Lic. en Matemática Aplicada Matemática Computacional I UNLaM PRÁCTICA N 4 LOS NÚMEROS: ASPECTOS NUMÉRICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lic. en Matemática Aplicada Matemática Computacional I UNLaM PRÁCTICA N 4 LOS NÚMEROS: ASPECTOS NUMÉRICOS"

Transcripción

1 4.1. Introducción PRÁCTICA N 4 LOS NÚMEROS: ASPECTOS NUMÉRICOS La llegada de las calculadoras al aula trajo consigo no pocos problemas, provocando generalmente reacciones de rechazo; reacciones, éstas, que han tenido como consecuencia más grave el desconocimiento de esta herramienta por parte del usuario. Dado que estamos a favor de su uso propondremos algunos experimentos que abordan detalles técnicos que no figuran necesariamente en el manual y que usualmente son los responsables de las imprecisiones. Una última observación se impone: podrían evitarse muchos problemas si se reinterpretara calcular en términos de estimar; lo cual quiere decir reemplazar valor exacto por los cinco (o diez o los que sean...) primeros dígitos exactos. En definitiva, la experiencia indica que el usuario confía en el resultado simplemente porque usó la calculadora (o sea, la que calcula) y entiende que calcular significa dar el valor exacto. Lo que sigue intenta lidiar con esos problemas a efectos de conocer, al menos, las limitaciones de esta herramienta La aritmética de la calculadora Si vamos a usar una calculadora lo menos que pretendemos es saber cómo opera, o al menos, cómo no opera; ése será uno de los objetivos de la guía. Sin embrago, para poder efectuar la operación tenemos que saber también cómo ingresar los datos; ése es el otro. Debemos señalar que el problema de ingresar los datos involucra el de representar números, es decir la noción de sistema de numeración. A efectos de adquirir experiencia comenzaremos considerando el sistema decimal de numeración: en primer lugar por su familiaridad y en segundo lugar porque es el que usa una calculadora común de mano para expresar los resultados. De esta manera tenemos definidos dos problemas concretos, a saber: cuáles son los números con los que opera la máquina y cómo opera ésta con aquéllos. Un tercer problema aparece naturalmente: cómo depende lo anterior de la máquina elegida. Esta última cuestión será abordada en sucesivas pasadas a medida que avance el curso. Veamos ahora algunos experimentos relacionados con los dos problemas mencionados anteriormente: el ingreso de datos y el cálculo con los mismos; realizados con EXCEL. Para que estos experimentos sean efectivos tendremos que pedirle a la máquina que exprese los resultados en formato número donde la cantidad de posiciones decimales dependerá del ejercicio. Eso puede consignarse con el botón derecho: formato de celda, en la pestaña Número seleccionar número e indicar la cantidad de posiciones decimales. Ejercicio 1. Tomar la máquina y buscar el primer exponente M = M 10 para el cual 10 M 10 = M 10. Aquí no hay errores de impresión! Para retomar la idea de que la máquina trabaja en base 2 y expresa sus resultados en base 10 tenemos que ver cómo depende el valor de M de la base elegida, para eso proponemos el siguiente ejercicio. Ejercicio 2. Tomar la máquina y buscar el primer exponente M = M 2 para el cual 10 M 2 = M 2. Aquí tampoco hay errores de impresión! 1

2 Ejercicio 3. Verificar que los valores de M en cada uno de los ejercicios anteriores son diferentes. Asimismo, verificar que 10 M 10~2 M 2. El Ejercicio 1 nos muestra un problema que suele pasar desapercibido en lo que se refiere al ingreso de datos. En primer lugar, es inmediato verificar que la calculadora dispone de una cantidad limitada y fija de lugares para ingresar los dígitos del número en cuestión; esto tiene como principal consecuencia la imposibilidad de ingresar en forma exacta un número irracional puesto que tiene infinitas cifras decimales. Ahora bien, lo que queremos poner de manifiesto es que la imposibilidad de ingresar en forma exacta un número irracional no implica la posibilidad de hacerlo cuando el número es racional; de hecho, hay números racionales cuya expresión decimal es infinita (periódica pero infinita al fin). Insistimos, el ejercicio anterior dice mucho más que esto: Ejercicio 4. Indicar el motivo por el cual el Ejercicio 1 responde en forma negativa a la pregunta Todos los números enteros son representables en EXCEL? Ejercicio 5. Hallar el primer número natural que no puede ser ingresado en forma exacta en EXCEL. Observación 4.1 El valor de M hallado en el Ejercicio 1 depende de la máquina elegida. (En el ejercicio 2 hemos mostrado además cómo depende M de la base en la que se representan los números.) Si consideramos que, para el valor de M hallado en el Ejercicio 1, el número 1 es mucho más pequeño que 10 M resulta que en la suma 10 M + 1 el 1 puede ser interpretado como una corrección del número 10 M y, con esta idea, podemos interpretar la igualdad 10 M = M diciendo que el 1 es una corrección de 10 M que la calculadora no toma en cuenta. Ejercicio 6. Para el valor de M hallado en el Ejercicio 1 realizar las siguientes operaciones 5 + ( M ) y (5 + 5) + 10 M. Tener presente que deberían ser iguales. Ejercicio 7. Para el valor de M hallado en el Ejercicio 1 realizar la siguiente operación: Comenzar con el número 10 M en la casilla A1, definir la casilla inferior mediante la fórmula =1+A1, y arrastrar al menos 20 líneas. Observar los resultados obtenidos, prestar atención a los valores intermedios. Observación 4.2 Este experimento muestra que la aritmética de la máquina no es asociativa. Como regla general conviene registrar que, a partir de este ejemplo, en una suma donde hay muchos términos (positivos), ésta debe efectuarse desde los más pequeños hasta los más grandes. Ejercicio 8. Efectuar las siguientes operaciones. Tener presente la igualdad que se obtiene al racionalizar la expresión

3 NOTA: La representación del número en cuestión en notación científica de 20 dígitos de mantisa es 5, Este experimento tiene una consecuencia importantísima y es la de mostrar que dos expresiones pueden ser equivalentes desde el punto de vista algebraico pero no serlo desde el punto de vista numérico. Detrás de esta observación está la noción de algoritmo: es decir, cuando usamos la calculadora para hacer cuentas tenemos que tener presente no sólo qué cuenta estamos interesados en efectuar sino cómo hemos de efectuarla. Ejercicio 9. Verificar que en ambos casos la primer operación es la más imprecisa. Esto es una muestra del fenómeno de cancelación que ocurre cuando se restan cantidades que están muy próximas. Ejercicio 10. Con el valor de M hallado en el Ejercicio 1 calcular la raíz cuadrada de M y luego elevar al cuadrado el resultado. NOTA: Los 20 primeros dígitos del número son 1, Observación 4.3 Con este ejercicio queda de manifiesto que la máquina opera con más dígitos de los que muestra. Ejercicio 11. Tomar el número x M y efectuar seis iteraciones de x x 2. Observar que en cada iteración los últimos dígitos aparecen duplicados, explicar este fenómeno. Veamos a continuación un experimento que pondría de manifiesto que la máquina no opera en base 10 Ejercicio 12. Realizar el siguiente experimento. Definir la casilla A1 como 1E-1. Descender usando la fórmula =A$1+A1 y luego arrastrar hasta observar alguna irregularidad. Repetir con la misma fórmula pero comenzando por 3E-1. Cambiar el 3 por los restantes dígitos y ver qué ocurre. Ejercicio 13. Los siguientes algoritmos calculan el mismo número x. Comparar la exactitud de los mismos para diferentes valores de n, digamos entre 1 y 8. Los valores exactos se muestran en el Cuadro 4.1 x 1 10 n 10 2n n x n n n Ejercicio 14. En el Ejercicio 13 observar el patrón de sus dígitos Muestran alguna característica? Cuál es el más ordenado? Comparar con el patrón de dígitos del Cuadro

4 n x 1 1, , , , , , , , Cuadro 4.1: Los 20 primeros dígitos del valor exacto Ejercicio 15. A partir del orden que se observa en el patrón de dígitos del Cuadro 4.1 arriesgar cómo es el desarrollo decimal (exacto) de x para n = 15 y n = 32. (Conseguir la mayor cantidad posible de dígitos.) Ejercicio 16. En el Ejercicio 13 estimar, para cada valor de n y para el cálculo con EXCEL, los errores absoluto y relativo: ε a = x 1 x y ε a = x 2 x ε r = x 1 x x y ε r = x 2 x x Indicar en cada caso cuáles son los valores de n para los cuales el error relativo es menor que el 10% Veamos ahora cómo diseñar un algoritmo que calcule x con mejor precisión. Ejercicio 17. A partir de la planilla obtenida en el Ejercicio 13 proponemos lo siguiente: Seleccionar el algoritmo que haya resultado más preciso. Tomar, para cada valor de n, el valor que provee la fórmula y multiplicarlo por potencias sucesivas de 10 hasta conseguir la potencia necesaria para que el resultado sea de la forma 0. a 1 a 15 donde as 1 0. Tal potencia debe depender del valor de n. Observar la relación que existe entre la potencia obtenida y el valor respectivo de n; representar esta relación con una fórmula y comparar con el resultado del Ejercicio 16. Usar la fórmula del punto anterior y la potencia respectiva para dar una mejor aproximación del número x. 4

5 Finalizamos esta sección con otro experimento que muestra una consecuencia del fenómeno de cancelación que no debe menospreciarse: nos referimos al uso de la calculadora para conseguir el valor de un límite. Ejercicio 18. Calcular, usando EXCEL, el valor de 1 cos(x) x 2 para valores de x próximos a cero: digamos x = 10 n con n = 1,..., 15 y utilizar los resultados obtenidos para obtener el valor del límite: 1 cos(x) lim x 0 x 2 Veamos ahora si los resultados obtenidos son confiables; es decir, si los resultados pueden ser considerados como aproximaciones del valor exacto (en este caso, del valor del límite). Para tal fin necesitamos establecer la siguiente desigualdad válida para cualquier x R 0 1 cos(x) x 2 < 0,5 Con esa desigualdad en mente proponemos lo siguiente. Ejercicio 19. A partir de los resultados obtenidos en el ejercicio anterior: Verificar que la sucesión de valores 10 n tiende a 0 cuando n tiende a infinito. Qué ocurre con los valores n = 5 y 6? Qué pasa a partir de n = 8? Hasta aquí tenemos ciertas irregularidades en la tabla con los valores pero no está claro que la tabla no sea confiable. Para eso habría que calcular el límite en forma teórica y verificar si coincide con el valor obtenido en forma numérica. Por suerte, en este caso podemos hacerlo. Ejercicio 20. Usar la regla de L Hopital para obtener el valor exacto del límite y compararlo con los resultados de la tabla. Hasta que valores de n la tabla resulta confiable? Uno puede tener la sensación de que estamos utilizando un argumento circular: para qué calculamos en forma numérica si podemos obtener el valor exacto en forma teórica (esto es, sin necesidad de hacer evaluaciones); pues bien, cuando el cálculo teórico no esté disponible no tendremos el valor exacto para saber si podemos confiar en los cálculos (que incluye la manera de efectuarlos). En definitiva, cuando se realizan cálculos en forma numérica debe tenerse presente si la manera de realizarlos (el algoritmo empleado) no agrega imprecisiones indeseadas El sistema decimal de numeración y la aritmética del punto flotante Esta sección está pensada como un complemento teórico. La intención es poner de manifiesto ciertos aspectos técnicos relacionados con la aritmética de la máquina; para ser más precisos nos ocuparemos de los sistemas de numeración y del control de los errores: tanto de los errores cometidos en el ingreso de los datos como de aquellos relacionados con las operaciones realizadas con una máquina como para Seguir trabajando sobre los resultados paradójicos de la sección anterior Asimismo, y para mostrar cómo dependen estos errores de las características de la máquina, tomaremos en 5

6 cuenta una máquina ficticia, que llamaremos QQ, y cuyo sistema de numeración tiene las siguientes características: opera en base 10, con 4 dígitos de mantisa y con 2 dígitos en el exponente. Ejercicio 21. Escribir los siguientes números en notación científica. a = 1223 b = c = 1223,45 d = 0,0853 f = 60, Ejercicio 22. Ingresar los números del ejercicio anterior en la calculadora QQ utilizando truncamiento e indicar cuáles no han sido ingresados con exactitud. Para cada número, estimar los errores relativo y absoluto cometidos en el ingreso. Ver la definición de error absoluto y relativo en el Ejercicio 16. Observación 4.4 Es necesario ingresar un número para saber si puede ser ingresado exactamente? Comparar la pregunta anterior con la siguiente: Es necesario tirarse al vacío para convencerse de la existencia de un abismo? Ejercicio 23. Ingresar los números del Ejercicio 17 en la calculadora QQ utilizando redondeo. Para cada número, estimar los errores relativo y absoluto cometidos en el ingreso. Comparar con los errores relativos obtenidos utilizando truncamiento. Una vez resuelto el problema en base 10 pasemos a considerar el problema general. Consideremos entonces un sistema de numeración de punto flotante con las siguientes características: β N representará la base. (Típicamente, las bases son números pares.) n es la cantidad de dígitos de mantisa. m es la cantidad de dígitos en el exponente. Con esta notación un número genérico del sistema será representado: ± 0. d 1 d n ± e 1 e m donde 0 d j, e k β 1 y d 1 0 Ejercicio 24. Hallar el error relativo máximo que puede cometerse al ingresar un número en este sistema utilizando: truncamiento. redondeo. Ejercicio 25. Verificar que el error relativo máximo que se obtiene redondeando es la mitad del que se obtiene truncando. Por cuestiones teóricas interesa considerar sólo la limitación en la cantidad de dígitos. Llamaremos MQQ al correspondiente sistema de numeración pero sin restricción en el exponente. A partir de la discusión del Ejercicio 22, dar la forma general de los números cuya representación en MQQ es exacta. Ejercicio 26. Consideremos ahora los números 6

7 A = B = 0, Verificar que pueden ser ingresados en forma exacta en MQQ mientras que no pueden ser ingresados en QQ. Este fenómeno se conoce como desborde: por exceso en A, y por defecto en B. La diferencia entre MQQ y QQ conduce inevitablemente a la siguiente pregunta. Cuántos números positivos pueden ingresarse en forma exacta en una calculadora común de bolsillo? Observación 4.5 Cabe destacar que la noción de desborde establece el siguiente criterio para decidir si un número (positivo) puede ser considerado grande o pequeño: será grande cuando su ingreso produzca desborde por exceso y será pequeño cuando el desborde sea por defecto. Lo que venimos de presentar, pues, son tres obstáculos concretos: la imposibilidad de ingresar números grandes la imposibilidad de ingresar números pequeños y la imposibilidad de ingresar un número en forma exacta La aritmética de una calculadora vs la aritmética exacta Ejercicio 27. Hacer las siguientes operaciones a mano, es decir, con todos los decimales y luego representar en QQ los resultados obtenidos. Utilizar los valores del Ejercicio 21 b c, c + d, a + b, b + d. Ejercicio 28. Ahora hacemos la cuenta usando la aritmética de QQ. Comparar los resultados obtenidos con los del ejercicio anterior e indicar cuántos dígitos correctos tiene el resultado obtenido. Ejercicio 29. Repetir los ejercicios anteriores con las siguientes operaciones c a, b (c a), c 1, a b ( c a 1). Cuán confiables son los resultados ofrecidos por esta calculadora? 7

8 Ejercicio 30. Hacer las siguientes operaciones con QQ e indicar cuántos dígitos correctos tiene cada resultado. (a) 1,3134 π (b) 0,3761 e (c) π e. Ejercicio 31. En el ejercicio anterior con cuántos dígitos debemos trabajar si queremos conocer los cuatro primeros dígitos correctos de todos los resultados? 8

Cursada Segundo Cuatrimestre 2017 Guía de Trabajos Prácticos Nro. 2

Cursada Segundo Cuatrimestre 2017 Guía de Trabajos Prácticos Nro. 2 Temas: Programación en MATLAB: Sentencias, expresiones y variables. Estructuras de control. Operadores relacionales y lógicos. Programación de funciones. Aritmética finita: Representación de números en

Más detalles

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS 1. ERRORES

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS 1. ERRORES 75.12 ANÁLISIS NUMÉRICO I FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES GUÍA DE PROBLEMAS 1. ERRORES 1. Calcular las siguientes expresiones, incluyendo sus cotas de error absoluto, donde x = 2,00,

Más detalles

O bien si queremos calcular el error aproximado porcentual lo hacemos:

O bien si queremos calcular el error aproximado porcentual lo hacemos: En situaciones reales es común que no se conoce el valor verdadero del resultado: las mediciones dependen del instrumento y del procedimiento de medición; los métodos numéricos se aplican, cuando no se

Más detalles

2. Representación de números 1

2. Representación de números 1 2. Representación de números 1 Julio C. Carrillo E. Escuela de Matemáticas, UIS 2. Representación de números 2 1. Representación de punto flotante normalizada La notación científica es un tipo de representación

Más detalles

Redondeo, Truncamiento, Método del Punto Fijo y MétodoBarranquilla, de bisección / 22

Redondeo, Truncamiento, Método del Punto Fijo y MétodoBarranquilla, de bisección / 22 Redondeo, Truncamiento, Método del Punto Fijo y Método de bisección. Jeinny Peralta 1 Barranquilla, 2017 Redondeo, Truncamiento, Método del Punto Fijo y MétodoBarranquilla, de bisección. 2017 1 / 22 Números

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Introducción histórica. Números irracionales

Introducción histórica. Números irracionales Introducción histórica A finales del siglo V a.c., la Escuela de Pitágoras descubrió que no existían dos números naturales m y n, cuyo cociente sea igual a la proporción entre el lado de un cuadrado y

Más detalles

σ * (.a 1 a 2... a t ) β * β e

σ * (.a 1 a 2... a t ) β * β e . ERRORES DE REDONDEO Y ESTABILIDAD Qué es un método numérico? Un método numérico es un procedimiento mediante el cual se obtiene, casi siempre de manera aproximada, la solución de ciertos problemas realizando

Más detalles

Lección 5. Punto flotante

Lección 5. Punto flotante Lección 5. Punto flotante MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Agosto 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En esta lección aprenderemos lo

Más detalles

Universidad de San Buenaventura - Facultad de Ingeniería

Universidad de San Buenaventura - Facultad de Ingeniería Aproximaciones Para trabajar con números decimales que tienen muchas cifras decimales, o infinitas, hacemos aproximaciones. Decimos que la aproximación de un número es por defecto cuando es menor que el

Más detalles

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales Curso-0 1 Introducción a los Sistemas Digitales Conceptos básicos de matemática aplicada a los sistemas digitales 2 Contenidos Conjuntos numéricos Notación científica Redondeo Logaritmos Resumen 3 Conjuntos

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Tema 4. Los números reales.

Tema 4. Los números reales. Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También

Más detalles

Introducción al análisis numérico

Introducción al análisis numérico Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 22 Contenidos: 1 Sistemas

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora:

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora: Curso de Métodos Numéricos Instituto de Matemática Práctico 1: Errores Agosto de 2005 1) Encuentre experimentalmente los siguientes valores de su calculadora: (a) El valor ɛ mach definido como el minimo

Más detalles

Los errores asociados a todo cálculo numérico tienen su origen en dos grandes factores:

Los errores asociados a todo cálculo numérico tienen su origen en dos grandes factores: Errores El concepto de error es consustancial con el cálculo numérico. En todos los problemas es fundamental hacer un seguimiento de los errores cometidos a fin de poder estimar el grado de aproximación

Más detalles

Métodos Numéricos: los números reales y su representación

Métodos Numéricos: los números reales y su representación Métodos Numéricos: los números reales y su representación Eduardo P. Serrano Versión previa Feb 2012 1. Números reales Empleamos los números reales para expresar cantidades, valores, medidas o magnitudes.

Más detalles

Número, algoritmo y errores

Número, algoritmo y errores Número, algoritmo y errores Índice 1.! Introducción 2.! Errores absolutos y relativos 3.! Almacenamiento de números en un ordenador! Números enteros! Números reales 4.! Concepto de algoritmo 5.! Clasificación

Más detalles

Aritmética de Enteros y

Aritmética de Enteros y 1 Aritmética de Enteros y Flotantes 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 1. Introduccion La aritmética de enteros es aritmética modular en complemento

Más detalles

01. A qué se denomina conjunto de punto flotante? Conjunto de números racionales utilizado para representar a los números reales.

01. A qué se denomina conjunto de punto flotante? Conjunto de números racionales utilizado para representar a los números reales. PREGUNTAS PARA ORIENTAR EL ESTUDIO DEL CAPITULO 1. Subtemas: 1.1. Representación de un número real en punto flotante y operaciones. 1.2. Underflow y Overflow. 01. A qué se denomina conjunto de punto flotante?

Más detalles

1.4.3 Errores de redondeo y la aritmética finita de las computadoras

1.4.3 Errores de redondeo y la aritmética finita de las computadoras 1.4.3 Errores de redondeo y la aritmética finita de las computadoras Como la computadora sólo puede almacenar un número fijo de cifras significativas, y cantidades como π, e, 3, 2 no pueden ser expresadas

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

N Ú M E R O S R E A L E S

N Ú M E R O S R E A L E S N Ú M E R O S R E A L E S 1. E L C O N J U N T O D E L O S N Ú M E R O S R E A L E S Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales

Más detalles

Aritmetica del Computador

Aritmetica del Computador Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Contenido Introducción 1 Introducción 2 3 Introducción al estudio de métodos computacionales Aproximación

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Lección 6. Errores. MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY. Agosto 2014

Lección 6. Errores. MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY. Agosto 2014 Lección 6. Errores MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Agosto 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En esta lección conoceremos y analizaremos

Más detalles

Práctica 1 - Representación de la información

Práctica 1 - Representación de la información Práctica 1 - Representación de la información Organización del Computador 1 Primer Cuatrimestre 2014 Ejercicio 1 a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33, 100 y 1023.

Más detalles

Computación 1. Punto Flotante y Errores

Computación 1. Punto Flotante y Errores Computación 1 Punto Flotante y Errores Aritmética de Punto Flotante Suma y Resta Para sumar o restar dos números en punto flotante es necesario que los exponentes sean iguales. La operación de suma o resta

Más detalles

Lección 8: Exponen tes y notación exponencial

Lección 8: Exponen tes y notación exponencial GUÍA DE MATEMÁTICAS II Lección 8: Exponen tes y notación exponencial En matemáticas es común que se trate de simplificar la notación, al mismo tiempo que se generalizan los conceptos. Por ejemplo, hemos

Más detalles

Sistemas de Numeración

Sistemas de Numeración Sistemas de Numeración Parte 2: Representación de Reales Lic. Andrea V. Manna Sistemas posicionales: Repaso N= d k-1 d k-2 d 1 d 0,d -1 d -l = d k-1 *p k-1 + d k-2 *p k-2 +.+ d 0 *p 0,+ d -1 *p -1 +...+

Más detalles

Práctica 1: Representación de números

Práctica 1: Representación de números Práctica 1: Representación de números Organización del Computador I DC - UBA 2do. Cuatimestre 2014 Menú del día Hoy vamos a ver: Representación de numeros Aritmética en otras bases (no decimales) Cambios

Más detalles

CONJUNTO DE LOS NÚMEROS REALES

CONJUNTO DE LOS NÚMEROS REALES NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales y se representa por Q. Tanto

Más detalles

Computación 1. Representación Interna de Números

Computación 1. Representación Interna de Números Computación 1 Representación Interna de Números Contenido Representación de Enteros Sin Signo Representación de Enteros Con Signo con magnitud y signo exceso a M Complemento a 1 Números Enteros Representación

Más detalles

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO PROFESOR: ESP. PEDRO ALBERTO ARIAS QUINTERO 1. ERRORES Y ARITMETICA DE PUNTO FLOTANTE 1.1. Introducción a la Computación Numérica

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS B. SUCESIONES B.1 Diversos conjuntos numéricos. En

Más detalles

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31 Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería Métodos Numérico Hermes Pantoja Carhuavilca 1 de 31 CONTENIDO Introducción Hermes Pantoja Carhuavilca 2 de

Más detalles

ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA

ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA TEMA 1. ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA 1. Introducción 2. Nomenclatura 3. Representación de un número en un ordenador 4. Truncamiento y redondeo 5. Error de truncamiento y de redondeo

Más detalles

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números.

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. NÚMEROS REALES E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. a) b) 9 6 c) 7 d) 7 7 0 a) Periódico mixto c) 7 Periódico mixto

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Representación de Números

Representación de Números Representación de Números Maximiliano Geier 4/10/2017 Maximiliano Geier Representación de Números 4/10/2017 1 / 21 Cómo se representan los números? Cada número se puede representar de varias maneras. Por

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo: TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional

Más detalles

Resolución de ecuaciones no lineales y Método de Bisección

Resolución de ecuaciones no lineales y Método de Bisección Resolución de ecuaciones no lineales y Método de Bisección Recordemos algunas ecuaciones 1) Resolver [ ] [ ] Sol: 2) Resolver la siguiente ecuación literal para la variable ; Sol: 3) Resolver Solución:

Más detalles

Lección 1: Números reales

Lección 1: Números reales GUÍA DE MATEMÁTICAS III Lección 1: Números reales Los números irracionales En los grados anteriores estudiamos distintas clases de números: Vimos en primer lugar: los naturales, que son aquellos que sirven

Más detalles

REPASO DE Nºs REALES y RADICALES

REPASO DE Nºs REALES y RADICALES REPASO DE Nºs REALES y RADICALES 1º.- Introducción. Números Reales. Números Naturales Los números naturales son el 0, 1,,,. Hay infinitos naturales, es decir, podemos encontrar un natural tan grande como

Más detalles

Aproximaciones Sucesivas.

Aproximaciones Sucesivas. Aproximaciones Sucesivas. La Raíz Cuadrada. Te has preguntado cómo es que una calculadora hace sus cálculos? Por ejemplo, calcular la raíz cuadrada de un número dado, en las calculadoras científicas siempre

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

Números reales ACTIVIDADES

Números reales ACTIVIDADES ACTIVIDADES No pueden representar el mismo número racional, puesto que si una fracción tiene un término negativo, el cociente es negativo; y si sus dos términos son positivos, el cociente es positivo.

Más detalles

+- S x B +-E. Este estándar presupone una representación normalizada. Es decir, los números a representar obedecen a la siguiente forma:

+- S x B +-E. Este estándar presupone una representación normalizada. Es decir, los números a representar obedecen a la siguiente forma: 3.6 Codificación Punto Flotante Esta codificación nace por la necesidad de tener un rango más amplio de representatividad numérica, o cobertura. Los esquemas antes mencionados ofrecen un rango limitado

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm.

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm. Cifras significativas. Definición. Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

1. Números naturales y sistema de numeración decimal

1. Números naturales y sistema de numeración decimal 1. Números naturales y sistema de numeración decimal Conocer el sistema de numeración decimal y relacionarlo con los números naturales. Representación en la recta real de los mismos. Realizar operaciones

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES . Numeros racionales Ejemplo: TEMA : NÚMEROS REALES 4.............................................. Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible.

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Cálculo Numérico. Introducción a la teoría de errores. Cá álculo umérico Tema 0:

Cálculo Numérico. Introducción a la teoría de errores. Cá álculo umérico Tema 0: Cálculo Numérico Tema 0: Problema Introducción a la teoría de errores Tipos de errores en un proceso numérico de resolución de un problema. Errores absoluto y relativo. Número de cifras exactas. Error

Más detalles

Lección 3: Orden e intervalos

Lección 3: Orden e intervalos GUÍA DE MATEMÁTICAS III Lección 3: Orden e intervalos La recta real En la lección anterior presentamos los números reales y vimos que éstos están constituidos por los números racionales y los irracionales.

Más detalles

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma:

Realizar la siguiente suma y expresar el resultado en hexadecimal: Teniendo los 3 valores expresados en la misma base, podemos realizar la suma: Realizar la siguiente suma y expresar el resultado en hexadecimal: 83/ d + 33/ 4 + 0/ b El primer paso consiste en expresar todos lo valores con la misma base. Para eso convertiremos los dos primeros valores

Más detalles

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Propiedades de las Funciones Exponenciales

Propiedades de las Funciones Exponenciales Propiedades de las Funciones Exponenciales Definición: La expresión significa que se multiplica a sí misma un número de veces, se conoce como la base y como el exponente; y se denomina potencia al valor

Más detalles

NUMEROS REALES. Recordemos

NUMEROS REALES. Recordemos NUMEROS REALES Recordemos El conjunto de los números racionales está constituido por los números enteros y los números fraccionarios. Por tanto, cualquier número que pueda expresarse en forma de fracción

Más detalles

PREPARADOR DE CALCULO 11

PREPARADOR DE CALCULO 11 3 PREPARADOR DE CALCULO 3 ÁREA: Matemáticas ASIGNATURA: Cálculo INTENSIDAD HORARIA SEMANAL: 5 Horas TEMA: Conjuntos Definición: Intuitivamente, un conjunto es una colección o clase de objetos bien definidos.

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros

Más detalles

3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas

3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas 3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas BLOQUE DE APRENDIZAJE I: PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS 1. Identificar, formular y resolver problemas numéricos, geométricos, funcionales

Más detalles

3.1. Errores con pocos dígitos de precisión

3.1. Errores con pocos dígitos de precisión Computación Numérica Profesores: José M. Alonso, Fernando Alvarruiz, Juan Garayoa, Jesús Peinado, José L. Pérez, José E. Román, Vicente Vidal. http://www.dsic.upv.es/asignaturas/eui/cnu/prac Práctica 3

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

A) B) C) 5 D) 5 9 E) A) 0 B) 9 9 C) D) E) no está definido 6. ( ) : 4 ( ) 0 A) B) 5 C) 8 D) 9 E) 0 7. Si n Z, entonc

A) B) C) 5 D) 5 9 E) A) 0 B) 9 9 C) D) E) no está definido 6. ( ) : 4 ( ) 0 A) B) 5 C) 8 D) 9 E) 0 7. Si n Z, entonc GUÍA Nº 5 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES POTENCIAS EN Q DEFINICIONES a a a a a a a a a n, con a Q {0} y n Z n factores a 0, a 0 a -n a n, a Q {0} y n Z + OBSERVACIONES 0 n 0, si n >

Más detalles

LOS NÚMEROS REALES. Definición de número real y relación con conjuntos numéricos ya definidos. Comparando reales, operaciones y propiedades.

LOS NÚMEROS REALES. Definición de número real y relación con conjuntos numéricos ya definidos. Comparando reales, operaciones y propiedades. LOS NÚMEROS REALES. Definición de número real y relación con conjuntos numéricos ya definidos. Comparando reales, operaciones y propiedades. Valor recíproco. Estimaciones. Problemas de regularidades numéricas.

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica.

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica. NÚMEROS REALES NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 Con un número entero o con una expresión

Más detalles

Conjuntos numéricos. Apuntes de Matemática I. Tatiana Inés Gibelli C.U.R.Z.A.

Conjuntos numéricos. Apuntes de Matemática I. Tatiana Inés Gibelli C.U.R.Z.A. Conjuntos numéricos Apuntes de Matemática I Tatiana Inés Gibelli C.U.R.Z.A. Un concepto básico y elemental del lenguaje matemático es el de número. Para poder trabajar en matemática, es imprescindible

Más detalles

OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA

OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA OBJETIVO MULTIPLICACIÓN DE POTENCIAS Como las potencias son multiplicaciones, se va a trabajar con ellas cuando multiplicamos o dividimos:

Más detalles

Intervalos abiertos, cerrados, semiabiertos y semicerrados.

Intervalos abiertos, cerrados, semiabiertos y semicerrados. 008 _ 04-000.qxd 9//08 9:06 Página 69 Números reales INTRODUCCIÓN En la unidad anterior se estudiaron los números racionales o fraccionarios y se aprendió a compararlos, operar con ellos y utilizarlos

Más detalles

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf

https://dac.escet.urjc.es/docencia/etc-sistemas/teoria-cuat1/tema2.pdf 1.3 Sistemas numéricos 1.3.1. Introducción Un sistema de representación numérica es un lenguaje que consiste en: Un conjunto ordenado de símbolos (dígitos o cifras) y otro de reglas bien definidas para

Más detalles

Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan aproximaciones.

Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan aproximaciones. APROXIMACIONES EN LOS NÚMEROS REALES. Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas, es decir, recurrimos al redondeo. Al realizar estas

Más detalles

Números reales ACTIVIDADES

Números reales ACTIVIDADES ACTIVIDADES No pueden representar el mismo número racional, puesto que si una fracción tiene un término negativo, el cociente es negativo; y si sus dos términos son positivos, el cociente es positivo.

Más detalles

TI 89. Cómo sobrevivir en Precálculo

TI 89. Cómo sobrevivir en Precálculo TI 89 Cómo sobrevivir en Precálculo TI-89 Menús que más utilizaremos: Operaciones Numéricas Simplificar: 3 + 1 5 ( 4)2 9 3 4 Notar la diferencia entre el símbolo de resta y el signo negativo. Notar el

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Secundaria Matemáticas 1

Secundaria Matemáticas 1 Secundaria Matemáticas 1 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar

Más detalles

NÚMEROS DECIMALES. Expresión decimal de los números racionales

NÚMEROS DECIMALES. Expresión decimal de los números racionales NÚMEROS DECIMALES Expresión decimal de los números racionales Decimales exactos y periódicos La expresión decimal de una fracción se obtiene dividiendo el numerador entre el denominador. Para la fracción

Más detalles

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5 UNIDAD DIDÁCTICA #5 INDICE PÁGINA Números Irracionales -------------------------------------------------------------------------------------2 Los Pitagóricos y 2 ----------------------------------------------------------------------3

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Estándar IEEE 754 Primero se definen tres formatos s e F Total (bits) (bits) (bits) (bytes) simple precisión

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

MÉTODOS NUMÉRICOS PARA INGENIERÍA ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS

MÉTODOS NUMÉRICOS PARA INGENIERÍA ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS ERROR GUIÓN PARA EL TEMA CONCEPTOS BÁSICOS REPASO de conceptos de dígito significativo y de orden, para números en notación decimal. Para señalar la diferencia entre el concepto de dígito significativo

Más detalles

Error en las mediciones

Error en las mediciones Error en las mediciones TEORIA DE ERROR-GRAFICOS Y APLICACIÓN Representar en un gráfico los datos obtenidos experimentalmente (encontrar relación funcional) Conocer, comprender y analizar algunos elementos

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Elementos de Cálculo Numérico

Elementos de Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición

Más detalles

TEMA 1: NÚMEROS REALES EJERCICIOS

TEMA 1: NÚMEROS REALES EJERCICIOS TEMA : NÚMEROS REALES EJERCICIOS Ejercicios libro: pág. 8: ; pág. : (expresar fracciones como decimales y clasificarlos). Ordenar de menor a mayor los siguientes números, pasándolos previamente a común

Más detalles

Indica cuáles de los números son racionales y cuáles son irracionales.

Indica cuáles de los números son racionales y cuáles son irracionales. SOLUCIONARIO ACTIVIDADES 06 0 08 09 040 Razona cuáles de los siguientes números decimales son racionales y cuáles son irracionales. a), e), b), f), c), g), d), h), a) Racional, periódico puro. e) Racional,

Más detalles

Representación de números fraccionarios: Punto Flotante

Representación de números fraccionarios: Punto Flotante Representación de números fraccionarios: Organización de computadoras Universidad Nacional de Quilmes http:// 1 Signo Magnitud (Binario con signo) Representación en Signo-Magnitud Rango 2 Bit impĺıcito

Más detalles

Matemáticas UNIDAD 1 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 1 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 1 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl 1. BREVE PRESENTACIÓN DE LA UNIDAD AMPLIACIÓN DE CONOCIMIENTOS

Más detalles

Un paquete de problemas de potenciación

Un paquete de problemas de potenciación Un paquete de problemas de potenciación Betina Zolkower- Adriana Rabino- Ana Bressan A continuación se presenta una serie de problemas de potenciación y distintas estrategias de resolución. Betina Zolkower

Más detalles

MEDICION DE CANTIDADES FISICAS

MEDICION DE CANTIDADES FISICAS UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FISICA II TELECOMUNICACIONES MEDICION DE CANTIDADES FISICAS Esta primera práctica introduce un conjunto de

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles