iii. Q es denso en F (para todo par x, y F tal que x < y, existe un r Q tal que x < r < y); v. Para todo a R tal que a < 1, lím n a n = 0.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "iii. Q es denso en F (para todo par x, y F tal que x < y, existe un r Q tal que x < r < y); v. Para todo a R tal que a < 1, lím n a n = 0."

Transcripción

1 LOS TEOREMAS CENTRALES DEL CÁLCULO Y LA COMPLETITUD DE LA RECTA NUMÉRICA: UNA REFLEXIÓN SOBRE LA IMPOSIBILIDAD DE FORMULAR EL CÁLCULO EN EL CONJUNTO DE LOS NÚMEROS RACIONALES JORGE M. LÓPEZ Resumen. En este trabajo se demuestra que en un cuerpo arquimídeo cualquiera la condición de completitud, la propiedad del valor intermedio (propiedad de Darboux), la propiedad de la derivada cero en intervalos (una función con derivada cero en un intervalo es constante en el intervalo) y la desigualdad de la media son lógicamente equivalentes. En particular, los números racionales son totalmente inadecuados para el desarrollo del cálculo. 1. Introducción En este escrito (F, +,, <) representará un cuerpo ordenado arquimídeo; véase Hewitt y Stromberg [3, Ÿ5.5, Ÿ5.7 y Ÿ5.17]. Recordamos al lector que un cuerpo es arquimídeo 1. si el conjunto de números naturales N F 2. Hay varias formas alternas de expresar la propiedad arquimídea las cuales se recogen, sin demostración, en el enunciado siguiente: Teorema 1. Sea (F, +,, <) un cuerpo ordenado. Los siguientes enunciados son lógicamente equivalentes (véase Schechter [6, 1997, Ÿ10.13, p. 248] o López [4, 2015, Ÿ3.2]: i. F es arquimídeo; ii. N no es acotado en F (para todo x F existe un n N tal que n > x); iii. Q es denso en F (para todo par x, y F tal que x < y, existe un r Q tal que x < r < y); 1 iv. lím n = 0; n v. Para todo a R tal que a < 1, lím n a n = 0. Date: 5 de marzo de También se emplea el término arquimideano. 2 Todo cuerpo ordenado contiene copias orden isomorfas de N (el conjunto de los números naturales), Z (el conjunto de los enteros) y Q (el conjunto de los números racionales); ibid (Ÿ5, Theorem 5.5) 1

2 2 JORGE M. LÓPEZ 2. Cuatro principios fundamentales En esta nota nos referiremos a dos resultados: Principio 1 (Teorema de la media). Si F : [a, b] R es continua en [a, b] y diferenciable en (a, b), entonces existe un θ (a, b) tal que (1) = F (θ). Principio 2 (Desigualdad de la media). Si F : [a, b] R es continua en [a, b] y diferenciable en (a, b), entonces (2) ínf F (x) x (a,b) sup F (x). x (a,b) Principio 3 (Principio de la derivada cero en intervalos). Si F : [a, b] R es continua en [a, b] y F (x) = 0 para todo x (a, b), entonces F es la función constante, es decir, F (x) = F (a) para todo x [a, b] Principio 4 (Principio de completitud I). Si A y B son subconjuntos de F tales que i. A y B, ii. F = A B, iii. Para todo a A y todo b B tenemos a < b, entonces A contiene un elemento mayor o B contiene un elemento menor, es decir, existe un x F tal que x A y a x para todo a A o x B y x b para todo b B. Si A y B son subconjuntos de F que satisfacen las condiciones i, ii y iii del Principio 4, entonces decimos que (A, B) es un corte de Dedekind. Otro principio relacionado es el siguiente: Principio 5 (Principio de completitud II). Todo subconjunto no vacío de F acotado superiormente tiene una cota superior mínima. Teorema 2. Los Principios 4 y 5 son lógicamente equivalentes. Demostración. Suponer que el Principio 4 es válido y sea A un subconjunto no vacío de F con una cota superior. Es fácil ver que si B es el conjunto de las cotas superiores de A entonces (A, B) es un corte de Dedekind. Por tanto existe algún x F tal que x es el elemento más grande de A o el más pequeño de B. Se puede vericar que x es la cota superior mínima de A. Por otra parte si el Principio 5 es válido y (A, B) es un corte de Dedekind, entonces A es un conjunto no vacío acotado superiormente. Por lo tanto A tiene una cota superior mínima

3 IMPOSIBILIDAD DEL CÁLCULO EN Q 3 x F. Se puede vericar que x es el elemento mayor de A o el menor de B, lo cual prueba el Principio 4. Para completar esta exposición necesitaremos un resultado adicional: Teorema 3 (Teorema de Bolzano-Weierstrass). Si F es completo, toda sucesión acotada en F tiene una subsucesión convergente. Para una demostración remitimos al lector al Ross [5, 2013, Ÿ11.5]. Necesitaremos el Teorema de Bolzano-Weierstrass para dar una prueba rápida del siguiente resultado: Teorema 4 (Teorema de los valores extremos). Sea F completo. Si a, b F, a < b y f : [a, b] F es continua, entonces f es acotada y asume sus máximos y sus mínimos, es decir, existen x m, x M [a, b] tal que, para todo x [a, b], f(x m ) f(x) f(x M ). Demostración. Primero demostramos que f es acotada. Suponga concretamente que no es acotada superiormente; la demostración en el caso que no fuese acotada inferiormente es similar. Entonces para cada n N existe un x n [a, b] tal que f(x n ) > n. Por el Teorema de Bolzano-Weierstrass existe una subsucesión (x nk ) k de (x n ) n y un punto x F tal que lím k x nk = x. Como a x nk b para cada índice k, está claro que x [a, b]. Por la continuidad de f es posible escoger un índice k 0 tal que para cada k k 0 f(x nk ) f(x) < 1. Pero entonces, f(x) f(x nk ) f(x nk ) f(x) > n k 1. Esto dice que f(x) + 1 > n k k para cada índice k k 0, lo cual contradice el Principio Arquimídeo. Esta contradicción muestra que f es acotada superiormente. Por los comentarios anteriores también es acotada inferiormente. Demostramos ahora que f asume su valor máximo; de nuevo, el argumento para el valor mínimo es similar. Sea K la cota superior mínima del conjunto de imágenes de la función f, es decir, del conjunto {f(x) x [a, b]}. Entonces para cada n N tal que n 1, existe algún x n [a, b] tal que K 1 < f(x n n) K. Por el Teorema de Bolzano-Weierstrass existe un x M [a, b] y una subsucesión (x nk ) k de (x n ) n tal que x nk x M. Por continuidad f(x nk ) f(x M ). Como K 1 < f(x n n) K, está claro que K = lím k f(x nk ) = f(x M ). Esto demuestra que f asume su valor máximo. Por los comentarios anteriores la demostración se ha completado. y Equivalencia de los Principios 1, 2, 3, 4

4 4 JORGE M. LÓPEZ Como veremos, estos cinco principios son equivalentes. Para demostrar la aseveración anterior, antes necesitaremos: Lema 1 (Propiedad del valor intermedio para derivadas sobre intervalos). Si I es un intervalo abierto, F : I R es diferenciable, a, b I y F (a) < γ < F (b). Entonces existe un punto θ en el subintervalo de I determinado por a y b tal que F (θ) = γ. Demostración. Para concretar, supondremos que a < b; intercambiando los roles de a y b en la demostración, se atiende el caso b < a. Considere la función G(x) = F (x) γx. Esta es una función continua en [a, b] y por el Teorema de los valores extremos, G asume un valor mínimo en [a, b]. Como G (a) = F (a) γ < 0, hay valores cercanos a a en el interior de [a, b] a los cuales G asigna valores menores que G(a). Análogamente, como G (b) = F (b) γ > 0, también hay valores cercanos a b en el interior de [a, b] a los que G asigna valores menores que G(b). Por lo tanto, si θ es el valor donde ocurre el mínimo de G, vemos que θ (a, b) (es decir, G no asume su mínimo en [a, b] en uno de los puntos extremos de [a, b]). Como G (θ) = F (θ) γ = 0, el resultado queda demostrado. Teorema 5. Los Principios 1 y 2 son equivalentes. Demostración. Sea F : [a, b] R una función continua en [a, b] y diferenciable en (a, b). Es evidente que que si se cumple el Principio 1 entonces el Principio 2 se cumple también. Supongamos entonces que se cumple el Principio 2 y que la desigualdad (2) se cumple. Demostramos que (1) se cumple considerando dos casos. Si la desigualdad (2) es estricta, entonces existen α, β (a, b) tal que F (α) < < F (β) y el resultado sigue del Lema 1. De lo contrario, se tiene igualdad en uno de los extremos de la desigualdad (2) y suponemos que m ínf x (a,b) F (x) = ()/(); el caso sup x (a,b) F (x) = ()/() se trata de manera análoga. Dena G(x) = F (x) m(x a) F (a) para todo x [a, b]. Es fácil ver que G(a) = 0 y que [ G(b) = ] m () = 0.

5 IMPOSIBILIDAD DEL CÁLCULO EN Q 5 Aplicando la ecuación (2) del Principio 2 a la función G, vemos que, por la denición de m, para todo a u < v b tenemos G(v) G(u) v u F (v) F (u) = m v u mín F (x) m x (u,v) 0. Esto dice que G es una función creciente en [a, b]. Como G(a) = G(b) = 0, vemos que G(x) = 0 para todo x [a, b], es decir F (x) = m(x a) + F (a) para todo x [a, b]. En particular para todo θ (a, b), F (θ) = m y, en este caso, cualquier valor de θ (a, b) satisface (1). Teorema 6. Los siguientes enunciados son equivalentes para un cuerpo arquimídeo (F, +,, <): i. Principio 1 (Teorema de la media); ii. Principio 2 (Desigualdad de la media); iii. Principio 3 (Propiedad de la derivada cero en intervalos); iv. Principio 4 (Propiedad de completitud I); v. Principio 5 (Propiedad de completitud II). Demostración. En el Teorema 5 se demostró que los Principios 1 y 2 son equivalentes. Está claro que el Principio 1 implica el Principio 3. Así pues, para completar la demostración de las equivalencias, se demostrará que si F es un cuerpo arquimídeo completo, entonces se cumple el Principio 1 y que si se cumple el Principio 3 en F, entonces F es completo. Suponga que F es completo. Para demostrar que se cumple el Principio 1 se emplea una variante del argumento usual de los textos de cálculo. En efecto, si F : [a, b] F es una función continua, diferenciable en (a, b), denimos G(x) = F (x) F (a) m(x a), donde m =. Es fácil ver que G(a) = G(b) = 0, G es una función continua en [a, b] y G (x) = F (x) m para todo x (a, b). Por el Teorema de los valores

6 6 JORGE M. LÓPEZ extremos, G tiene un máximo y un mínimo absolutos en [a, b]. Si éstos ocurren en los extremos del intervalo [a, b], entonces G es idénticamente igual a cero y G (x) = 0 para todo x (a, b). Por lo tanto, = F (x) para todo x (a, b), y la conclusión del Teorema de la media se cumple tomando cualquier valor en el intervalo (a, b). De lo contrario, uno de los valores extremos de G ocurre en algún θ (a, b), y como G (θ) = 0, concluimos = F (θ) para algún θ (a, b). Esto completa la demostración de que el Principio 1 se cumple en todo cuerpo arquimídeo completo. Por comentarios anteriores, sólo resta demostrar que si se cumple el Principio 3 en F, entonces F es completo. Probaremos la aseveración inversa. Suponga que F no es completo. Entonces existe un conjunto no vacío S F acotado superiormente sin cota superior mínima. Si K es el conjunto de las cotas superiores de S, está claro que K y que K es cerrado en F (si (k n ) es una sucesión en K tal que lím n k n = k, entonces para cada s S, tenemos s k n para todo n y s lím n k n = k.) Además, K es abierto en F ya que si k K, como S no tiene cota superior mínima, existe k 1 K tal que k 1 < k. Claramente I = (k 1, k 1 + 1) es un intervalo abierto de F tal que k I K, lo cual muestra que K es abierto. Además, está claro que S F \ K. Si denimos F (x) = 1 si x K y F (x) = 0 si x K, como K y F \ K son abiertos, calculando los cocientes diferenciales correspondientes, vemos que F (x) = 0 para todo x F. En particular, F : F F es una función continua y diferenciable en F que no es constante. Si tomamos a, b F tal que a < b y tal que [a, b] contenga puntos de K y de F \ K, vemos que F : [a, b] F es una función continua en [a, b], que no es constante, pero tal que F (x) = 0 para todo x [a, b]. Esto termina la demostración que el Principio 3 implica que F es completo, y también la demostración del teorema. Tomando F = R obtenemos 3 cuerpo ordenado completo: Corolario 1. Los siguientes enunciados son equivalentes: i. Principio 1 (Teorema de la media); ii. Principio 2 (Desigualdad de la media); iii. Principio 3 (Propiedad de la derivada cero en intervalos); 3 Todos los cuerpos ordenados completos son orden isomorfos a un cuerpo R, el cuerpo de los números reales, cuya existencia se demuestra por varios métodos; véase Hewitt y Stromberg [3, 1965, Ÿ5.30 y Ÿ5.34].

7 IMPOSIBILIDAD DEL CÁLCULO EN Q 7 iv. Principio 4 (Propiedad de completitud I); v. Principio 5 (Propiedad de completitud II). 4. Conclusión Los números racionales son totalmente inadecuados para el desarrollo del análisis en general y del cálculo en particular. Referencias [1] Boas, R.P. Who Needs Those Mean-Value Theorems, Anyway? The Two Year College Mathematics Journal 12, No. 3 (1981), [2] O. Hernández Rodríguez and J. M. López Fernández, Teaching the Fundamental Theorem of Calculus: A Historical Reection Loci: Convergence (January 2012), DOI: /loci [3] Hewitt, E., & Stromberg, K. Real and abstract analysis: A modern treatment of the theory of functions of a real variable, Berlin: Springer, [4] López, J. M. Los fundamentos matemáticos del cálculo, Centros Regionales de Adiestramiento en Instrucción Matemática (CRAIM), Publicaciones CRAIM, ISBN , Notas de clase, [5] Ross K.A. Elementary Analysis: The Theory of Calculus, Undergraduate Texts in Mathematics, DOI / , Springer Science+Business Media New York, [6] Schechter, E. Handbook of Analysis and its Foundations, Academic Press. (1997). Departmento de Mathematica, Universidad de Puerto Rico, Río Piedras, PR address: URL:

LOS AXIOMAS DE PEANO Y EL PRINCIPIO DE INDUCCIÓN MATEMÁTICA

LOS AXIOMAS DE PEANO Y EL PRINCIPIO DE INDUCCIÓN MATEMÁTICA LOS AXIOMAS DE PEANO Y EL PRINCIPIO DE INDUCCIÓN MATEMÁTICA OMAR HERNÁNDEZ RODRÍGUEZ Y JORGE M. LÓPEZ FERNÁNDEZ Resumen. En este escrito N representa el conjunto de los números naturales y para cada n

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

Continuidad 2º Bachillerato. materiales Editorial SM

Continuidad 2º Bachillerato. materiales Editorial SM Continuidad 2º Bachillerato materiales Editorial SM Continuidad en un punto: primera aproximación Estatura medida cada 5 años: hay grandes saltos entre cada punto y el siguiente. Estatura medida cada año:

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

Espacios compactos. 1. Cubiertas

Espacios compactos. 1. Cubiertas Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. La compacidad se puede estudiar desde dos puntos de vista: el topológico, a través

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( )

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( ) CONTINUIDAD DE FUNCIONES. TEOREMAS FUNDAMENTALES. Cuando una función es continua en un intervalo cerrado [ a, ] y en un extremo es positiva y en otro negativa, la intuición indica que, en algún punto intermedio

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Aplicando el Axioma del Supremo

Aplicando el Axioma del Supremo Aplicando el Axioma del Supremo Manuel Ibarra Contreras, Armando Martínez García Benemérita Universidad Autónoma de Puebla Puebla, México El objetivo de este artículo es aplicar el Axioma del Supremo para

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

0.1 Axioma del supremo

0.1 Axioma del supremo 0.1 Axioma del supremo El conjunto de los números racionales cumple con la propiedades de cuerpo y de orden que se cumplen en, sin embargo en tal conjunto no podemos dar respuesta a la existencia de un

Más detalles

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El teorema del valor medio Aplicaciones de las derivadas. El teorema del valor medio Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Cálculo Diferencial: Enero 2016

Cálculo Diferencial: Enero 2016 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos

Más detalles

El último axioma. El axioma del supremo

El último axioma. El axioma del supremo Hay conceptos matemáticos de los que apenas se habla en las matemáticas del Bachillerato, o bien se pasa de puntillas sobre ellos. Es cierto que jugamos con los números reales dando por hecho muchas propiedades

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa

3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa 3er Concurso Unversitario de Matemáticas Galois-Noether 013 Segunda Etapa Sábado 17 de agosto 013 Bienvenido a la Segunda Etapa del Concurso Universitario de Matemáticas Galois-Noether Responde a las preguntas

Más detalles

Teorema del valor medio

Teorema del valor medio Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática 1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.

Más detalles

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1],

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1], Capítulo 4 Convexidad 1. Conjuntos convexos En este capítulo estudiaremos el concepto de convexidad, el cual es sumamente importante en el análisis. Estudiaremos conjuntos convexos y funcionesconvexas

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Cuatro Problemas de Algebra en la IMO.

Cuatro Problemas de Algebra en la IMO. Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de

Más detalles

1. Números reales. Análisis de Variable Real

1. Números reales. Análisis de Variable Real 1. Números reales Análisis de Variable Real 2014 2015 Índice 1. Sistemas numéricos 2 1.1. Números naturales. Principio de Inducción... 2 1.2. Números enteros... 4 1.3. Números racionales... 6 2. Los números

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

El Teorema de Baire Rodrigo Vargas

El Teorema de Baire Rodrigo Vargas El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

Continuidad y Teorema de Heine-Cantor

Continuidad y Teorema de Heine-Cantor Continuidad y Teorema de Heine-Cantor Continuity and Theorem of Heine-Cantor Reinaldo Antonio Cadenas Aldana (rcadena@ula.ve) Facultad de Humanidades y Educación, Universidad de los Andes, Núcleo la Liria,

Más detalles

Construcción de Conjuntos B 2 [2] Finitos

Construcción de Conjuntos B 2 [2] Finitos Construcción de Conjuntos B [] Finitos Gladis J. Escobar Carlos A. Trujillo S. Oscar H. Zemanate Resumen Un conjunto de enteros positivos A se llama un conjunto B [g] si, para todo entero positivo s, la

Más detalles

Propiedades de las funciones continuas

Propiedades de las funciones continuas Tema 13 Propiedades de las funciones continuas Estudiamos en este tema los dos resultados fundamentales sobre la continuidad de funciones reales de variable real, que se refieren a funciones continuas

Más detalles

Ejercicios del tema 5

Ejercicios del tema 5 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 5 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. Nota: En algunos de los siguientes ejercicios, se pide probar una serie de propiedades

Más detalles

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L. 147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones

Más detalles

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números Capítulo 4 Sucesiones y series numéricas 4.1. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s 1,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Descomposición de dos Anillos de Funciones Continuas

Descomposición de dos Anillos de Funciones Continuas Miscelánea Matemática 38 (2003) 65 75 SMM Descomposición de dos Anillos de Funciones Continuas Rogelio Fernández-Alonso Departamento de Matemáticas Universidad Autónoma Metropolitana-I 09340 México, D.F.

Más detalles

Propiedades de las funciones continuas

Propiedades de las funciones continuas Tema 13 Propiedades de las funciones continuas Estudiamos en este tema los dos resultados fundamentales sobre funciones continuas, que se refieren a funciones continuas en intervalos. Primero veremos que

Más detalles

Ejercicios de Análisis I

Ejercicios de Análisis I UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Ejercicios de Análisis I Ramón Bruzual Marisela Domínguez Caracas, Venezuela Febrero 2005 Ramón

Más detalles

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid CÁLCULO DIFERENCIAL Víctor Manuel Sánchez de los Reyes Departamento de Análisis Matemático Universidad Complutense de Madrid Índice 1. Conceptos topológicos y métricos 5 1.1. Métricas, normas y productos

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

EL AXIOMA DEL SUPREMO. Cotas, supremos e ínfimos

EL AXIOMA DEL SUPREMO. Cotas, supremos e ínfimos EL AXIOMA DEL SUPREMO Cotas, supremos e ínfimos La gran diferencia entre el conjunto Q de los racionales y R, el conjunto de los números reales, es que este último es un modelo para el continuo de puntos

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 5 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

Sucesiones acotadas. Propiedades de las sucesiones convergentes

Sucesiones acotadas. Propiedades de las sucesiones convergentes Sucesiones acotadas. Propiedades de las sucesiones convergentes En un artículo anterior se ha definido el concepto de sucesión y de sucesión convergente. A continuación demostraremos algunas propiedades

Más detalles

Sobre dependencia lineal y wronskianos

Sobre dependencia lineal y wronskianos Miscelánea Matemática 42 (2006) 51 62 SMM Sobre dependencia lineal y wronskianos Antonio Rivera-Figueroa Departamento de Matemática Educativa Centro de Investigación y de Estudios Avanzados IPN arivera@cinvestav.mx

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y 5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y LÍMITES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.1.1. Las magnitudes variables: funciones. 5.1.1. Las magnitudes variables:

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

TEMA 5: LÍMITES Y CONTINUIDAD DE UNA FUNCIÓN.

TEMA 5: LÍMITES Y CONTINUIDAD DE UNA FUNCIÓN. TEMA 5: LÍMITES Y CONTINUIDAD DE UNA FUNCIÓN. 5.0. INTRODUCCIÓN. En este tema introduciremos los conceptos de límite de una función en un punto y de continuidad de una función que serán básicos en toda

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.

Más detalles

1. Algunas deniciones y resultados del álgebra lineal

1. Algunas deniciones y resultados del álgebra lineal . Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Universidad de Sonora. Semicontinuidad y Medibilidad de Correspondencias y la Existencia de Selectores Continuos y Medibles

Universidad de Sonora. Semicontinuidad y Medibilidad de Correspondencias y la Existencia de Selectores Continuos y Medibles Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas Semicontinuidad y Medibilidad de Correspondencias y la Existencia de Selectores Continuos y Medibles Tesis que

Más detalles

Límites y Continuidad

Límites y Continuidad Tema 2 Límites y Continuidad Introducción En este tema se trata el concepto de límite de una función real de variable real y sus propiedades, así como algunas de las técnicas fundamentales para el cálculo

Más detalles

BLOQUE 1. LOS NÚMEROS

BLOQUE 1. LOS NÚMEROS BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números

Más detalles

Sucesiones monótonas Monotonía. Tema 6

Sucesiones monótonas Monotonía. Tema 6 Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

TEMA 4. Sucesiones de números reales.

TEMA 4. Sucesiones de números reales. Cálculo I E.T.S.I. de Minas Curso 2008-2009 TEMA 4. Sucesiones de números reales. Definición. Una sucesión de números reales es una aplicación que a cada número natural n 1leasignaunúnico número real x

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología - Fernando Sánchez - - 6 Topología Cálculo I en R 26 10 2015 Elementos de la topología en R. Una topología en un conjunto da un criterio para poder hablar de proximidad entre los elementos de un conjunto.

Más detalles

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es:

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es: Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Funciones convexas Definición de función convexa. Tema 7

Funciones convexas Definición de función convexa. Tema 7 Tema 7 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones definidas en intervalos, las funciones

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

CALCULO I. FUNCIONES DE UNA VARIABLE: LÍMITES, CONTINUIDAD Y DERIVABILIDAD.

CALCULO I. FUNCIONES DE UNA VARIABLE: LÍMITES, CONTINUIDAD Y DERIVABILIDAD. DEPARTAMENTO DE MATEMÁTICA APLICADA ETSI Inf. UNIVERSIDAD POLITÉCNICA DE MADRID CALCULO I. FUNCIONES DE UNA VARIABLE: LÍMITES, CONTINUIDAD Y DERIVABILIDAD. Índice general. Funciones. Límites y continuidad

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL.

EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL. EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL. 1. Estúdiese la continuidad de la función f : R R, definida por f (x) = xe(1/x) si x = 0, f (0) = 1.. Sea f : R R continua, mayorada

Más detalles

Reflexiones sobre la Regla de L Hospital

Reflexiones sobre la Regla de L Hospital Reflexiones sobre la Regla de L Hospital Jorge M. López Departamento of Matemáticas Universidad de Puerto Rico La demostración aceptada para las reglas de L Hospital suele emplear una versión del teorema

Más detalles

Funciones reales de variable real

Funciones reales de variable real Capítulo 2 Funciones reales de variable real 2.. Definición. Dominio, imagen y gráfica. Informalmente, una función entre dos conjuntos A y B es una regla que a ciertos elementos del conjunto A les asigna

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Sobre los espacios regulares y normales T 3, T 4. Teoremas de Urysohn y Tiezte.

Sobre los espacios regulares y normales T 3, T 4. Teoremas de Urysohn y Tiezte. Sobre los espacios regulares y normales T, T 4. Teoremas de Urysohn y Tiezte. Nota al lector: Utilizaremos las expresiones entorno y entorno abierto indistintamente durante la formulación de los teoremas

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

Cálculo Diferencial en una Variable

Cálculo Diferencial en una Variable UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Cálculo Diferencial en una Variable Ramón Bruzual Marisela Domínguez Caracas, Venezuela Febrero

Más detalles