Introducción a la Química Computacional

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la Química Computacional"

Transcripción

1 OBTENCIÓN DE VALORES Y VECTORES PROPIOS DE UN SISTEMA POLIATÓMICO: APLICACIÓN EN LOS ORBITALES MOLECULARES

2 El problema de las ecuaciones simultáneas en el cálculo variacional se puede expresar según: HC SEC = 0 y como hemos visto que su solución solo se logra cuando las funciones de referencia para la función arbitraria son ortonormales, entonces la matriz de superposición se hace una matriz diagonal unitaria δ mn = 1 Por eso la expresión se podría escribir como: HC 1EC = 0

3 El problema de las ecuaciones simultáneas en el cálculo variacional se puede expresar según: HC SEC = 0 y como hemos visto que su solución solo se logra cuando las funciones de referencia para la función arbitraria son ortonormales, entonces la matriz de superposición se hace una matriz diagonal unitaria δ mn = 1 Por eso la expresión se podría escribir como: HC 1EC = 0

4 La matriz de identidad puede omitirse y entonces: HC EC = 0 HC = EC H = CEC -1 La ecuación determinante correspondiente a la referencia ortonormal se conoce como la ecuación secular o ecuación característica del sistema: H E = 0

5 La matriz de identidad puede omitirse y entonces: HC EC = 0 HC = EC H = CEC -1 La ecuación determinante correspondiente a la referencia ortonormal se conoce como la ecuación secular o ecuación característica del sistema: H E = 0

6 En álgebra, una matriz H es diagonalizable cuando existe una matriz diagonal E y una matriz reversible C tales que H = CEC -1 Si se hallan E y C para una H dada se dice que hemos diagonalizado esta matriz Obsérvese que este sistema se puede escribir también como: E = C -1 HC lo que relaciona el problema con la obtención de los valores esperados o exactos de la ecuación de Schrödinger si H es la matriz de los hamiltonianos y C la de las funciones de onda

7 En álgebra, una matriz H es diagonalizable cuando existe una matriz diagonal E y una matriz reversible C tales que H = CEC -1 Si se hallan E y C para una H dada se dice que hemos diagonalizado esta matriz Obsérvese que este sistema se puede escribir también como: E = C -1 HC lo que relaciona el problema con la obtención de los valores esperados o exactos de la ecuación de Schrödinger si H es la matriz de los hamiltonianos y C la de las funciones de onda

8 En álgebra, una matriz H es diagonalizable cuando existe una matriz diagonal E y una matriz reversible C tales que H = CEC -1 Si se hallan E y C para una H dada se dice que hemos diagonalizado esta matriz Obsérvese que este sistema se puede escribir también como: E = C -1 HC lo que relaciona el problema con la obtención de los valores esperados o exactos de la ecuación de Schrödinger si H es la matriz de los hamiltonianos y C la de las funciones de onda

9 La diagonalización de la matriz H puede realizarse cuando es simétrica (H μν = H νμ ) y es un tratamiento rutinario en matemática numérica para el que existen muchos algoritmos y programas También se conoce como el caso de hallar los valores y vectores propios de una matriz simétrica Los valores propios son los términos de la matriz diagonal E k y los vectores propios están dados por los coeficientes c iμ en la matriz C El conjunto de vectores propios de tales matrices puede considerarse siempre como ortogonal

10 La diagonalización de la matriz H puede realizarse cuando es simétrica (H μν = H νμ ) y es un tratamiento rutinario en matemática numérica para el que existen muchos algoritmos y programas También se conoce como el caso de hallar los valores y vectores propios de una matriz simétrica Los valores propios son los términos de la matriz diagonal E k y los vectores propios están dados por los coeficientes c iμ en la matriz C El conjunto de vectores propios de tales matrices puede considerarse siempre como ortogonal

11 La diagonalización de la matriz H puede realizarse cuando es simétrica (H μν = H νμ ) y es un tratamiento rutinario en matemática numérica para el que existen muchos algoritmos y programas También se conoce como el caso de hallar los valores y vectores propios de una matriz simétrica Los valores propios son los términos de la matriz diagonal E k y los vectores propios están dados por los coeficientes c iμ en la matriz C El conjunto de vectores propios de tales matrices puede considerarse siempre como ortogonal

12 La diagonalización de la matriz H puede realizarse cuando es simétrica (H μν = H νμ ) y es un tratamiento rutinario en matemática numérica para el que existen muchos algoritmos y programas También se conoce como el caso de hallar los valores y vectores propios de una matriz simétrica Los valores propios son los términos de la matriz diagonal E k y los vectores propios están dados por los coeficientes c iμ en la matriz C El conjunto de vectores propios de tales matrices puede considerarse siempre como ortogonal

13 Una de las aplicaciones más comunes de este enfoque de álgebra lineal a la teoría atómico molecular es la consideración de la función de onda de un estado electrónico molecular cualquiera u orbital molecular i como la combinación lineal de estados electrónicos atómicos o CLOA (LCAO en inglés): ψ i = c i1 φ1 + ci2φ2 + = ciμφ μ donde los coeficientes c iμ dan la participación del orbital atómico φ μ en el estado u orbital molecular i μ

14 También en este caso, si la matriz de los coeficientes del sistema, que es la de los vectores propios, es: y la matriz del sistema dada por la energía expresada en términos de su composición de orbitales atómicos es: C = H = c c c c c c i 1 c i H H H H μ H μ 1μ H i 1 H i μ se puede obtener un producto: HC = EC

15 E es una matriz diagonal equivalente a H, que contiene a los valores propios E k E = E E E μ

16 Esto se puede entender como que la matriz de vectores propios o coeficientes de los orbitales moleculares C es la que transforma a la matriz de energía en términos de orbitales atómicos H en una matriz diagonal E, cuyos elementos son los valores propios o energías relacionadas con cada estado molecular con una emergía minimizada en virtud del principio variacional que se aplicó

La Teoría de Hückel: Antecedentes

La Teoría de Hückel: Antecedentes La Teoría de Hückel: Antecedentes c = Las ecuaciones seculares: s [ H as ESas ] (un conjunto de ecuaciones simultáneas para todos los átomos) s () a, s las etiquetas de los átomos c s los coeficientes

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Teoría Espectral Stephen B. Sontz Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Mini-curso impartido en Colima 29 septiembre 2016 - Tercer día Introducción Hay dos dichos populares

Más detalles

Estructura electrónica molecular

Estructura electrónica molecular Estructura electrónica molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 4 de noviembre de 2016 Índice 1. Aproximación de Born-Oppenheimer 1 2. Ion

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Momento Dipolar. o Enrique González Jiménez o Ivan Monsalvo Montiel o Illán Morales Becerril o Gustavo Vidal Romero

Momento Dipolar. o Enrique González Jiménez o Ivan Monsalvo Montiel o Illán Morales Becerril o Gustavo Vidal Romero Universidad Nacional Autónoma de México Posgrado en Ciencias Químicas Estructura de la Materia Momento Dipolar Presentado por o Enrique González Jiménez o Ivan Monsalvo Montiel o Illán Morales Becerril

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Diagonalización simultánea de formas cuadráticas.

Diagonalización simultánea de formas cuadráticas. Diagonalización simultánea de formas cuadráticas Lucía Contreras Caballero 14-4-2004 Dadas dos formas cuadráticas, si una de ellas es definida positiva, se puede encontrar una base en la que las dos diagonalizan

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD V: ESPACIOS VECTORIALES Estamos acostumbrados a representar un punto en la recta como un número real; un punto en el plano como un par ordenado y un punto en el espacio tridimensional como una terna

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

Álgebra lineal Prof: Leonid Fridman

Álgebra lineal Prof: Leonid Fridman Álgebra lineal Prof: Leonid Fridman Vectores y subespacios lineales Vector: Un vector en Rn es una n-tupla de números reales Espacio lineal: Un conjunto no vacío L de elementos x, y, z, que satisface las

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA

Más detalles

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13 00_Principios 10/8/10 09:47 Página 7 ÍNDICE Prólogo... 9 Capítulo 1. ESPACIOS VECTORIALES... 11 Conceptos Teóricos... 11 Ejercicios y Problemas resueltos... 13 Capítulo 2. MATRICES Y DETERMINANTES... 21

Más detalles

GUÍA DE APRENDIZAJE ALGEBRA LINEAL Y GEOMETRIA

GUÍA DE APRENDIZAJE ALGEBRA LINEAL Y GEOMETRIA GUÍA DE APRENDIZAJE ALGEBRA LINEAL Y GEOMETRIA Datos Descriptivos TITULACIÓN: CENTROS IMPLICADOS: E.T.S. DE INGENIEROS NAVALES CICLO: MÓDULO: MATERIA: ASIGNATURA: CURSO: 1 º SEMESTRE: DEPARTAMENTO RESPONSABLE:

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

Postulados de la mecánica cuántica. Ponentes: Rodrigo Aguayo Ortiz Paulina Flores Carrillo Tania Hernández Ríos

Postulados de la mecánica cuántica. Ponentes: Rodrigo Aguayo Ortiz Paulina Flores Carrillo Tania Hernández Ríos Postulados de la mecánica cuántica Ponentes: Rodrigo Aguayo Ortiz Paulina Flores Carrillo Tania Hernández Ríos CONTENIDO Mecánica cuántica Postulados de la mecánica cuántica Postulado I. Estado del sistema

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

El operador Hamiltoniano es inmutable (simétrico) respecto a cualquier operación de simetría de un grupo.

El operador Hamiltoniano es inmutable (simétrico) respecto a cualquier operación de simetría de un grupo. Aplicaciones a la química cuántica: En la teoría de los orbitales moleculares (TOM), la función de onda de un sistema molecular se puede expresar como un determinante de Slater formado a partir de los

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

DESCRIPCIÓN DE LA ASIGNATURA

DESCRIPCIÓN DE LA ASIGNATURA DESCRIPCIÓN DE LA ASIGNATURA ASIGNATURA: Nombre en Inglés: LINEAR ALGEBRA Código UPM: 565000212 MATERIA: MATEMÁTICAS CRÉDITOS ECTS: 6 CARÁCTER: TITULACIÓN: TIPO: CURSO: SEMESTRE: BÁSICA GRADUADO EN INGENIERÍA

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ÁLGEBRA LINEAL 0062 Asignatura Clave 0062 2 09 Semestre Créditos Ciencias Básicas Matemáticas Básicas Ingeniería en Computación

Más detalles

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso Depto de Álgebra, curso 2017-2018 2 Álgebra matricial Inversa de una matriz Ejercicio 21 Calcule la matriz inversa de cada una de las matrices siguientes: a 2 1 1 3 2 1 h e, b 2 1 1 5 2 3 2 0 1 1 2 1 1

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2010 NOCTURNO CICLO BÁSICO DE INGENERÍA ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2010 NOCTURNO CICLO BÁSICO DE INGENERÍA ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2010 NOCTURNO CICLO BÁSICO DE INGENERÍA SEMESTRE ASIGNATURA 2do ALGEBRA LINEAL CÓDIGO HORAS MAT-21114

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

PROBLEMAS Y CUESTIONES Tema 6

PROBLEMAS Y CUESTIONES Tema 6 PROBLEMAS Y CUESTIONES Tema 6 *6. Las funciones de espín α y β forman un conjunto completo de funciones de espín, de modo que cualquier función de espín monoelectrónica puede escribirse como una combinación

Más detalles

CURSO DE POSTGRADO. Matemáticas I. N o m b r e C u r s o. Rodrigo Assar (ICBM) ICBM, Facultad de Medicina, U-Chile U N I D A D A C A D É M I C A

CURSO DE POSTGRADO. Matemáticas I. N o m b r e C u r s o. Rodrigo Assar (ICBM) ICBM, Facultad de Medicina, U-Chile U N I D A D A C A D É M I C A UNIVERSIDAD DE CHILE FACULTAD DE MEDICINA ESCUELA DE POSTGRADO CURSO DE POSTGRADO Matemáticas I N o m b r e C u r s o SEMESTRE 1º AÑO 2014 PROF. ENCARGADO Rodrigo Assar (ICBM) N o m b r e C o m p l e t

Más detalles

Problemas de Geometría Analítica del Espacio

Problemas de Geometría Analítica del Espacio 1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Álgebra Lineal. Hoja 1 de 5. Programa de:

Álgebra Lineal. Hoja 1 de 5. Programa de: Programa de: Hoja 1 de 5 Álgebra Lineal UNIVERSIDAD NACIONAL DE CORDOBA Código: Carrera: Materia común Res. Nº 298-HCD-04 Plan: Puntos: 3 Escuela: Carga horaria: 72 hs. Hs. Semanales: 4,5 hs. Departamento:

Más detalles

1) Tensor de momento sísmico de cizalla pura. El vector de desplazamiento es paralelo al

1) Tensor de momento sísmico de cizalla pura. El vector de desplazamiento es paralelo al 1) Tensor de momento sísmico de cizalla pura. El vector de desplazamiento es paralelo al plano de falla. Se supone una fuente puntual situada en el medio isotrópico. Se trabaja con dos vectores unitarios:

Más detalles

Rotación de moléculas poliatómicas:

Rotación de moléculas poliatómicas: Rotación de moléculas poliatómicas: M Trompos esféricos, simétricos y asimétricos. EQUIPO 3 : M A R T Í N EZ A H U M A DA E VA M A R Í A D E J ESÚS M A R T Í N EZ A L D I N O I N G R I D YA D I R A M O

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:

Más detalles

Producto escalar. x y. x = x x y cos α =

Producto escalar. x y. x = x x y cos α = resumen06 1 Producto escalar Vectores ortogonales y proyecciones La definición matemática de producto escalar es bastante amplia porque recoge toda expresión bilineal que sirva razonablemente para medir

Más detalles

Matemáticas. Álgebra lineal (parte final ampliada)

Matemáticas. Álgebra lineal (parte final ampliada) Master en Estadística e Investigación Operativa Matemáticas Álgebra lineal (parte final ampliada) Vera Sacristán Departament de Matemàtica Aplicada II Facultat de Matemàtiques i Estadística Universitat

Más detalles

2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de: MATERIA: ÁLGEBRA LINEAL CÓDIGO: 08091 REQUISITOS: Algebra y Funciones (08272), Lógica y Argumentación (08273) PROGRAMAS: Ingenierías, Química. PERÍODO ACADÉMICO: 2017-2 INTENSIDAD HORARIA: 4 Horas por

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA I

ALGEBRA LINEAL Y GEOMETRÍA I ALGEBRA LINEAL Y GEOMETRÍA I TEMA 3: Autovalores y Autovectores. Introducción Ya conoces que las aplicaciones lineales entre espacios vectoriales, al elegir bases en ellos, las puedes representar por matrices.

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica 6.6 Diagonalización de matrices simétricas o hermitianas Ejemplo de una diagonalización de una matriz simétrica Matrices hermitianas Los autovalores de las matrices reales simétricas o complejas hermitianas

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 8. Valores y vectores propios Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

GUÍA DOCENTE DE ALGEBRA LINEAL

GUÍA DOCENTE DE ALGEBRA LINEAL GUÍA DOCENTE DE ALGEBRA LINEAL La presente guía docente corresponde a la asignatura ÁLGEBRA LINEAL, aprobada para el curso lectivo 2016-2017 en Junta de Centro y publicada en su versión definitiva en la

Más detalles

Tema 6: Diagonalización de matrices

Tema 6: Diagonalización de matrices Tema 6: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios:

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios: Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación MÉTODOS ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES Profesor: Jaime Álvarez Maldonado Ayudante:

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : IX / 9 UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 9 Ejercicios sugeridos para : los temas de las clases del 3 de junio y de julio de 9. Temas : Autovalores y autovectores. Matrices similares; diagonalización.

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

Proyecto docente de la asignatura

Proyecto docente de la asignatura Proyecto docente de la asignatura Asignatura Materia Química Física I Química Física Módulo Titulación Grado en Química Plan 2010 Código 45947 Periodo de impartición 1 er Cuatrimestre Tipo/Carácter Obligatoria

Más detalles

1 de 6 24/08/2009 9:54 MATRICES Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853 En

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS Cambios de base 3 3. CAMBIOS DE BASE Dada una aplicación lineal : y la base,,, se ha definido matriz en bases canónicas de la aplicación lineal a la matriz,, cuyas columnas son las coordenadas de en la

Más detalles

Capítulo 4. Diagonalización de matrices

Capítulo 4. Diagonalización de matrices Capítulo 4 Diagonalización de matrices El problema de diagonalización de matrices consiste en, dada una matriz A, encontrar una aplicación lineal lineal S tal que A se reduzca a la forma diagonal mediante

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 37 CONTENIDO

Más detalles

Introducción a la Física Cuántica Tarea 7. A entregar: Lunes 16 de noviembre de 2015

Introducción a la Física Cuántica Tarea 7. A entregar: Lunes 16 de noviembre de 2015 Introducción a la Física Cuántica Tarea 7 A entregar: Lunes 16 de noviembre de 2015 Spin y sistemas de dos estados Prob. 30. Matrices de momento angular j = 1. En clase discutimos que para cada valor de

Más detalles

= ; para hallar este, se va hallar el determinante de la matriz e igualar a cero. Solución: restamos a la matriz, una matriz escalar cuyo escalar es

= ; para hallar este, se va hallar el determinante de la matriz e igualar a cero. Solución: restamos a la matriz, una matriz escalar cuyo escalar es VALORES Y VECTORES PROPIOS. Esto es parte de un ejercicio aun más detallado al cual debemos hallarle sus valores y sus vectores propios. También recibe el nombre de valores y vectores característicos o

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta.

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta. Universidad de Oviedo Ejercicio.5 puntos Se consideran las aplicaciones lineales T : R [x] R y T : R R [x] de las que se conoce la matriz A asociada a T en las bases canónicas de R [x] y R y la matriz

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales resumen05 1 Espacios vectoriales y aplicaciones lineales Espacios y subespacios vectoriales Un espacio vectorial sobre un conjunto de números K es intuitivamente un conjunto en el que tenemos definida

Más detalles

Química Cuántica/ Química 2004

Química Cuántica/ Química 2004 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN LICENCIATURA EN: QUÍMICA. NOMBRE DE LA ASIGNATURA: QUÍMICA CUÁNTICA. ÓRGANO INTERNO QUE COORDINA EL PROGRAMA DE LA ASIGNATURA:

Más detalles

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUIMICAS FUNDAMENTOS ESPECTROSCOPICOS

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUIMICAS FUNDAMENTOS ESPECTROSCOPICOS UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUIMICAS FUNDAMENTOS ESPECTROSCOPICOS Alexis Lema Jueves 10-12 ESPECTROSCOPIA UV-VIS. COMBINACIÓN LINEAL DE ORBITALES ATOMICOS (CLOA). ORBITALES ATOMICOS

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2016 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

Electrones en un potencial periódico - Teoría de bandas

Electrones en un potencial periódico - Teoría de bandas Electrones en un potencial periódico - Teoría de bandas g(e) g(e) Desde un punto de vista fundamental, se debe resolver el siguiente problema para obtener los niveles de energía de los electrones en un

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA

GUÍA DOCENTE DE LA ASIGNATURA GUÍA DOCENTE DE LA ASIGNATURA G405 - Álgebra y Geometría Grado en Ingeniería Eléctrica Básica. Curso 1 Curso Académico 2015-2016 1 1. DATOS IDENTIFICATIVOS Título/s Grado en Ingeniería Eléctrica Tipología

Más detalles