Permutaciones. (Ejercicios)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Permutaciones. (Ejercicios)"

Transcripción

1 Permutaciones (Ejercicios Objetivos Conocer la definición de permutación y revisar algunos ejemplos Calcular el número de las permutaciones del conjunto { n} Conocer los conceptos de transposición y ciclo; aprender sus definiciones formales Requisitos Funciones inyectivas suprayectivas y biyectivas Definición de función inyectiva en forma de desigualdades (repaso Una función ϕ: X Y se llama inyectiva si para cualesquiera i j X tales que i j se tiene que ϕ(i ϕ(j }{{} En otras palabras ϕ se llama inyectiva si manda elementos diferentes en } {{ } Una ley lógica La afirmación (no P implica (no Q es equivalente a la afirmación Q implica }{{} 3 Definición de función inyectiva en forma de igualdades (repaso Una función ϕ: X Y se llama inyectiva si para cualesquiera i j X tales que ϕ(i = ϕ(j se tiene que } {{ } 4 Definición de función suprayectiva (repaso Una función ϕ: X Y se llama suprayectiva o sobreyectiva si el conjunto de todos los valores de ϕ llamado también } {{ } coincide con el contradominio de ϕ es decir con el conjunto }{{} de ϕ Definición (permutación Sea X un conjunto Una función ϕ: X X se llama permutación del conjunto X si ϕ es biyectiva es decir es inyectiva y suprayectiva Permutaciones ejercicios página de

2 Ejemplo La siguiente función ϕ: { 3 4} { 3 4} es una permutación del conjunto { 3 4}: ϕ( = 4 ϕ( = ϕ(3 = ϕ(4 = 3 Se usan las siguientes notaciones: 3 4 ϕ = ϕ = ϕ = 4 3 La inyectividad de ϕ significa que los elementos de la fila 4 3 son } {{ } La propiedad suprayectiva de ϕ significa que en la fila 4 3 aparecen } {{ } elementos del conjunto { 3 4} 5 Determine cuáles de las siguientes funciones son permutaciones: ( ( Se puede demostrar (pero no lo vamos a demostrar en este curso que si X es un conjunto finito y ϕ: X X entonces para la función ϕ las propiedades de ser inyectiva y de ser suprayectiva son equivalentes En otras palabras si ϕ( ϕ( ϕ(n son diferentes a pares entonces {ϕ( ϕ( ϕ(n} = } {{ y viceversa: } si ϕ( ϕ( ϕ(n son } {{ } los elementos del conjunto { n} entonces necesariamente ϕ( ϕ( ϕ(n son } {{ } Permutaciones ejercicios página de

3 Notación (conjunto de las permutaciones del conjunto { n} El conjunto de todas las permutaciones del conjunto { n} se denota por S n 7 Conjunto S El conjunto S consiste de un elemento: 8 Conjunto S Es fácil ver que el conjunto S consiste de dos permutaciones es decir existen exactamente dos biyecciones { } { } Una de estas es y la otra es 9 Conjunto S 3 Escriba de manera explícita todos los elementos del conjunto S 3 (son 6 permutaciones ( 3 ( 3 ( 3 3 ( 3 ( 3 ( 3 Permutaciones ejercicios página 3 de

4 Principio del producto en la combinatoria 0 Ejemplo Supongamos que una persona está escogiendo ropa para ir a una fiesta y puede elegir uno de dos sombreros (los denotamos por S T y una de tres camisas (las denotamos A B C Supongamos que cualquier camisa se combina bien con cualquier sombrero Entonces las opciones posibles son SA SB S }{{} }{{} }{{} }{{} Sombreros y camisas árbol de posibilidades El proceso de elección se puede representar como un árbol (hay que nombrar todos sus nodos: elección de sombrero: inicio S T elección de camisa: A resultado: SA Sombreros y camisas número de variantes Al elegir uno de dos sombreros en todo caso tenemos que elegir una de tres camisas En total son 3 = 6 variantes Permutaciones ejercicios página 4 de

5 Numeración del conjunto S 3 Es natural escribir los elementos de S 3 (es decir las permutaciones del conjunto { 3} en el siguiente orden Empezamos con las permutaciones ϕ: { 3} { 3} tales que ϕ( = : ( 3 ( 3 Luego escribimos las dos permutaciones ϕ: { 3} { 3} tales que ϕ( = : }{{} ( ( 3 3 Al final las }{{} permutaciones ϕ: { 3} { 3} tales que ϕ( = : }{{} ( 3 ( 3 De aquí está claro que el número de elementos de S 3 es S 3 = 3 }{{} = }{{} 3 Razonamiento con la elección de valores de ϕ Si ϕ es una permutación arbitraria del conjunto { 3} entonces cuáles son los valores posibles de ϕ( Respuesta: } {{ } Ahora supongamos que ϕ es una permutación del conjunto { 3} tal que ϕ( = 3 Entonces ϕ( ya no puede ser 3 porque la función ϕ es } {{ } Por eso los valores posibles de ϕ( son } {{ } Ahora supongamos que ϕ S 3 tal que ϕ( = 3 y ϕ( = Entonces ϕ(3 ya no puede ser 3 ni porque la función ϕ es } {{ } Por eso el único valor posible de ϕ(3 es }{{} Permutaciones ejercicios página 5 de

6 4 Elección de valores de ϕ como un árbol de posibilidades inicio ϕ( = ϕ( = ϕ( = ϕ( = ϕ( = ϕ( = ϕ( = ϕ( = ϕ( = ϕ(3 = 3 ϕ(3 = ϕ(3 = ϕ(3 = ϕ(3 = ϕ(3 = Sobre el número de elementos de S 3 El valor ϕ( puede ser cualquier elemento del conjunto { }{{} Al elegir algún valor ϕ( ya no podemos usarlo como ϕ( porque la función ϕ es } {{ } Por lo tanto si ϕ( ya está elegido entonces para ϕ( tenemos }{{} } opciones Luego al elegir ϕ( y ϕ( cuántas opciones tenemos para ϕ(3 Respuesta: }{{} De aquí está claro que el número de elementos de S 3 es S 3 = }{{} }{{} = }{{} Permutaciones ejercicios página 6 de

7 6 Conjunto S 4 Vamos a escribir algunos de los elementos del conjunto S 4 y calcular el número de sus elementos Primero escribimos todas las permutaciones ϕ S 4 tales que ϕ( = : Ahora escribimos todas las permutaciones ϕ S 4 tales que ϕ( = : Falta escribir } {{ } cuántas y } {{ } cuántas permutaciones ϕ S 4 tales que ϕ( = }{{} permutaciones ϕ S 4 tales que ϕ( = }{{} De aquí se sigue que S 4 = 4 = }{{}}{{} Notemos que el segundo factor es el número de elementos del conjunto S 3 : S 4 = }{{} S 3 7 Fórmula general para el número de elementos de S n En general se puede demostrar que S n = S n }{{} De esta fórmula recursiva y de la condición inicial S = se sigue que el número de todas las permutaciones del conjunto { n} es el factorial del número n: S n = n! Permutaciones ejercicios página 7 de

8 Transposiciones Definición informal Transposiciones del conjunto { n} son aquellas permutaciones de este conjunto que intercambian exactamente dos elementos y dejan los demás elementos inmovibles 8 Ejemplo La transposición de los elementos y 5 es La vamos a denotar por τ 5 Sería más preciso indicar también el tamaño del conjunto (en este ejemplo n = 6 pero este tamaño casi siempre está claro del contexto y por eso no se indica Notemos que en este ejemplo ϕ( = }{{} ϕ(5 = }{{} y para todo k { 3 4 6} tenemos que ϕ(k = }{{} Lo mismo se escribe de la siguiente manera: si k = ; ϕ(k = si k = 5; si k { 3 4 6} 9 Escriba de manera explícita las siguientes transposiciones (suponiendo n = 5: ( τ 5 = τ 3 = 0 Escriba las siguientes transposiciones usando la notación τ : = }{{} = }{{} Permutaciones ejercicios página 8 de

9 Definición formal de la transposición de i y j Consideremos la transposición τ 36 que actúa en el conjunto { 7}: ( τ 36 = Escriba su regla de correspondencia usando la siguiente notación: τ 36 (k = si k = 3; si k = 6; si k { 7} \ { } Definición (transposición de elementos i y j Sean i j { n} i j La transposición de i y j denotada por τ ij es la permutación que intercambia i y j y no mueve los demás elementos: si k = ; τ ij (k := si k = ; si k 3 Escriba las transposiciones τ 3 y τ 3 (con n = 5: ( ( τ 3 = τ 3 = Resumen: las transposiciones τ ij y τ ji son } {{ } Permutaciones ejercicios página 9 de

10 Número de transposiciones del conjunto { n} 4 Escriba de manera explícita todas las transposiciones del conjunto { 3}: ( ( ( τ = τ 3 = τ 3 = Notemos que τ = τ y escribimos esta transposición sólo una vez 5 Escriba todas las transposiciones del conjunto { 3 4} usando la notación τ ij : τ τ 3 6 Número de transposiciones del conjunto { n} primera solución Elegir una transposición τ ij del conjunto { n} significa elegir un subconjunto {i j} de dos elementos en el conjunto { n} que consiste de n elementos El número de estos subconjuntos se calcula por medio de un coeficiente binominal: ( = 7 Número de transposiciones del conjunto { n} segunda solución Calculemos el número de pares ordenados (i j con i { n } j {i + n} Hay }{{} hay }{{} pares ordenados de la forma ( j con < j n; pares ordenados de la forma ( j con < j n; hay }{{} de la forma (n j con n < j n El número total de los pares ordenados (i j con i < j n es la suma de una progresión } {{ : } aritmética o geométrica }{{} + }{{} + + }{{} = Permutaciones ejercicios página 0 de

11 Ciclos (permutaciones cíclicas Ejemplo Denotemos por c 7 ( la permutación del conjunto { 6} que manda a 5 5 a a 6 6 a 4 4 a y deja fijos los elementos 3 y 7: c 7 ( = = Por lo común el tamaño n (en este ejemplo 7 está claro del contexto y se omite es decir en vez de c 7 ( se escribe simplemente c( Los profesionales que trabajan mucho con permutaciones usan una notación más breve: ( Escriba en forma explícita las siguientes permutaciones cíclicas (ciclos: ( c 5 ( 3 4 = 3 c 6 ( = c 5 (4 3 5 = 9 Las siguientes permutaciones son ciclos Escríbalas usando la notación cíclica: ( = ( = = c 6 ( = c 6 ( 30 Transposiciones son ciclos de dos elementos Si n = 6 entonces τ 3 = c 6 ( 3 τ 5 = c 6 ( 4 = c 6 (5 6 = }{{}}{{}}{{} τ τ Permutaciones ejercicios página de

12 Definición formal del ciclo de los elementos a a r 3 Consideremos la permutación cíclica c 7 (3 4: ϕ = c 7 (3 4 = 4 Notemos que ϕ(3 = }{{} ϕ( = }{{} ϕ(4 = }{{} y para todo k { 5 6 7} se cumple la fórmula ϕ(k = }{{} La regla de correspondencia de esta permutación se puede escribir de la siguiente manera: si k = 3; si k = ; ϕ(k = si k = 4; si k { } 3 Consideremos la permutación cíclica ϕ = c n (a a a 3 a 4 donde a a a 3 a 4 son cuatro elementos diferentes del conjunto { n} La regla de correspondencia es si k = a ; si k = ; ϕ(k = si k = ; si k = ; si k { n} \ { } 33 Definición (permutación cíclica de a a r Sean a a r algunos elementos diferentes del conjunto { n} Entonces el ciclo ϕ = c n (a a r se define mediante la siguiente regla de correspondencia: si k = a j j { r }; ϕ(k := si k = a r ; si k { n} \ { } Permutaciones ejercicios página de

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

Definición y propiedades del determinante (repaso breve)

Definición y propiedades del determinante (repaso breve) Definición y propiedades del determinante (repaso breve Objetivos Repasar la definición del determinante (a través de permutaciones y sus propiedades básicas: determinante de la matriz transpuesta, determinante

Más detalles

ÁLGEBRA MODERNA. Índice 1. El grupo de permutaciones y el grupo alternante 1

ÁLGEBRA MODERNA. Índice 1. El grupo de permutaciones y el grupo alternante 1 ÁLGEBRA MODERNA DANIEL LABARDINI FRAGOSO TOMÓ ESTAS NOTAS: ALEJANDRO DE LAS PEÑAS CASTAÑO FECHA: 9/MARZO/2016 Índice 1. El grupo de permutaciones y el grupo alternante 1 1. El grupo de permutaciones y

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos. Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos clobos@inf.utfsm.cl niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Operaciones extendidas de conjuntos

Operaciones extendidas de conjuntos 234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2017/2018. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3.

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3. Determinantes Problemas teóricos Adradezco por varios problemas e ideas a los profesores de la ESFM Myriam Rosalía Maldonado Ramírez y Eliseo Sarmiento Rosales y al estudiante de servicio social Sadi Manuel

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

4.2. Funciones inyectivas, sobreyectivas y biyectivas

4.2. Funciones inyectivas, sobreyectivas y biyectivas 4.. Funciones inyectivas, sobreyectivas y biyectivas En esta sección estudiaremos tres conceptos básicos sobre funciones. 4... Funciones inyectivas Definición 4.. Sea f una función de en. Diremos que f

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Semana04[1/17] Funciones. 21 de marzo de Funciones

Semana04[1/17] Funciones. 21 de marzo de Funciones Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

Interpolación de Newton en diferencias regresivas

Interpolación de Newton en diferencias regresivas Interpolación de Newton en diferencias regresivas Objetivos. Estudiar la contrucción del polinomio interpolante a través de las diferencias regresivas en el caso cuando las abscisas de los nodos de interpolación

Más detalles

Álgebra y estructuras finitas/discretas (Grupos A)

Álgebra y estructuras finitas/discretas (Grupos A) Álgebra y estructuras finitas/discretas (Grupos A) Curso 2007-2008 Soluciones a algunos de los ejercicios propuestos en el Tema 2 Antes de ver la solución de un ejercicio, repase la teoría correspondiente

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.

Más detalles

Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias

Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias Semana 07[/] de abril de 007 Semana 07[/] Progresiones aritméticas Progresión aritmética Es una sumatoria del tipo (A + d) es decir, donde a A + d, para valores A, d Ê. Utilizando las propiedades de sumatoria,

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Propiedades de imágenes y preimágenes

Propiedades de imágenes y preimágenes Propiedades de imágenes y preimágenes Objetivos. Demostrar las propiedades principales de las imágenes y preimágenes, por ejemplo que f[a B] = f[a] f[b]. Requisitos. Definición y ejemplos de imágenes y

Más detalles

Ejercicios del tema 5

Ejercicios del tema 5 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 5 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. Nota: En algunos de los siguientes ejercicios, se pide probar una serie de propiedades

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Repaso de Estructuras Algebraicas 1. Producto cartesiano de conjuntos. Dados los conjuntos A y B, se llama producto cartesiano de A y B, y se denota por A B al conjunto

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Determinantes. Deducir la propiedad aditiva de otras propiedades

Determinantes. Deducir la propiedad aditiva de otras propiedades Determinantes problemas teóricos adicionales Los problemas auxiliares de estas tareas adicionales no son muy difíciles y corresponden al nivel obligatorio de conocimientos Los problemas principales de

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

Cuadrados mágicos y matrices de permutación

Cuadrados mágicos y matrices de permutación Cuadrados mágicos y matrices de permutación Alexey Beshenov (cadadr@gmail.com) 13 de agosto de 016 Estos son mis apuntes para una pequeña presentación para los alumnos del Programa Jóvenes Talento de la

Más detalles

Ejercicios de Álgebra Básica. Curso 2017/18

Ejercicios de Álgebra Básica. Curso 2017/18 Ejercicios de Álgebra Básica. Curso 2017/18 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)

Más detalles

COMBINATORIA. Manuel Cortés Izurdiaga. Preparación Olimpiada RSME

COMBINATORIA. Manuel Cortés Izurdiaga. Preparación Olimpiada RSME COMBINATORIA Manuel Cortés Izurdiaga Preparación Olimpiada RSME COMBINATORIA Combinatoria Consiste en contar el número de elementos de un conjunto finito. COMBINATORIA Combinatoria Consiste en contar el

Más detalles

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas se han escrito con el ánimo de facilitar al estudiante una guía para el estudio de la asignatura, y no como un libro de texto o manual de Álgebra

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Matrices simétricas y antisimétricas

Matrices simétricas y antisimétricas Matrices simétricas y antisimétricas Ejercicios Objetivos Definir matrices simétricas y antisimétricas estudiar sus propiedades básicas Requisitos Matriz transpuesta propiedades de la matriz transpuesta

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).

Más detalles

Combinatoria Básica: Conteo

Combinatoria Básica: Conteo Capítulo III Combinatoria Básica: Conteo En este capítulo continuamos determinando la cardinalidad de varios conjuntos interesantes, en particular, permutaciones y combinaciones. Como parte de esto encontramos

Más detalles

Imágenes y preimágenes de uniones e intersecciones de familias de conjuntos

Imágenes y preimágenes de uniones e intersecciones de familias de conjuntos Imágenes y preimágenes de uniones e intersecciones de familias de conjuntos Objetivos. Demostrar las fórmulas principales para las imágenes y preimágenes de las uniones e intersecciones de familias de

Más detalles

ARGUMENTOS DE UNA FUNCIÓN: Sea ψ: A B una función (parcial). Si A es de la forma A = A1 A2... An decimos que ψ tiene n argumentos.

ARGUMENTOS DE UNA FUNCIÓN: Sea ψ: A B una función (parcial). Si A es de la forma A = A1 A2... An decimos que ψ tiene n argumentos. CONJUNTOS: Utilizaremos la noción habitual de conjunto. Los conjuntos con los que más trabajaremos serán el conjunto B= {true,false} de los booleanos, el conjunto N= {0,1,2,3,4,5,...} de los números naturales,

Más detalles

Matemática 2. Clase práctica de coordenadas y cambio de base

Matemática 2. Clase práctica de coordenadas y cambio de base atemática Clase práctica de coordenadas y cambio de base Nota iren este apunte por su cuenta y consulten las dudas que les surjan Ya pueden terminar la práctica Coordenadas en espacios vectoriales de dimensión

Más detalles

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos:

TEMA 1. Teoría de Conjuntos. Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: TEMA 1 Teoría de Conjuntos Ejercicio 1.1. Decidir si A = B, A B ó A B en los siguientes casos: i) A = { }, B = {{ }} ii) A = {, { }}, B = {, {, { }}} iii) A = {{ }, {, { }}}, B = {{ }} Ejercicio 1.2. Dar

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples)

Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples) Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples) Objetivos Deducir fórmulas para la proyección ortogonal de un vector sobre el subespacio generado por un vector normalizado;

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

2 Grupos simétricos y alternados

2 Grupos simétricos y alternados 4 TEORIA DE GRUPOS A continuación vamos a estudiar los grupos que históricamente dieron origen a su concepto. 2 Grupos simétricos y alternados Dado un número natural n el conjunto de permutaciones 1 de

Más detalles

Capítulo 6. Determinantes. 6.0 Grupo de Permutaciones. Notación

Capítulo 6. Determinantes. 6.0 Grupo de Permutaciones. Notación Capítulo 6 Determinantes 6.0 Grupo de Permutaciones. Notación A modo de introducción, y a pesar de pertenecer a otra rama de las matemáticas, necesitamos alguna notación referente al grupo de permutaciones

Más detalles

Curso de conjuntos y números. Notas sobre el Lema de Zorn y la aritmética de cardinales arbitrarios

Curso de conjuntos y números. Notas sobre el Lema de Zorn y la aritmética de cardinales arbitrarios Curso de conjuntos y números. Notas sobre el Lema de Zorn y la aritmética de cardinales arbitrarios Juan Jacobo Simón Pinero Curso 2017/2018 1. Introducción y preliminares Como hemos visto, la Teoría de

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Ejercicios de Álgebra Básica. Curso 2014/15

Ejercicios de Álgebra Básica. Curso 2014/15 Ejercicios de Álgebra Básica. Curso 2014/15 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

ÁLGEBRA MODERNA. Índice 1. Los grupos A n y S n Cíclos. 3

ÁLGEBRA MODERNA. Índice 1. Los grupos A n y S n Cíclos. 3 ÁLGEBRA MODERNA DANIEL LABARDINI FRAGOSO TOMÓ ESTAS NOTAS: JAIME ALEJANDRO GARCÍA VILLEDA. FECHA: 8 DE MARZO DEL 2016. Índice 1. Los grupos A n y S n. 1 1.1. Cíclos. 3 1. Los grupos A n y S n. Fijemos

Más detalles

Producto de matrices triangulares superiores

Producto de matrices triangulares superiores Producto de matrices triangulares superiores Ejercicios Objetivos Demostrar que el producto de dos matrices triangulares superiores es una matriz triangular superior Deducir una fórmula para las entradas

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B = Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 1 Conjuntos, relaciones y aplicaciones 1. Conjuntos La idea de conjunto

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

Forma binomial de números complejos (ejercicios)

Forma binomial de números complejos (ejercicios) Forma binomial de números complejos (ejercicios) Objetivos. Mostrar que los números reales x se pueden identificar con números complejos de la forma (x, 0), y cada número complejo (x, y) se puede escribir

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso 2010 2011) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x > 4} C = {x Z x 2 < 20} D = {x N x es primo}

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

Propiedades del valor absoluto de números enteros (ejercicios)

Propiedades del valor absoluto de números enteros (ejercicios) Propiedades del valor absoluto de números enteros (ejercicios) 1. Ejemplos. Rellene los espacios: 6 6, 8 8, 23 23, 0 0, 5 5. 4 lomon, 15 loomoon, 120 loooomoooon, 0 lomon. 2. Definición formal. El valor

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2,

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2, Ejercicios de Álgebra Básica. Curso 2012/13 Ejercicio 1. Probar, usando el método de inducción, la fórmula de la suma de n términos de una progresión geométrica de razón r, S n = ra n a 1 r 1. Ejercicio

Más detalles

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices Álgebra Lineal Tema 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

Notas sobre tensores

Notas sobre tensores Notas sobre tensores Algebra Lineal - Observatorio Introducción Estas notas están pensadas como una introducción elemental a la teoría de tensores, desde un punto de vista coordenado. De esta forma, no

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

Conjuntos, relaciones de equivalencia y aplicaciones

Conjuntos, relaciones de equivalencia y aplicaciones CAPíTULO 1 Conjuntos, relaciones de equivalencia y aplicaciones 1. Conjuntos La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los conceptos matemáticos están construidos

Más detalles

Conjuntos, Relaciones y Funciones.

Conjuntos, Relaciones y Funciones. Capítulo 1 Conjuntos, Relaciones y Funciones. 1.1. Conjuntos. 1.1.1. Conjuntos y subconjuntos, pertenencia e inclusión. Definición 1.1.1. (informal de conjunto y elementos.) Un conjunto es una colección

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Conjuntos, Relaciones y Funciones.

Conjuntos, Relaciones y Funciones. Capítulo 1 Conjuntos, Relaciones y Funciones. 1.1. Conjuntos. 1.1.1. Conjuntos y subconjuntos, pertenencia e inclusión. Definición 1.1.1. (informal de conjunto y elementos.) Un conjunto es una colección

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

Algebra I (Doble Grado Matemáticas-Informática)

Algebra I (Doble Grado Matemáticas-Informática) Algebra I (Doble Grado Matemáticas-Informática) Relación 1 Curso 2017-2018 Conjuntos y aplicaciones. Ejercicio 1. Construir todas las aplicaciones del conjunto X = {a, b, c} en el conjunto Y = {1, 2} y

Más detalles

Carlos A. Rivera-Morales. Precálculo I

Carlos A. Rivera-Morales. Precálculo I Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: función inversa : Contenido Discutiremos: función inversa construcción de la función inversa : Contenido Discutiremos:

Más detalles

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR Dept. Computación y Tecnología de la Información Estructuras Discretas II CI de Diciembre de 2013.

UNIVERSIDAD SIMÓN BOLÍVAR Dept. Computación y Tecnología de la Información Estructuras Discretas II CI de Diciembre de 2013. UNIVERSIDAD SIMÓN BOLÍVAR Dept. Computación y Tecnología de la Información Estructuras Discretas II CI 2527 9 de Diciembre de 2013 Practica 10 Nota. Todas las funciones en esta práctica son funciones totales

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Cardinalidad IIC1253. IIC1253 Cardinalidad 1 / 23

Cardinalidad IIC1253. IIC1253 Cardinalidad 1 / 23 Cardinalidad IIC1253 IIC1253 Cardinalidad 1 / 23 Conjuntos con la misma cardinalidad Definición Decimos que dos conjuntos A y B son equinumerosos, denotado como A B, si existe una biyección f : A B. IIC1253

Más detalles

Propiedades de las operaciones lineales con matrices

Propiedades de las operaciones lineales con matrices Propiedades de las operaciones lineales con matrices Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en M m n (R). Requisitos. Operaciones lineales en R n, definición

Más detalles