Solución al Examen parcial I, Curso de Física I Universidad Nacional Autónoma de México

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución al Examen parcial I, Curso de Física I Universidad Nacional Autónoma de México"

Transcripción

1 Solución al Examen parcial I, Curso de Física I Universidad Nacional Autónoma de México Grupo de octubre de Un jugador de béisbol golpea la pelota de modo que ésta adquiere una velocidad de 14.5 ms 1 y un ángulo de 30 por encima de la horizontal. Un segundo jugador, a 30.5 m del bateador y en el mismo plano de la trayectoria de la pelota, empieza a correr en el instante en que la pelota es golpeada. (a)calcule la velocidad mínima del jugador para atrapar la pelota, si su mano puede llegar a 2.4 m del nivel del suelo y la pelota estaba a 0.92 m de altura cuando fue golpeada. (b) Qué distancia tiene que correr el segundo jugador? Respuesta: Podemos calcular el tiempo que tarda la bola en llegar a 2.4m del suelo con la ecuación y = y 0 + V y0 t a yt 2 donde y = 2.4m, y 0 = 0.92m, V y0 = V 0 sen30.5ms 1 (la componente de la velocidad inicial en el eje y) y a y = 9.8ms 2 sustituimos los valores de las variables que conocemos y la ecuación nos queda asi: 2.4m = 0.92m + V 0 sen30.5ms 1 t ms 2 t 2 haciendo la aritmética y reacomodando tenemos 4.9ms 2 t ms 1 t m = 0 La ecuación anterior es una ecuación cuadrática en la variable tiempo, t, un ejemplo para resolver esta ecuación es el siguiente: La escribimos sin unidades, pues el análisis dimensional nos indica que es correcta 1

2 4.9t t = 0 dividimos la ecuación entre 4.9 t t = 0 at 2 + bt + c = 0 La resolvemos por la fórmula general para ecuaciones cuadráticas t = b ± b 2 4ac 2a De aqui obtenemos las raices t 1 = 0.24 y t 2 = 1.24, que son los dos tiempos para los cuales la bola alcanza los 2.4m respecto al suelo. Tomamos el tiempo para cuando la bola esta cayendo t = t 2 = 1.24s para calcular el avance en x que tuvo la bola, utilizamos la siguiente ecuación para un movimiento no acelerado en x x = x 0 + V 0x t donde V 0x = V 0 cos30 = 12.56ms 1 y x 0 = 0, sustituimos en la ecuación estos valores x = 12.56ms s = 15.57m Y la distancia que el jugador tiene que recorrer si esta a 30.5m del bateador es m = m. El jugador tiene que acelerar para realizar una buena atrapada, pues está en reposo y empieza a correr cuando el bateador le pega a la bola, entonces tiene que recorrer metros en 1.24 segundos, partiendo de una velocidad V 0x = 0 ms 1. Obtenemos la aceleración con la siguiente ecuación tomando en cuenta que el jugador puede acelerar de manera constante x = x 0 + V 0x t a xt 2 despejamos la aceleración y tomamos en cuenta que x 0 = 0 y V 0x = 0 a x = 2x t 2 2

3 sustituyendo los valores tenemos que la aceleración del jugador es a x = m (1.24s) 2 = 19.41ms 2 La velocidad del jugador al alcanzar la bola es 1 V x = a x t = 19.41ms s = 24.06ms 1 2. Dos bloques conectados por un cordel que pasa por una polea pequeña sin fricción descansan en planos sin fricción(fig. 1). (a) Hacia donde se moverá el sistema cuando los bloques se suelten del reposo? (b) Qué aceleración tendrán los bloques? (c) Qué tensión hay en el cordel? 100 kg 30.0 o o kg Fig. 1 Respuesta: Dibujamos el diagrama de cuerpo libre para cada una de las masas. N T T N w 1 x w 1 y w 2 y w 2 x w 1 masa de 100 kg w masa de 50 kg 2 las componentes de los pesos en x son. w 1x = w 1 sen30 w 2x = w 2 sen Esta velocidad es la mínima, pues el jugador podría haber experimentado un movimiento con aceleración variable, por ejemplo, acelerar muy poco al principio y súbitamente al final de su trayectoria para alcanzar la bola. 3

4 la suma de fuerzas en x para el cuerpo de masa= 100kg F1x = T w 1 sen30 = m 1 a x la suma de fuerzas en x para el cuerpo de masa= 50kg F2x = T + w 2 sen53.1 = m 2 a x si sumamos F 1x y F 2x tenemos la siguiente ecuación w 2 sen53.1 w 1 sen30 = m 1 a x + m 2 a x la anterior ecuación la podemos escribir de la siguiente manera w 2 sen53.1 w 1 sen30 = a x (m 1 + m 2 ) despejamos la aceleración a x = w 2sen53.1 w 1 sen30 m 1 + m 2 como w = mg y sustituyendo los valores encontramos la aceleración que sufren ambos bloques a x = = 0.65ms 2 Como la aceleración es negativa el sistema se moverá hacia donde decrece x, es decir hacia la izquierda. Para calcular el valor de la tensión de la cuerda la despejamos de una de las ecuaciones que tenemos para la suma de fuerzas en x, por ejemplo: T w 1 sen30 = m 1 a x, y sustituimos el valor de la aceleración. El valor de la tensión es: T = w 1 sen30 + m 1 a x = ( 0.65) = 425N 3. Es posible mantener un bloque en equilibrio con dos cables fijos a el como se muestra en la Fig. 2?. Cada cable está fijo a una pared, y el ángulo entre ellos es de 180. Fundamente su respuesta con diagramas de cuerpo libre y con aplicaciones de las leyes de Newton. 4

5 T2 T 1 m Fig. 2 Respuesta: Para que un cuerpo este en equilibrio se debe de cumplir que la suma de las fuerzas que experimenta sea igual a cero. El bloque del problema cumple con la condición para la componente de la suma de fuerzas en x Fx = T 1 T 2 = 0 ; T 1 = T 2 Sin embargo, para la componente de la suma de fuerzas en y no se cumple la condición Fy = w 0 esto es por que al no haber fuerza normal, debido a la inexistencia de una superficie de contacto, o alguna fuerza en sentido contrario al peso del bloque, no hay manera de contrarestar a w, y la suma de fuerzas es diferente de cero. Por lo tanto el sistema no puede estar en equilibrio. La masa tiende a bajar(esto hace que el ángulo entre las tensiones sea menor que 180 ), de esta manera las tensiones tendrán componentes tanto en x como en y, solo así el sistema podrá estar en equilibrio. 4. Punto extra. Invariancia de la suma vectorial ante la rotación del sistema de coordenadas. La Fig. 3 muestra dos vectores, a y b y a dos sistemas de coordenadas que difieren en el hecho de que sus ejes x y x y sus ejes y y y forman un ángulo φ entre ambos. Demostrar analíticamente que a + b tiene la misma magnitud y dirección sin importar cual de los dos sistemas se usa para hacer el análisis. 5

6 y y b φ a x x Fig. 3 Respuesta: El producto punto de dos vectores, a y b, que tienen un ángulo θ entre ellos es: a b = a b cosθ La definición de norma de un vector es a = a a de aqui que a 2 = a a Entonces la norma de la suma de los vectores a y b es a + b = ( a + b) ( a + b) = a a + b b + 2 a b = a 2 + b a b cosθ Tomamos un ángulo ψ como el ángulo que forma el eje x y el vector a y a ρ como el ángulo que forma el eje x con el vector b. y y b ρ φ a ψ x φ x Fig. 3 En el sistema x, y las componentes de los vectores a y b son a x = a cos(ψ φ) 6

7 a y = a sen(ψ φ) b x = b cos(ψ φ) b y = b cos(ρ φ) Y las normas de estos vectores en sus componentes son a = a (cos 2 (ψ φ) + sen 2 (ψ φ)) 1/2 a = a b = b (cos 2 (ρ φ) + sen 2 (ρ φ)) 1/2 b = b Para el sistema x, y se cumple que la norma de una suma de vectores es: a + b = ( a + b ) ( a + b ) = a a + b b + 2 a b = a 2 + b a b cosθ Lo que tenemos que averiguar es si se cumple la siguiente igualdad a 2 + b a b cosθ = a 2 + b a b cosθ Para esto en la ecuación sustituimos las a y b por sus normas expresadas en términos de sus componentes en x y y para obtener la siguiente ecuación a + b = a 2 + b a b cosθ Por lo tanto a + b = a + b y además a b = a b La dirección del vector a + b respecto al vector a esta dada por η = arccos ( a + b) a a + b b donde η es el ángulo que forman los vectores ( a + b) y a. Utilizando las propiedades del producto punto tenemos que η = a 2 + a b a + b b 7

8 en el sistema coordenado rotado, (x, y ), el ángulo entre dichos vectores es: η = a 2 + a b a + b b Utilizando a = a y a b = a b tenemos que η = a 2 + a b a + b b Entonces η = η, es decir la dirección de la suma de vectores ( a + b) respecto a los vectores a y b no cambia ante la rotación de coordenadas. 8

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

Tema 5: La energía mecánica

Tema 5: La energía mecánica Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

Diálogo entre el alumno y el profesor - Magnitudes físicas

Diálogo entre el alumno y el profesor - Magnitudes físicas Diálogo entre el alumno y el profesor - Magnitudes físicas Un alumno le pregunta al profesor: Alumno: Profe, decir que la balanza de la Farmacia me indica que tengo un peso 54 kg, o compro 2 kg de manzanas

Más detalles

V FESTIVAL INTERNACIONAL DE MATEMÁTICA SIMETRÍA AXIAL

V FESTIVAL INTERNACIONAL DE MATEMÁTICA SIMETRÍA AXIAL V FESTIVAL INTERNACIONAL DE MATEMÁTICA De costa a costa Matemática como lenguaje para interpretar nuestro entorno 29 al 31 de marzo, 2006 SIMETRÍA AXIAL Teodora Tsijli Angelaki 1 Resumen Se trata de ver

Más detalles

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009 Movimiento Parabólico 1. Un cañón antitanques está ubicado en el borde de una meseta a una altura de 60 m. sobre la llanura que la rodea, como se observa en la figura. La cuadrilla del cañón avista un

Más detalles

ELECTROMAGNETISMO Profesor: Juan T. Valverde

ELECTROMAGNETISMO Profesor: Juan T. Valverde CAMPO MAGNÉTICO 1.- Considere un átomo de hidrógeno con el electrón girando alrededor del núcleo en una órbita circular de radio igual a 5,29.10-11 m. Despreciamos la interacción gravitatoria. Calcule:

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

LABORATORIO 2: VECTORES. Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares para un sistema de tres fuerzas

LABORATORIO 2: VECTORES. Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares para un sistema de tres fuerzas UNIVERSIDD DON OSO DEPRTMENTO DE IENIS SI LORTORIO DE FISI SIGNTUR: FISI TENI I. OJETIVO GENERL LORTORIO 2: VETORES Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

LAS BOLAS ADIVINAS, LA CUNA DE NEWTON.-

LAS BOLAS ADIVINAS, LA CUNA DE NEWTON.- LAS BOLAS ADIVINAS, LA CUNA DE NEWTON.- Hace poco regalé a mi nieto un juguete un poco especial. En la foto aparece el mencionado juguete. Como en principio no conocia su nombre, y no leí lo que ponía

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético

Más detalles

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x.

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x. 2 FUNCINES EJERCICIS PRPUESTS 2. Representa las siguientes funciones. a) y 6 x b) y 0 x Tienen algún punto en común? Cuál crece más rápidamente? y = 0 x El (0, ) es el único punto que tienen en común.

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

Momento angular de una partícula

Momento angular de una partícula Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L = r m v Momento angular

Más detalles

Adición de sistemas de fuerzas coplanares

Adición de sistemas de fuerzas coplanares Adición de sistemas de fuerzas coplanares Ejemplo: Determine magnitud y orientación de la fuerza resultante a) Notación escalar: Fx = Rx Rx = 600 (cos 30) 400 (sen 45) Rx = 236.8 N Fy = Ry Ry = 600 (sen

Más detalles

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA ANÁLISIS DIMENSIONAL. HOMOGENEIDAD TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S MAGNITUDES

Más detalles

EL CALOR Y LA TEMPERATURA

EL CALOR Y LA TEMPERATURA EL CALOR Y LA TEMPERATURA Prof.- Juan Sanmartín 4º Curso de E.S.O. 1 INTERCAMBIO DEL CALOR COMO FORMA DE TRANSFERENCIA DE ENERGÍA Pese a que los cambios que pueden producirse en los sistemas son muy variados,

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES IX INTEGRACIÓN POR FRACCIONES PARCIALES La integración por fracciones parciales es más un truco o recurso algebraico que algo nuevo que vaya a introducirse en el curso de Cálculo Integral. Es decir, en

Más detalles

IDENTIFICACIÓN DE LOS TIPOS DE FUERZAS EJERCIDAS ENTRE LOS CUERPOS, DIAGRAMAS DE CUERPO LIBRE

IDENTIFICACIÓN DE LOS TIPOS DE FUERZAS EJERCIDAS ENTRE LOS CUERPOS, DIAGRAMAS DE CUERPO LIBRE 1. ANÁLISIS DE LA PARTÍCULA 1.1. Descomposición de fuerzas en un plano Una fuerza representa la acción de un cuerpo sobre otro. Está caracterizada por su punto de aplicación, su magnitud y su dirección.

Más detalles

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton =

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton = FUEZA CENTIPETA Y CENTIFUGA. De acuerdo con la segunda ley de Newton = F m a para que un cuerpo pesa una aceleración debe actuar permanentemente sobre el una fuerza resultante y la aceleración tiene el

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p)

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) Unidad 3 OPCIÓN A 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) La ecuación que relaciona Q p y Q v es: Q p =

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo

Más detalles

APUNTES DE FÍSICA 2º BACHILLERATO

APUNTES DE FÍSICA 2º BACHILLERATO APUNTES DE FÍSICA 2º BACHILLERATO José Escudero Martínez Licenciado en Ciencias Físicas 1 INTRODUCCIÓN Estos apuntes responden a los contenidos exigidos para la prueba de Física de acceso a la universidad

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

Tema 8 Los mercados de activos financieros

Tema 8 Los mercados de activos financieros Ejercicios resueltos de Introducción a la Teoría Económica Carmen olores Álvarez Albelo Miguel Becerra omínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

Trabajo, energía y potencia

Trabajo, energía y potencia Trabajo, energía y potencia Qué es la energía? Idea intuitiva: La energía es la responsable de los cambios en los sistemas físicos puedes dar algunos ejemplos? Transformaciones energéticas en aparatos

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

Dispositivo para Obtener Coeficiente de Fricción Estático

Dispositivo para Obtener Coeficiente de Fricción Estático Dispositivo para Obtener Coeficiente de Fricción Estático 1 Martínez Martínez Edgar Edmundo, 2 Sepúlveda Cervantes Gabriel y 2 Portilla Flores Edgar Alfredo 1 Escuela Superior de Ingeniería Mecánica y

Más detalles

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia.

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia. CAP. 4: CINEMÁTICA DE LA PARTÍCULA. Modelo de partícula: se aplica a cuerpos muy pequeños comparados con el diámetro de la menor esfera donde cabe la trayectoria completa del cuerpo. Equivale a considerar

Más detalles

ángulo θ. a) θ=0 o, b) θ=45 o, c) θ=60 o, d) θ=90 o, e) θ=120 o, f) θ=180 o.

ángulo θ. a) θ=0 o, b) θ=45 o, c) θ=60 o, d) θ=90 o, e) θ=120 o, f) θ=180 o. FISICA 1 (UNSAM -BUC-2-2009) Trabajo y Energía Cinética 1) Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de 500 N, que forma un ángulo θ con la dirección del

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

INDICE. 2.- Rapidez, velocidad y aceleración de traslación y de rotación. 13

INDICE. 2.- Rapidez, velocidad y aceleración de traslación y de rotación. 13 1 2 INDICE INTRODUCCIÓN 3 TEMARIO DEL CURSO 4 Actividades que debes realizar para mejorar tu aprendizaje. 5 PRESENTACIÓN 6 UNIDAD UNO SISTEMAS MECANICOS 7 1.- Centro de masa en coordenadas rectangulares

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces:

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: Rapidez promedio = distancia total recorrida = d Tiempo transcurrido t La dirección del

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

Examen de Matemáticas 4º de ESO Opción A

Examen de Matemáticas 4º de ESO Opción A Examen de Matemáticas 4º de ESO Opción A 1. He invitado a María al cine y por las dos entradas me han cobrado 15. Cuánto hubiera tenido que pagar si hubiera invitado a otros 5 amigos más? 2. Una piscina

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

5. APLICACIONES DE LAS LEYES DE NEWTON

5. APLICACIONES DE LAS LEYES DE NEWTON 5. APLICACIONES DE LAS LEYES DE NEWTON En este capítulo extenderemos las leyes de Newton al estudio del movimiento en trayectorias curvas e incluiremos los efectos cuantitativos del rozamiento Rozamiento

Más detalles

Instrumentos y aparatos de medida: El osciloscopio

Instrumentos y aparatos de medida: El osciloscopio Instrumentos y aparatos de medida: El osciloscopio Para entender el osciloscopio es necesario conocer el concepto básico de los tubos de rayos catódicos (Ferdinand Braum). El monitor o pantalla es quien

Más detalles

Práctica La Conservación de la Energía

Práctica La Conservación de la Energía Práctica La Conservación de la Energía Eduardo Rodríguez Departamento de Física, Universidad de Concepción 30 de junio de 2003 La Conservación de la Energía Un péndulo en oscilación llega finalmente al

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

; En el caso de fuerzas conservativas, de donde:

; En el caso de fuerzas conservativas, de donde: MECÁNICA DE FLUIDOS. PROBLEMAS RESUELTOS 1. Ecuación diferencial de la estática de fluidos en el caso particular de fuerzas conservativas. Analizar la relación entre las superficies equipotenciales y las

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 kg y realiza un trabajo equivalente a 6.00 kj, Cuál es la profundidad del pozo?

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

Problema 1 Derivación de vectores I (Pro1)

Problema 1 Derivación de vectores I (Pro1) Pág 1 de 62 Problema 1 Derivación de vectores I (Pro1) 11 Enunciado Sea V una magnitud vectorial genérica [1] dependiente del tiempo, t Sean la referencia la base fija a la referencia Del vector V son

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es .- ESTÁTC DE LOS FLUDOS. HDROSTÁTC..1.- Ecuación fundamental de la estática de fluidos. La estática de fluidos es la parte de la mecánica de fluidos que estudia los fluidos en equilibrio, o dicho de otra

Más detalles

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente . Los calores de combustión del metano y butano son 890 kj/mol y 876 kj/mol respectivamente Butano: C 4 H 0 Metano: CH 4 a) Cuando se utiliza como combustible Cual generaría más calor para la misma masa

Más detalles

TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15.

TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15. TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15.63 kj/g y la del etanol es de 29.72 kj/g, a) Calcular la

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

PRÁCTICA NÚMERO 13 DETERMINACIÓN DE CALOR ESPECÍFICO

PRÁCTICA NÚMERO 13 DETERMINACIÓN DE CALOR ESPECÍFICO PRÁCTICA NÚMERO 13 DETERMINACIÓN DE CALOR ESPECÍFICO I. Objetivo Determinar el calor especíico de algunos materiales sólidos, usando el calorímetro y agua como sustancia cuyo valor de calor especíico es

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

FRICCIÓN TRABAJO Y POTENCIA.

FRICCIÓN TRABAJO Y POTENCIA. INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.

Más detalles

INTENSIDAD HORARIA SEMANAL Nombre: FISICA I Teóricas: 4 Código: 115 Laboratorio o práctica: 2 Créditos 5 Ciencias Básicas

INTENSIDAD HORARIA SEMANAL Nombre: FISICA I Teóricas: 4 Código: 115 Laboratorio o práctica: 2 Créditos 5 Ciencias Básicas Página 1 de 7 1. IDENTIFICACIÓN DE LA ASIGNATURA. DESCRIPCIÓN INTENSIDAD HORARIA SEMANAL Nombre: FISICA I Teóricas: 4 Código: 115 Laboratorio o práctica: 2 Créditos 5 Área: Ciencias Básicas INTENSIDAD

Más detalles

La cavitación n en sistemas de tuberías

La cavitación n en sistemas de tuberías La cavitación n en sistemas de tuberías Que es la cavitación? La cavitación n es un fenómeno físico, f mediante el cual un líquido, l en determinadas condiciones, pasa a estado gaseoso y unos instantes

Más detalles

NOMBRE DEL ALUMNO(A): GRUPO: N.L. CALIFICACIÓN VECTORES

NOMBRE DEL ALUMNO(A): GRUPO: N.L. CALIFICACIÓN VECTORES UAL UIVERSIDAD AUTÓOMA DE UEVO LEÓ CICLO ESCOLAR: 2015-2016 SEMESTRE : AGOSTO - DICIEMBRE 2015 LABORATORIO PARA REFORZAMIETO 1 DE FÍSICA 2 FECHA: AGOSTO 2015 ELABORÓ EL LABORATORIO: ACADEMIA DE FÍSICA

Más detalles

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones Departamento de Física Año 011 Trabajo Práctico º Movimiento en dos o tres dimensiones Problema 1. Se está usando un carrito robot para explorar la superficie de Marte. El módulo de descenso es el origen

Más detalles

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL.

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. practica2sr.nb 1 Apellidos y Nombre: Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. Operadores lógicos y relacionales

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

Cuanto más alto esté un cuerpo y cuanta más masa tenga, mayor será su energía potencial gravitatoria.

Cuanto más alto esté un cuerpo y cuanta más masa tenga, mayor será su energía potencial gravitatoria. La energía, el motor de la vida: La energía mecánica En este apartado vamos a retomar la energía mecánica que vimos al principio del bloque, pero con algo más de profundidad. Recuerda que la energía mecánica

Más detalles

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros.

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros. Ejercicios de números enteros con solución 1 Luis debe 5 euros a Ana y 6 euros a Laura. Expresa con números enteros las cantidades que debe Luis. Como Luis debe a Ana 5 euros podemos escribir: 5 euros.

Más detalles

Capítulo 5 Oscilaciones

Capítulo 5 Oscilaciones Capítulo 5 Oscilaciones 9 Problemas de selección - página 77 (soluciones en la página 120) 6 Problemas de desarrollo - página 82 (soluciones en la página 121) 75 5.A PROBLEMAS DE SELECCIÓN Sección 5.A

Más detalles

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia. INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

un coche está parado en un semáforo implica v 0 =0.

un coche está parado en un semáforo implica v 0 =0. TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

UNIVERSIDAD TÉCNICA DE MANABÍ C.A.N.O CENTRO DE ADMISIÓN, NIVELACIÓN Y ORIENTACIÓN

UNIVERSIDAD TÉCNICA DE MANABÍ C.A.N.O CENTRO DE ADMISIÓN, NIVELACIÓN Y ORIENTACIÓN UNIVERSIDAD TÉCNICA DE MANABÍ TEMARIO PARA EL MÓDULO DE NIVELACIÓN Y EXAMEN DE LA EXONERACIÓN DE LA NIVELACIÓN CARRERA: Ingeniería de Sistemas Informáticos Ingeniería Civil Ingeniería Eléctrica Ingeniería

Más detalles

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t.

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t. El trabajo mecánico realizado por una fuerza constante, F, que actúa sobre un cuerpo que realiza un desplazamiento r es igual al producto escalar de la fuerza por el desplazamiento. Es decir: W = F r=

Más detalles

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda.

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. FÍSICA GENERAL I Descripción del movimiento 1 Responda las siguientes cuestiones en el caso de un movimiento rectilíneo ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. a

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

PRÁCTICA 4 ESTUDIO DEL RESORTE

PRÁCTICA 4 ESTUDIO DEL RESORTE INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos

Más detalles

Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA

Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA El cuestionario correspondiente a cada práctica de laboratorio debe

Más detalles