Álgebra y Matemática Discreta Sesión de Prácticas 12

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra y Matemática Discreta Sesión de Prácticas 12"

Transcripción

1 Álgebra y Matemática Discreta Sesión de Prácticas 12 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic Dic 2013

2 Giros en el Plano Matriz de Giro Si α es el ángulo que queremos girar, la matriz de giro con respecto a cualquier base ortonormal orientada positivamente (como por ejemplo la base canónica) tiene la siguiente forma: [ ] cos(α) sen(α) sen(α) cos(α)

3 Giros en el Plano Ejemplo Vamos a girar un dibujo realizado por una serie de puntos unidos como un poĺıgono. Para ello pondremos la lista de puntos y luego la transformaremos con una matriz de giro de ángulo 1 radián. El resultado lo pintaremos de color rojo para diferenciarlo del original. T = [[2,1],[3,1],[3,3],[4,3],[4,4],[1,4],[1,3],[2,3],[ 2,1]] M = matrix(rr,[[cos(1),-sin(1)],[sin(1),cos(1)]]) T2 = [M*vector(v) for v in T] polygon(t)+polygon(t2,color= red )

4 Giros en el Plano Resultado

5 Simetrías en el Plano Definición Ser ρ una recta del plano y P un punto, llamaremos simétrico de P respecto de ρ al punto que resulta de trazar la recta perpendicular a ρ que pase por P y tomar el punto que está en esa recta a la misma distancia que P pero en sentido contrario.

6 Simetrías en el Plano Definición Ser ρ una recta del plano y P un punto, llamaremos simétrico de P respecto de ρ al punto que resulta de trazar la recta perpendicular a ρ que pase por P y tomar el punto que está en esa recta a la misma distancia que P pero en sentido contrario. Si por ejemplo, lo hiciéramos con el eje X, el simétrico del punto (x,y) sería el punto (x, y).

7 Simetrías en el Plano Definición Ser ρ una recta del plano y P un punto, llamaremos simétrico de P respecto de ρ al punto que resulta de trazar la recta perpendicular a ρ que pase por P y tomar el punto que está en esa recta a la misma distancia que P pero en sentido contrario. Si por ejemplo, lo hiciéramos con el eje X, el simétrico del punto (x,y) sería el punto (x, y). A la recta ρ se le llama eje de simetría.

8 Simetrías en el Plano Definición Ser ρ una recta del plano y P un punto, llamaremos simétrico de P respecto de ρ al punto que resulta de trazar la recta perpendicular a ρ que pase por P y tomar el punto que está en esa recta a la misma distancia que P pero en sentido contrario. Si por ejemplo, lo hiciéramos con el eje X, el simétrico del punto (x,y) sería el punto (x, y). A la recta ρ se le llama eje de simetría. Para hacer el cálculo de este movimiento, lo que hay que hacer es un cambio de base de forma que un vector de la nueva base esté en el eje de simetría y el otro sea perpendicular.

9 Simetrías en el Plano Ejemplo Calcula la matriz [ de] la simetría ortogonal de R 2 respecto al espacio 1 generado por expresada en base canónica. 2

10 Simetrías en el Plano Solución [ ] 1 Llamemos v 1 = al vector director de la recta que nos 2 define el eje de simetría. Fase 1: Obtener la Base en la que Representar la Simetría. El vector v 2 tiene que ser perpendicular a v 1 y para encontrarlo no tenemos más que intercambiar las coordenadas de v 1 cambiando una de las dos de signo, es decir basta tomar [ ] 2 v 2 = 1 La base B que hemos encontrado para expresar la simetría de forma sencilla es [ ]

11 Simetrías en el Plano Solución Fase 2: Cambios de Base y Resultado. La simetría tiene que dejar fijos los vectores del espacio respecto al que hacemos la simetría y los vectores perpendiculares a sus opuestos, por tanto, tal y como hemos definido la base, el ella tenemos una expresión muy sencilla de la matriz: [ ] 1 0 S = 0 1 Si llamamos σ : R 2 R 2 a la aplicación que estamos buscando, sabemos que en base B tiene como matriz S, por lo que podemos plantear el siguiente diagrama:

12 Álgebra y Matemática Discreta Sesión de Prácticas 12 Simetrías en el Plano B R 2 σ R 2 R 2 Por lo tanto la matriz de σ es [ σ = BSB = 2 1 [ 3 = S R 2 B ][ ]. ][ ]

13 Simetrías en el Plano Representación Gráfica Vamos a transformar mediante esta simetría el mismo dibujo que hicimos para el giro. De nuevo juntaremos el dibujo original y el transformado poniendo color rojo al resultado para diferenciarlo. Representaremos el eje de simetría en verde. T = [[2,1],[3,1],[3,3],[4,3],[4,4],[1,4],[1,3],[2,3],[ 2,1]] M = matrix(rr,[[-3/5,-4/5],[-4/5,3/5]]) T2 = [M*vector(v) for v in T] polygon(t)+polygon(t2,color= red )+line([(-2,4),(2,-4) ],color= green )

14 Simetrías en el Plano Resultado

15 Proyecciones sobre una Recta del Plano Definición Sea ρ una recta del plano y sea P un punto. Llamaremos proyección ortogonal de P sobre la recta ρ al punto que obtenemos en el cruce de la recta perpendicular a ρ y que pasa por P.

16 Proyecciones sobre una Recta del Plano Definición Sea ρ una recta del plano y sea P un punto. Llamaremos proyección ortogonal de P sobre la recta ρ al punto que obtenemos en el cruce de la recta perpendicular a ρ y que pasa por P. Si por ejemplo proyectáramos sobre el eje X el punto (x,y) sería simplemente (x, 0).

17 Proyecciones sobre una Recta del Plano Definición Sea ρ una recta del plano y sea P un punto. Llamaremos proyección ortogonal de P sobre la recta ρ al punto que obtenemos en el cruce de la recta perpendicular a ρ y que pasa por P. Si por ejemplo proyectáramos sobre el eje X el punto (x,y) sería simplemente (x, 0). Para calcular la proyección sobre cualquier otra recta, nos interesa hacer un cambio de base.

18 Proyecciones sobre una Recta del Plano Ejemplo Calcula la matriz [ de la] proyección ortogonal de R 2 sobre el espacio 19 generado por expresada en base canónica. 1

19 Proyecciones sobre una Recta del Plano Solución Llamemos v 1 = [ 19 1 ] Fase 1: Obtener la Base en la que Representar la Proyección. El vector v 2 tiene que ser perpendicular a v 1 y para encontrarlo no tenemos más que intercambiar las coordenadas de v 1 cambiando una de las dos de signo, es decir basta tomar [ ] 1 v 2 = 19 La base B que hemos encontrado para expresar la proyección de forma sencilla es [ ]

20 Proyecciones sobre una Recta del Plano Fase 2: Cambios de Base y Resultado. La proyección tiene que dejar fijos los vectores del espacio sobre el que proyectamos y mandar a cero los vectores perpendiculares, tal y como hemos definido la base, el ella tenemos una expresión muy sencilla de la matriz: [ ] 1 0 P = 0 0 Si llamamos π : R 2 R 2 a la aplicación que estamos buscando, sabemos que en base B tiene como matriz P, por lo que podemos plantear el siguiente diagrama:

21 Álgebra y Matemática Discreta Sesión de Prácticas 12 Proyecciones sobre una Recta del Plano B R 2 π R 2 B R 2 Por lo tanto la matriz de π es [ π = BPB = 1 19 = [ P R 2 ][ ]. ][ ]

Transformaciones en el plano y el espacio

Transformaciones en el plano y el espacio Transformaciones en el plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Transformaciones en el plano y el espacio 1 / 51 Transformaciones geométricas en R

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 23 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic 2013-8 Dic 2013 Introducción La existencia de bases ortonormales es los espacios es muy útil

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Teoría Tema 9 Vectores, ángulos, vector normal de un plano y simetrías

Teoría Tema 9 Vectores, ángulos, vector normal de un plano y simetrías página 1/13 Teoría Tema 9 Vectores, ángulos, vector normal de un plano y simetrías Índice de contenido Propiedades de los vectores...2 Ángulo entre dos rectas...4 Bisectriz de dos rectas que se cortan...6

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 18 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 11 Nov 2013-17 Nov 2013 Ecuaciones Matriciales Ecuaciones Matriciales En muchas ocasiones, se plantean

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 13 de febrero de 2013 JOSÉ GARCÍA-CUERVA (U.A.M.)

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una

Más detalles

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( )

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( ) MATEMÁTICAS I ( o de GIE y GIERM (Curso - Departamento de Matemática Aplicada II. Universidad de Sevilla Solución de la Primera Prueba Alternativa (-- Ejercicio.. Calcule las raíces cúbicas del número

Más detalles

V E C T O R E S L I B R E S E N E L P L A N O

V E C T O R E S L I B R E S E N E L P L A N O V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan

Más detalles

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V.

Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V. 1. Introducción. 1.1. Producto Escalar. 1.. Norma de un Vector. 1.3. Ángulos. 1.4. Ortogonalidad. 1.5. Particularización del Producto Escalar a V 3. 1.6. Producto Vectorial de dos Vectores de V 3. 1.7.

Más detalles

EL ESPACIO AFÍN EUCLIDEO

EL ESPACIO AFÍN EUCLIDEO EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.

Más detalles

Un vector es un segmento orientado que consta de los siguientes elementos:

Un vector es un segmento orientado que consta de los siguientes elementos: El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es

Más detalles

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza.

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza. ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

EXAMEN JUNIO PP 1A SEMANA

EXAMEN JUNIO PP 1A SEMANA EXAMEN JUNIO PP A SEMANA XAVI AZNAR Ejercicio. Defina semejanza, razón de semejanza y movimento asociado a una semejanza. Ejercicio. En el espacio vectorial V 3 (R) sea q la forma cuadrática cuya expresión

Más detalles

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4

Más detalles

EL ESPACIO VECTORIAL EUCLIDEO

EL ESPACIO VECTORIAL EUCLIDEO EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García

1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

Matrices de rotaciones, simetrías y roto simetrías

Matrices de rotaciones, simetrías y roto simetrías Matrices de rotaciones, simetrías y roto simetrías María Jesús DE LA PUENTE Departamento de Álgebra Facultad de Matemáticas Universidad Complutense 28040 Madrid, Spain mpuente@ucm.es Dedication Resumen

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso ÁLGEBRA LINEAL Y GEOMETRÍA Eamen Ordinario : 6--7 Grado en Matemáticas Curso 6-7 SOLUCIONES Dados tres puntos distintos alineados A, A, A A R, al número real r tal que A A = r A A lo llamaremos raón simple

Más detalles

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO

Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 3 Transformaciones ortogonales En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Definición Definición 11 Una transformación ortogonal f de un espacio eculídeo U es un endomorfismo

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 5: Transformaciones geométricas planas. Orientación espacial 1 Transformaciones geométricas 2 ISOMETRÍAS EN LIBROS DE PRIMARIA Cuáles de

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Espacios vectoriales con producto escalar

Espacios vectoriales con producto escalar 147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

Gráficos tridimensionales

Gráficos tridimensionales 9 de enero de 2013 1 / 25 Índice 1 2 Plano proyectivo Espacio proyectivo 3 4 2 / 25 Para los objetos en una escena usamos el sistema de referencia universal. Figura: Coordenadas universales y de vista.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA)

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA) Parte II - Prácticas 8 a 9 Álgebra A 62 Ingeniería 2015 CICLO BÁSICO COMÚN UBA ÁLGEBRA A 62 (INGENIERÍA) Práctica 8 Introducción a las transformaciones lineales Definiciones y propiedades Transformaciones

Más detalles

2 Transformaciones en 3D

2 Transformaciones en 3D 2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.

Más detalles

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8 Paralelismo y perpendicularidad MATEMÁTICAS II 1 1 Una recta es paralela a dos planos secantes, a quién es también paralela? Una recta paralela a dos planos secantes también es paralela a la arista que

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 5 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 30 Sep 2013-6 Oct 2013 Primeras Definiciones Grafo Un grafo está definido por dos conjuntos, un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones

TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones 1.1. MATEMÁTICAS II TEMPORALIZACIÓN Y SECUENCIACIÓN: TEMA 1 Álgebra de matrices 4 sesiones TEMA 2 Determinantes 4 sesiones TEMA 3 Sistemas de ecuaciones 4 sesiones TEMA 4 Vectores en el espacio 4 sesiones

Más detalles

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

TEMA V: SIMETRÍAS. 5.1.A Punto simétrico respecto a otro. Punto medio de un segmento

TEMA V: SIMETRÍAS. 5.1.A Punto simétrico respecto a otro. Punto medio de un segmento TEMA V: SIMETRÍAS Se consideran tres simetrías del punto: 1. Punto simétrico respecto de un punto 2. Punto simétrico respecto de una recta. Punto simétrico respecto de un plano 5.1.D Punto simétrico respecto

Más detalles

ap l i c a c i o n e s d e l a s

ap l i c a c i o n e s d e l a s Unidad 9 ap l i c a c i o n e s d e l a s transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Relacionará algunas transformaciones especiales con movimientos geométricos de vectores

Más detalles

Vectores. en el plano

Vectores. en el plano 7 Vectores 5 en el plano LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Los vectores nos dan información en situaciones como el sentido de avance de una barca o la dirección de un trayecto en bicicleta. INICIO

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura

Más detalles

Tema 11: Problemas Métricos

Tema 11: Problemas Métricos ..- Distancia entre dos puntos : Tema : Problemas Métricos B AB A d( A, B) AB La distancia entre dos puntos Aa (, a, a) Bbb (,, b ) es el módulo del vector que une dichos puntos: d( A, B) AB b a b a b

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

Producto escalar. x y. x = x x y cos α =

Producto escalar. x y. x = x x y cos α = resumen06 1 Producto escalar Vectores ortogonales y proyecciones La definición matemática de producto escalar es bastante amplia porque recoge toda expresión bilineal que sirva razonablemente para medir

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

1. Producto vectorial en IR 3

1. Producto vectorial en IR 3 Espacios Vectoriales Chavarría, J. y Rodríguez, N.. Producto vectorial en IR 3 De nición Sean dos vectores u = (x ; y ; z ) y v = (x ; y ; z ) vectores en IR 3 ; entonces se de ne el producto vectorial,

Más detalles

Mosaicos regulares del plano

Mosaicos regulares del plano Mosaicos regulares del plano Máster Universitario de formación de Profesorado Especialidad Matemáticas Begoña Hernández Gómez 1 Begoña Soler de Dios 2 Beatriz Carbonell Pascual 3 1 behego@alumni.uv.es

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

MOVIMIENTOS EN EL PLANO

MOVIMIENTOS EN EL PLANO Ejercicio nº 1.- MOVIMIENTOS EN EL PLANO a) Aplica una traslación de vector t 3, 2 a las figuras y F. F1 2 b Qué habríamos obtenido en cada caso si, en lugar de aplicar la traslación, hubiéramos aplicado

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3

MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3 MATEMATICAS. BC2 TEMA 6: Rectas y Planos en R 3 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos

Más detalles

Independencia Lineal y Generación. (c) 2012 Leandro Marin

Independencia Lineal y Generación. (c) 2012 Leandro Marin 09.00 Independencia Lineal y Generación 3 48700 9000 (c) 0 Leandro Marin . Independencia Lineal Dada una familia de vectores v, v,, v k de un espacio vectorial V, llamaremos combinación lineal de estos

Más detalles

unidad 11 Transformaciones geométricas

unidad 11 Transformaciones geométricas unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:

Más detalles

E E V (P, Q) v = P Q AA + AB = AB AA = 0.

E E V (P, Q) v = P Q AA + AB = AB AA = 0. Espacios afines. 1 Definición y propiedades. Definición 1.1 Sea E un conjunto no vacío. Se dice que E está dotado de estructura de espacio afín asociado a un espacio vectorial V, si existe una aplicación:

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

RELACIONES TRIGONOMÉTRICAS QUE NO PODEMOS OLVIDAR

RELACIONES TRIGONOMÉTRICAS QUE NO PODEMOS OLVIDAR RELACIONES TRIGONOMÉTRICAS QUE NO PODEMOS OLVIDAR Relaciones fundamentales de la trigonometría Las tres relaciones fundamentales de la trigonometría pueden resumirse en una, que viene dada por la construcción

Más detalles

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO OBJETIVOS MÍNIMOS DE LA UNIDAD 12 1.- Reconocer los diferentes tipos de movimientos 2.- En cuanto a las traslaciones, saber construir la

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

PÁGINA 113. a) De H 1 a H 2, y de H 1 a H 3 son traslaciones. b) El vector que caracteriza la traslación que transforma AB.

PÁGINA 113. a) De H 1 a H 2, y de H 1 a H 3 son traslaciones. b) El vector que caracteriza la traslación que transforma AB. PÁGINA 113 H 4 H 3 H 1 H 2 1 Observa el mosaico de arriba, al que se le llama multihueso. De las transformaciones que llevan H 1 a H 2, H 3 y H 4 : a) Cuál o cuáles de ellas son traslaciones? b) Cuál es

Más detalles

Anexo 1 ( Momentos de segundo orden )

Anexo 1 ( Momentos de segundo orden ) .1 neo 1 ( Momentos de segundo orden ) 1. Momento de inercia En muchas de las fórmulas empleadas en ingeniería aparecen epresiones analíticas de la forma ρ d, siendo ρ la distancia de un elemento diferencial

Más detalles

Con punto fijo Rotaciones Simetría Axial Sin punto fijo Traslaciones Reflexión Deslizante

Con punto fijo Rotaciones Simetría Axial Sin punto fijo Traslaciones Reflexión Deslizante Eje: Geometría, FASCÍCULO 12 Transformaciones Rígidas y Homotecias En el Fascículo 11 vimos que podemos pensar que hay 4 clases de transformaciones rígidas clasificadas de la siguiente manera (pensamos

Más detalles

a) Los vectores base de V 2? Razonar la respuesta. b) Expresar u como combinación lineal de x e y c) Comprobar gráficamente lo anterior.

a) Los vectores base de V 2? Razonar la respuesta. b) Expresar u como combinación lineal de x e y c) Comprobar gráficamente lo anterior. PARCIAL 2ª EVALUACIÓN MATEMÁTICAS I 1º BACH. A+B CURSO 2008-2009 1. u a) Los vectores x e y de la figura pueden ser base de V 2? Razonar la respuesta. y b) Expresar u como combinación lineal de x e y c)

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

INTRODUCCIÓN DEL TEMA 4 PRODUCTO ESCALAR

INTRODUCCIÓN DEL TEMA 4 PRODUCTO ESCALAR INTRODUCCIÓN DEL TEMA 4 PRODUCTO ESCALAR Una de las herramientas imprescindibles a la hora de trabajar con gráficos 3D es el uso de ángulos. Estos se usan en diferentes aspectos tales como: Construcciones

Más detalles

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre.

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. La Parábola La Circunferencia La Elipse La Hipérbola La Parábola La parábola se define como: el lugar geométrico de los puntos

Más detalles

Ángulos y Funciones Trigonométricas

Ángulos y Funciones Trigonométricas Física Vía Internet 2007 Profesor: Nelson Zamorano Auxiliares: Andrés Marinkovic Constanza Paredes Tarea 1.2 ::Feca de entrega Lunes 14 de Mayo 2007 Ángulos y Funciones Trigonométricas ::Objetivos :: Introducir

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles