ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC."

Transcripción

1 ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC.

2 ALGUNAS DEFINICIONES NECESARIAS.. UNIDAD EXPERIMENTAL (UE) Porción de material o terreno, un individuo o grupo de individuos, susceptible de tratamiento experimental y sobre la que se observa una respuesta. Generalmente coincide con la Unidad de Observación (UO). Ejemplos: planta, parcela de terreno, alícuota de materia prima (muestra de harina), grupo de insectos, etc. El tamaño de la unidad experimental es usualmente una decisión arbitraria, pero afecta la calidad de la observación de la variable respuesta.

3 RESPUESTA Cuando se planifica un experimento, se debe identificar la respuesta del sistema que se va a evaluar variables respuesta (variables dependientes) Cualitativas Univariadas (una sola variable) Cuantitativas Multivariadas (varias variables)

4 FACTORES Las potenciales fuentes de variación de la/s variable/s respuesta en un sistema experimental identificadas a priori son llamadas factores Los distintos estados o valores de los factores se designan niveles La combinación de niveles evaluados para un conjunto de factores recibe el nombre de tratamiento TRATAMIENTO: conjunto de acciones que se aplican sobre las unidades experimentales y que son objeto de comparación.

5 EJEMPLOS Se desea medir contenido de gluten en 15 cultivares de trigo Se desea comparar los rendimientos de 13 híbridos experimentales de maíz bajo diferentes dosis de nitrógeno (50, 90 y 120 kg/ha) Se desea comparar la efectividad de 3 fungicidas (Benomyl, Captane e Iprodione) en diferentes concentraciones ( 0.3, 3.0 y 30 mm) sobre cuatros hongos fitopatógenos (Colletrotrichum acutatum, Colletrotrichum fragariae, Colletrotrichum gloesporioides y Fusarium oxysporum)

6 ERROR EXPERIMENTAL El término error experimental se refiere a la diferencia entre el valor observado de la variable respuesta sobre una unidad experimental y su valor esperado (de acuerdo a un modelo). El error experimental es el responsable de la variación observada entre unidades experimentales tratadas de la misma forma.

7 COMPONENTES DEL ERROR EXPERIMENTAL Error de medición: Variación que introduce el instrumento o procedimiento de medición. Error de muestreo: Variación en la respuesta diferencial de cada UE al tratamiento que recibe y depende de propiedades inherentes a la UE. Error de observación: Variación debida al submuestreo de la unidad experimental. Error de tratamiento: Variación en la respuesta debida a los errores en la reproducción del tratamiento. Usualmente, una vez obtenido un dato experimental, no es posible identificar la magnitud de las distintas componentes que, sumadas, conforman el error experimental.

8 ALGUNOS RECURSOS DEL DISEÑO DE EXPERIMENTOS Aleatorización Repetición Bloqueo

9 ALEATORIZACIÓN Procedimiento de asignación aleatoria... de los tratamientos a las unidades experimentales (distribución del error de muestreo) del orden en que los tratamientos son aplicados (control sobre posibles variaciones en la aplicación de tratamientos) del orden en que se miden las respuestas (control de variaciones sistemáticas del error de medición) Permite distribuir aleatoriamente las fuentes de error

10 REPETICIÓN Se considera repetición a la aplicación de ese tratamiento a una nueva unidad experimental. Dado que toda observación tiene error, para estimar insesgadamente el efecto de un tratamiento, se debe promediar sobre un conjunto de repeticiones.

11 BLOQUEO Aunque la aleatorización distribuye los errores y controla el sesgo, no elimina ni minimiza el error experimental. El bloqueo es el resultado de un reconocimiento a priori de fuentes sistemáticas de error y permite obtener experimento más eficientes DISEÑOS EN BLOQUES El bloque señala que: Las unidades experimentales dentro de un bloque deben ser tan homogéneas como sea posible. Las diferencia entre UE deben ser explicadas por las diferencias entre bloques (heterogeneidad entre bloques).

12 EXPERIMENTO: 3 tratamientos en un Diseño en Bloques Completos al Azar (DBCA), con 4 repeticiones en bloques completos porque en cada bloque aparecen todos los tratamientos, y al azar porque los tratamientos son asignados en forma aleatoria dentro de cada bloque. Todas las UE de un mismo bloque tienen la misma probabilidad de recibir cualquiera de los tratamientos. Generalmente, el N de R coincide con el N de bloques.

13 MODELO Y ANÁLISIS Experimento bien planificado : Análisis simple Interpretación directa En estudios observacionales, el análisis se transforma en una herramienta de exploración de datos El objetivo es encontrar el modelo apropiado Se entra en un territorio donde la interpretación de los resultados puede ser poco confiable

14 ANÁLISIS DE LA VARIANZA

15 ANÁLISIS DE LA VARIANZA Descompone la variabilidad total en la muestra (suma de cuadrados total de las observaciones) en componentes (CUADRADOS MEDIOS) asociados cada uno a una fuente de variación reconocida.

16 ANÁLISIS DE LA VARIANZA En experimentos con fines comparativos, usualmente se realiza la aplicación de varios tratamientos a un conjunto de unidades experimentales (parcelas, individuos, macetas, etc.) De esta manera, se logra que las alteraciones en las respuestas (variables) puedan ser atribuidas a la acción de los tratamientos, excepto por variaciones aleatorias. El propósito es comparar medias de tratamientos con el menor ruido posible. OBJETIVO... Establecer si las diferencias obtenidas entre las medias estimadas reflejan las diferencias entre las verdaderas medias (parámetros)

17 El modelo lineal Yij i ij DISEÑO EN BOQUES Efecto de tratamiento Efecto de bloque Y ij = + i + b j + ij las variaciones debidas a la estructura presente entre bloques, es eliminada de las comparaciones entre unidades que reciben el mismo tratamiento. El bloqueo permite disminuir el error

18 CONTRASTE DE HIPÓTESIS Hipótesis Nula: El modelo más simple es adecuado para explicar la variación observada en los datos La hipótesis nula en un análisis de la varianza es: Las medias de tratamientos son iguales a La hipótesis alternativa es: Existe al menos una media que se diferencia de las otras

19 Cómo se establece si el modelo más simple es adecuado para los datos observados? Dicho de otra manera Cómo se decide si la hipótesis nula es soportada por los datos experimentales?

20 Se asume que la hipótesis nula es cierta Se calcula una medida de credibilidad de la hipótesis nula, conocida como p- valor Cuanto menor es el p-valor, menos verosímil es la hipótesis nula Se fija un umbral por debajo del cual la hipótesis nula se rechaza, conocido como nivel de significancia (α)

21 Si se rechaza Ho Cuál o cuáles de las medias poblacionales son las diferentes?

22 PROCEDIMIENTOS DE COMPARACIONES MÚLTIPLES

23 Uno de los principales usos del ANOVA en MGV es para ESTIMAR VARIANZAS FV SC GL CM є (CM) ENTRE PROGENIES CME VE + R VG DENTRO PROGENIES CMD VE CUADRADO MEDIO DENTRO (CMD) = VARIANZA AMBIENTAL (VE) CUADRADO MEDIO ENTRE (CME) = VARIANZA FENOTÍPICA (VE + VG * R), donde R es el N de Repeticiones. VG = (CME CMD)/R %VG ó H 2 (amplio) = (VG) / (VG + VE)

24 ACTIVIDAD PRÁCTICA Documento Excel: base de datos para curso

25 TESIS EVALUACIÓN DEL VALOR NUTRICIONAL DE MAÍCES ESPECIALES (Zea mays L.): SELECCIÓN PARA CALIDAD AGROALIMENTARIA OBJETIVO GENERAL Evaluar el valor nutritivo de maíces especiales a partir de su composición química, a fin de seleccionarlos para calidad agroalimentaria.

26 PROTEÍNAS Varían entre el 8 y 11% del peso del grano

27 Posee una mutación natural en el gen recesivo o2, que codifica para la síntesis de zeínas. Limita la síntesis de zeína, y se traduce en la duplicación del contenido de lisina y triptófano La expresión de este gen (doble recesivo) lo convierte en maíz con valor nutritivo superior al maíz normal (QPM).

28 MATERIAL GENÉTICO: Prueba de progenies

29 ANÁLISIS DE CORRELACIÓN Se deben tener dos o más variables aleatorias relevadas sobre cada UE. El Coeficiente de correlación de Pearson (r) es una medida de la magnitud de la asociación lineal entre dos variables cuantitativas que no depende de las unidades de medida de las variables originales. Asume valores entre -1;1 y el signo indica la dirección de la asociación. LAS CORRELACIONES OBSERVADAS ENTRE DOS VARIABLES NO PUEDEN SER USADAS PARA ESTABLECER RELACIONES CAUSALES.

30 Valores p asociada a la prueba de hipotésis de correlación nula Oleico Linoleico Linolénico Proteína Oleico 1 0, , , Linoleico -0, , , Linolénico -0, , , Proteína 0, , , Coeficientes de correlación (r) p-valores a 0.05, estadísticamente significativos. Los p-valores significativos se corresponden a un coeficiente de correlación r. Se analiza el valor r considerando su valor absoluto y signo. Un signo positivo indica que ambas variables se incrementan o disminuyen en el mismo sentido; un signo negativo indica que mientras una variable se incrementa, la otra disminuye.

31 En MGV, el coeficiente de correlación de Pearson permite determinar las correlaciones fenotípicas entre caracteres, por ser la resultante de efectos genéticos y ambientales. UTILIDAD Caracteres asociados al rendimiento. ESTABLECER CRITERIOS DE SELECCIÓN

32 ANÁLISIS DE SENDERO (PATH ANALYSIS) En el análisis de sendero se pretende construir modelos de causa-efecto entre las variables a través de la partición de la correlación. Estos son efectos directos de una variable sobre otra (senderos simples) y efectos indirectos de una variable sobre otra, vía una o más variables exógenas (senderos compuestos). UTILIDAD SELECCIÓN INDIRECTA

33 INTERRELACIONES r cp-1 CARÁCTER 1 Se calculan los coeficientes de correlación fenotípica entre los caracteres, y CP r 1-2 r cp-2 los efectos directos e indirectos de los caracteres analizados sobre el carácter sobre el principal (CP). CARÁCTER 2

34 EJEMPLO La correlación entre biomasa y área foliar es significativa (r=-0.49, p=0.0272), y está casi completamente determinada (-0.52) por la correlación entre biomasa y semillas germinadas. Las semillas germinadas, posee una fuerte correlación con biomasa y un fuerte efecto indirecto sobre la relación encontrada entre área foliar y biomasa.

35 MUCHAS GRACIAS

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

ANOVA Análisis de la Varianza en diseño de experimentos

ANOVA Análisis de la Varianza en diseño de experimentos ANOVA Análisis de la Varianza en diseño de experimentos NATURALEZA DEL DISEÑO EXPERIMENTAL El diseño experimental tiene sus orígenes en los trabajos de Ronald Aylmer Fisher (1890 1962) desarrollados en

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

Diseño Muestreo y Experimental -->fundamental para análisis estadísticos. Escogencia de factores (V. independientes), niveles de factores,

Diseño Muestreo y Experimental -->fundamental para análisis estadísticos. Escogencia de factores (V. independientes), niveles de factores, Diseño Muestreo y Experimental -->fundamental para análisis estadísticos Escogencia de factores (V. independientes), niveles de factores, (tratamientos), Unidades de repuesta (replicas), Unidades de muestreo

Más detalles

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados 1. Digamos que estamos interesados en conducir un experimento para comparar los efectos de tres insecticidas diferentes en habichuela. Pensamos

Más detalles

Metodologías De Investigación

Metodologías De Investigación Metodologías De Investigación Pfra. Dolores Frías Navarro M. Dolores Frías http://www.uv.es/friasnav 1 Diseños Experimentales Al menos una variable independiente de tratamiento que es introducida por el

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays)

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays) Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez Cadelga Maíz (Zea mays) Científica Objetivos Medir el Efecto Fisiológico AgCelence del Fungicida

Más detalles

GENETICA CUANTITATIVA

GENETICA CUANTITATIVA GENETICA CUANTITATIVA Teórico Práctico 1 2011 GENETICA CUANTITATIVA. HEREDABILIDAD. AVANCE GENETICO Y RESPUESTA A LA SELECCIÓN EN MATERIALES EXPERIMENTALES Importancia El conocimiento de los procedimientos

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa

Más detalles

PRINCIPIOS ESTADÍSTICOS Y DISEÑOS EXPERIMENTALES USADOS EN LA INVESTIGACIÓN AGRICOLA

PRINCIPIOS ESTADÍSTICOS Y DISEÑOS EXPERIMENTALES USADOS EN LA INVESTIGACIÓN AGRICOLA PRINCIPIOS ESTADÍSTICOS Y DISEÑOS EXPERIMENTALES USADOS EN LA INVESTIGACIÓN AGRICOLA ESTADISTICA Es la ciencia que estudia la recolección, clasificación, presentación e interpretación de datos numéricos

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Anova unifactorial Grados de Biología y Biología sanitaria

Anova unifactorial Grados de Biología y Biología sanitaria Anova unifactorial Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 29 de noviembre de 2015 El problema Analizaremos la

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/25

Diseños Factoriales. Diseño de experimentos p. 1/25 Diseños Factoriales Diseño de experimentos p. 1/25 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos

INDICE. Introducción Capitulo uno. La idea nace un proyecto de investigación Como se originan las investigaciones? 2 Resumen Conceptos básicos INDICE Introducción Capitulo uno. La idea nace un proyecto de investigación 1 1.1. Como se originan las investigaciones? 2 Resumen 6 Ejemplo 7 Capitulo dos. El planteamiento del problema objetivos, preguntas

Más detalles

CLAVE - Laboratorio 11: Análisis de la Varianza

CLAVE - Laboratorio 11: Análisis de la Varianza CLAVE - Laboratorio 11: Análisis de la Varianza 1. Se está diseñando un experimento para comparar 4 variedades de habichuela. Se usarán 6 parcelas con cada una de las variedades en un diseño completamente

Más detalles

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

VALIDEZ DE LA INVESTIGACIÓN (I): VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO

VALIDEZ DE LA INVESTIGACIÓN (I): VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO MÉTODOS Y DISEÑOS DE INVESTIGACIÓN TEMA 3 VALIDEZ DE LA INVESTIGACIÓN (I): VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO 2011/12 1 Validez de la investigación VALIDEZ INTERNA: el diseño de investigación es

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/18

Diseños Factoriales. Diseño de experimentos p. 1/18 Diseños Factoriales Diseño de experimentos p. 1/18 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

Biometría II / Repaso Modelos

Biometría II / Repaso Modelos Variable respuesta cuantitativa Variable explicatoria cualitativa (o cuantitativa*) ANOVA Factores Fijos Aleatorios Cruzados Anidados Entre Dentro Anova de 1, 2, 3, etc. Factores Fijos Anova de 1, 2, 3,

Más detalles

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3 DISEÑO EN CUADRO LATINO En el diseño en cuadro latino (DCL) se controlan dos factores de bloque y se estudia un solo factor de interés. En este sentido, se tienen cuatro fuentes de variación: Los tratamientos

Más detalles

Diferentes tamaños de u.e. Diseño de experimentos p. 1/24

Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Introducción Los diseños experimentales que tienen varios tamaños de u.e. son: diseños de mediciones repetidas, diseños de parcelas divididas,

Más detalles

Análisis de la varianza

Análisis de la varianza Análisis de la varianza José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

HERENCIA CUANTITATIVA

HERENCIA CUANTITATIVA HERENCIA CUANTITATIVA Pisun sativum CARACTERES ANALIZADOS POR MENDEL CARÁCTER DETERMINADO POR UN GEN CON DOS ALELOS A: Alto a: Bajo P AA X aa G A a F1 Aa X Aa A a A a 1/2 1/2 1/2 1/2 A a A AA Aa a Aa aa

Más detalles

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo

Más detalles

Experimentos con factores aleatorios. Diseño de experimentos p. 1/36

Experimentos con factores aleatorios. Diseño de experimentos p. 1/36 Experimentos con factores aleatorios Diseño de experimentos p. 1/36 Introducción Hasta ahora hemos supuesto que los factores de un experimento son factores fijos, esto es, los niveles de los factores usados

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar mcladera@uib.es Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Elaboró: Luis Casas Vilchis

Elaboró: Luis Casas Vilchis Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con

Más detalles

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto DISEÑOS DE MEDIDAS REPETIDAS Definición En el diseño medidas

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento.

Profesor: Hugo S. Salinas. Primer Semestre Tabla 1: Inteligencia y Rendimiento. X Y Figura 1: Inteligencia y Rendimiento. UNIVERSIDAD DE ATACAMA FACULTAD DE CIENCIAS JURÍDICAS / CARRERA DE TRABAJO SOCIAL TECNOLOGÍA INFORMÁTICA I (SPSS) ESTADÍSTICA DESCRIPTIVA CON MÁS DE UNA VARIABLE Profesor: Hugo S. Salinas. Primer Semestre

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Ing. Agr. Silvia G. Distéfano - INTA, EEA Marcos Juárez

Ing. Agr. Silvia G. Distéfano - INTA, EEA Marcos Juárez Evaluación de fungicidas foliares y fosfito para el manejo del complejo de enfermedades de fin de ciclo en soja en Marcos Juárez (Córdoba) -FACYT - Campaña 2012/13 Ing. Agr. Silvia G. Distéfano - INTA,

Más detalles

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis

Más detalles

Análisis de la varianza (ANOVA)

Análisis de la varianza (ANOVA) Análisis de la varianza (ANOVA) Mª Isabel Aguilar, Eugenia Cruces y Bárbara Díaz UNIVERSIDAD DE MÁLAGA Departamento de Economía Aplicada (Estadística y Econometría) Parcialmente financiado a través del

Más detalles

Interpretación de análisis foliar

Interpretación de análisis foliar Interpretación de análisis foliar AGRO 4037 Fertilidad de Suelos y Abonos Muestreo del tejido Considerar Organos de la planta (hojas con o sin pecíolos) Edad del tejido (hojas jóvenes, hojas viejas) Edad

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques

INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques INDICE Semblanzas de los autores Prologo Introducción Capitulo 1: el proceso de la investigación y los enfoques cuantitativo y cualitativo hacia un modelo integral 3 Qué enfoques se han presentado par

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

IDE y Análisis de datos

IDE y Análisis de datos IDE y Análisis de datos Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Presentación Objetivos Metodología Introducción IDE y Análisis de datos 1 Planeación de la investigación Proceso

Más detalles

Análisis de la covarianza

Análisis de la covarianza Análisis de la covarianza Preparado por Luis M. Molinero (Alce Ingeniería) CorreoE: bioestadistica alceingenieria.net Artículo en formato PDF Enero 2002 El análisis de la covarianza es una técnica estadística

Más detalles

Diseño de Experimentos

Diseño de Experimentos Diseño de Experimentos p. Diseño de Experimentos Isabel Casas Despacho: 10.0.04 mcasas@est-econ.uc3m.es Hector Cañada jcanada@est-econ.uc3m.es Introducción Los modelos que vamos a estudiar son usados para

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011 Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños

Más detalles

Diseño de Experimentos Diseños de un Solo Factor Categórico

Diseño de Experimentos Diseños de un Solo Factor Categórico Diseño de Experimentos Diseños de un Solo Factor Categórico Resumen La selección de Diseños de un Solo Factor Categórico sobre el menú de Crear un Diseño crea diseños experimentales para situaciones donde

Más detalles

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia

Marco de referencia. a) Es útil saber si la estrategia de tratamiento sin un. biológico (menos costosa), tiene mejor o igual eficacia Marco de referencia a) Es útil saber si la estrategia de tratamiento sin un biológico (menos costosa), tiene mejor o igual eficacia que la estrategia con un biológico en AR temprana. b) No hay estudios

Más detalles

7 Aplicación de técnicas de regresión lineal en el estudio de la diversidad funcional -----

7 Aplicación de técnicas de regresión lineal en el estudio de la diversidad funcional ----- 7 Aplicación de técnicas de regresión lineal en el estudio de la diversidad funcional ----- Aplicación de técnicas de regresión lineal en el estudio de la diversidad funcional Diego Bermeo, Diego Delgado,

Más detalles

CONTROL QUÍMICO DE ENFERMEDADES DE FIN DE CICLO Y ROYA EN SOJA MEDIANTE USO DE UN FERTILIZANTE FOLIAR. COMPAÑÍA DEGSER.

CONTROL QUÍMICO DE ENFERMEDADES DE FIN DE CICLO Y ROYA EN SOJA MEDIANTE USO DE UN FERTILIZANTE FOLIAR. COMPAÑÍA DEGSER. CONTROL QUÍMICO DE ENFERMEDADES DE FIN DE CICLO Y ROYA EN SOJA MEDIANTE USO DE UN FERTILIZANTE FOLIAR. COMPAÑÍA DEGSER. CAMPAÑA 26-27 Ing. Agr. Silvia Distéfano, Biol. Laura Gadbán, Est. Beatriz Masiero.

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

PROYECTO MANEJO INTEGRAL DE BOSQUES DE LA CHIQUITANIA-MIBC

PROYECTO MANEJO INTEGRAL DE BOSQUES DE LA CHIQUITANIA-MIBC PROYECTO MANEJO INTEGRAL DE BOSQUES DE LA CHIQUITANIA-MIBC Caracterización morfológica y análisis de varianza del peso de semillas de almendra chiquitana (Dipteryx alata Vogel) de distintas procedencias

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ Presentado a: MARIA ESTELA SEVERICHE CORPORACION UNIVERSITARIA

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO CONTENIDO DE CARTA DESCRIPTIVA 1.- IDENTIFICACIÓN Curso: Bioestadística Programa: Doctorado en Inmunobiología

Más detalles

Análisis de Capacidad Multivariada

Análisis de Capacidad Multivariada Análisis de Capacidad Multivariada Resumen El procedimiento Análisis de Capacidad Multivariada determina la probabilidad de que los puntos caracterizados por dos o más variables se encuentren establecidos

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Posibles escenarios. (a) ESTADO REAL (VERDAD) desconocido. (Error tipo II) EVIDENCIA ( DATOS) observados. Error Tipo I NO HAY ERROR NO HAY ERROR (ß)

Posibles escenarios. (a) ESTADO REAL (VERDAD) desconocido. (Error tipo II) EVIDENCIA ( DATOS) observados. Error Tipo I NO HAY ERROR NO HAY ERROR (ß) Hipótesis Pruebas de hipótesis Son enunciados formulados como respuestas tentativas a preguntas de investigación. Walter Valdivia Miranda Instituto de investigaciones de la Altura Universidad Peruana Cayetano

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

Diseño de Experimentos

Diseño de Experimentos Diseño de Experimentos M. en E. Patricia I. Romero Mares Departamento de Probabilidad y Estadística IIMAS-UNAM Cursos PUMA Análisis estadísticos para proyectos de investigación ambiental 30 julio a 3 agosto

Más detalles

ENSAYO UNIFORME DE RENDIMIENTO DE HIBRIDOS COMERCIALES DE MAIZ (Zea mays) EN EL VALLE DEL SANTA

ENSAYO UNIFORME DE RENDIMIENTO DE HIBRIDOS COMERCIALES DE MAIZ (Zea mays) EN EL VALLE DEL SANTA UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERIA DEPARTAMENTO ACADEMICO DE AGROINDUSTRIA E.A.P. INGENIERIA AGRONOMA INFORME DE INVESTIGACION 2011 ENSAYO UNIFORME DE RENDIMIENTO DE HIBRIDOS COMERCIALES

Más detalles

Evaluación n de la Aptitud Combinatoria General y Específica en 21 progenies

Evaluación n de la Aptitud Combinatoria General y Específica en 21 progenies UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS AGRÍCOLAS Evaluación n de la Aptitud Combinatoria General y Específica en 21 progenies de papa Solanum phureja para resistencia a Tizón n tardío (Phytophthora

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

XV Taller de Variedades de Híbridos de Maíz Experiencias en Fertilización Campaña Sección Suelos y Nutrición Vegetal

XV Taller de Variedades de Híbridos de Maíz Experiencias en Fertilización Campaña Sección Suelos y Nutrición Vegetal XV Taller de Variedades de Híbridos de Maíz Experiencias en Fertilización Campaña 2014-2015 Sección Suelos y Nutrición Vegetal Miércoles 14 de Octubre de 2015 SE TRATARAN LOS SIGUIENTES TOPICOS: FERTILIZACION

Más detalles

TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN

TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN 1 DISEÑO DE INVESTIGACIÓN Y 1 A = a 1 a Y 1 A = 3 a 1 a a Hipótesis específicas de la investigación Cuando la variable independiente tiene

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles