERATO ciencias

2 o BACHILLERATO ciencias . ANÁLISIS 2 o BACHILLERATO ciencias Francisco Navarro Martínez . Tema 1 o - Funciones Continuas 1. Continuidad de una Función 2. Definición de una Función Continua en un punto 3. Tipos de Discontinuidades

Más detalles

Fundamentos Matemáticos. Grado en Ingeniería Informática. Grado en Ingeniería de Computadores. Universidad de Alcalá

Fundamentos Matemáticos. Grado en Ingeniería Informática. Grado en Ingeniería de Computadores. Universidad de Alcalá Fundamentos Matemáticos Grado en Ingeniería Informática Grado en Ingeniería de Computadores Universidad de Alcalá Francisco Javier Bueno Guillén Óscar Gutiérrez Blanco José Enrique Morais San Miguel Francisco

Más detalles

EJERCICIOS ADICIONALES.

EJERCICIOS ADICIONALES. UNIVERSIDAD SIMON BOLIVAR PREPARADURIA DE MATEMATICAS MATEMATICAS 4 (MA-5) Miguel Guzmán (magt_3@hotmail.com) Tema: SUCESIONES EJERCICIOS ADICIONALES..- Considere la sucesión establecida por la relación

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Cálculo diferencial de funciones reales de variable real

Cálculo diferencial de funciones reales de variable real Cálculo diferencial de funciones reales de variable real María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Ingeniería Electrónica Automática e Industrial) M. Muñoz (U.P.C.T.) Cálculo diferencial

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Análisis Complejo: 1.2 Productos infinitos

Análisis Complejo: 1.2 Productos infinitos Contents : 1.2 Productos infinitos Universidad de Murcia Curso 2011-2012 Contents 1 Productos infinitos Objetivos Productos infinitos Objetivos Objetivos Productos infinitos Objetivos Demostrar que dado

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES

BLOQUE 5. SUCESIONES Y SERIES DE NÚMEROS REALES BLOQUE 5 SUCESIONES Y SERIES DE NÚMEROS REALES Sucesiones de números reales - Límite de una sucesión - Cálculo de límites Series de números reales Progresiones aritméticas y geométricas Series geométricas

Más detalles

SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES.

SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES. SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES La construcción más habitual, es la que se utiliza los límites las sucesiones de Cauchy del cuerpo Donde Una sucesión, se dice que es de CAUCHY si satisface:

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente

Más detalles

Límite y Continuidad de funciones de una variable

Límite y Continuidad de funciones de una variable Introducción Límite y de funciones de una variable Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Límite y de funciones

Más detalles

Análisis Complejo: 1.1 Series de Mittag-Lefler

Análisis Complejo: 1.1 Series de Mittag-Lefler Contents : 1.1 Series de Mittag-Lefler Universidad de Murcia Curso 2011-2012 Contents 1 Desarrollos Mittag-Lefler Objetivos Desarrollos Mittag-Lefler Objetivos Objetivos Desarrollos Mittag-Lefler Objetivos

Más detalles

Objetivos de la materia:

Objetivos de la materia: Objetivos de la materia: Desarrollar formal y sistemáticamente competencias y habilidades de cálculo diferencial e integral necesarias como herramienta fundamental para la ingeniería y concurrentemente

Más detalles

Series, Sucesiones y recursiones

Series, Sucesiones y recursiones Series, Sucesiones y recursiones Entrenamiento #3 para el nacional -5 de septiembre del 016 Por: Lulú y Argel Resumen En el presente material les presentaremos las series y sucesiones, es posible que en

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

Ejercicios de Análisis I

Ejercicios de Análisis I UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Ejercicios de Análisis I Ramón Bruzual Marisela Domínguez Caracas, Venezuela Febrero 2005 Ramón

Más detalles

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N Capítulo 6 Sucesiones y series en C Todo el trabajo de este capítulo esta destinada a mostrar que tiene sentido sumar infinitas funciones de variable compleja. En gran medida es un copy/paste de la versión

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, ue llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

PROBLEMAS Y APLICACIONES DE SUCESIONES RECURRENTES

PROBLEMAS Y APLICACIONES DE SUCESIONES RECURRENTES PROBLEMAS Y APLICACIONES DE SUCESIONES RECURRENTES TRABAJO FIN DE MÁSTER MÁSTER INTERUNIVERSITARIO DE MATEMÁTICAS Realizado por: CARLOS CERVERA ZAFRA Dirigido por: PASCUAL JARA MARTÍNEZ UNIVERSIDAD DE

Más detalles

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n.

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n. Capítulo 4 Series 4 Introducción Definición 4 Sea (x n ) n= una sucesión de números reales Para cada n N definimos n S n = x k = x + x 2 + + x n k= La sucesión (S n ) n se conoce como la serie infinita

Más detalles

Capítulo 2: Cálculo diferencial de una y varias variables

Capítulo 2: Cálculo diferencial de una y varias variables Capítulo 2: Cálculo diferencial de una y varias variables (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Límites y continuidad Límites laterales

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

3.21. Cálculo de límites.

3.21. Cálculo de límites. 3.21. Cálculo de ites. La eistencia de ite de una función en un punto indica que los valores que toma la función en entornos del punto están arbitrariamente próimos a un punto ite. En este apartado vamos

Más detalles

Cálculo I. Índice Límites Infinitos. Julio C. Carrillo E. * 1. Introducción Límites infinitos Límites en el infinito 9

Cálculo I. Índice Límites Infinitos. Julio C. Carrillo E. * 1. Introducción Límites infinitos Límites en el infinito 9 2.3. Límites Infinitos Julio C. Carrillo E. * Índice. Introducción 2. Límites infinitos 3. Límites en el infinito 9 * Profesor Escuela de Matemáticas, UIS. . Introducción En esta sección se discuten dos

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados. y y MA3002 y Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y

Más detalles