20/11/2011 ELECTROTECNIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "20/11/2011 ELECTROTECNIA"

Transcripción

1 0//0 orriete cotíua EETROTENIA. Elemetos activos. Elemetos pasivos 3. riterio iteracioal de sigos 4. Asociació de elemetos activos 5. Asociació de elemetos pasivos Juaa Molia Elemetos capaces de aportar eergía eléctrica para crear ua diferecia de potecial o tesió, etre dos putos de u circuito. os elemetos activos puede clasificarse e fuetes de tesió y fuetes de itesidad. Estas fuetes puede a su vez ser: Idepedietes: Si su valor o depede de otras variables del circuito. Depedietes: Si su valor depede de otras variables del circuito. Ua fuete idepediete de tesió es u elemeto que proporcioa al circuito ua tesió específica, idepedietemete de la itesidad que pase por ella. la fuete se comporta como u elemeto ideal, si pérdidas. el valor de tesió de la fuete o depede de la corriete que circula. e ellas, además, se cosidera las pérdidas de la propia fuete (la resistecia o impedacia itera) el valor de tesió de la fuete depede de la corriete que circula. 3 4 MAGNITUD EÉTRIA FUNDAMENTA os elemetos pasivos so aquellos que cosume eergía o la almacea. os elemetos pasivos que cosume eergía so las resistecias (resistores). os elemetos pasivos que almacea eergía so los codesadores (capacitores) y las bobias (iductacias). Oposició que ofrece u material al paso de la corriete eléctrica. Su valor se mide e ohmios (Ω). a resistecia de u coductor depede de sus características itrísecas y de sus dimesioes y es directamete proporcioal la logitud del coductor e iversamete proporcioal a su secció: OMPONENTE EETRÓNIO l R S Se defie como la relació de proporcioalidad etre la itesidad de corriete que la atraviesa y la tesió medible etre sus extremos, relació coocida como ley de Ohm. Su valor se mide e ohmios (Ω) R=Resistecia (Ω) ρ=resistividad (Ω mm /m) l=logitud (m) S=secció (mm ) 5 6

2 0//0 A REAIÓN u( i( ES INEA os resistores so compoetes eléctricos/electróicos llamados tambié resistecias. Ua resistecia ideal es u elemeto pasivo que disipa eergía e forma de calor segú la ley de Joule. P = R I Ecuacioes de defiició (modelo ideal) u( R i( i( G u( Facilidad que ofrece u material al paso de la corriete eléctrica. Iversa de la resistecia eléctrica. G = / R Su valor se mide e siemes, S = (Ω - ). 7 8 Al isertar resistores, se modifica los valores de las tesioes y las itesidades de corriete e otros elemetos del circuito. El valor óhmico y la toleracia de alguos tipos de resistecias se suele idicar mediate badas de colores pitadas sobre el cuerpo de la resistecia. 4,50 V,70 V ÓDIGO DE OORES ma ma 9 0 El tamaño de las resistecias o está relacioado co el valor óhmico sio co la potecia que so capaces de disipar si deteriorarse. a potecia que disipa ua resistecia viee dada por la expresió: P = V I = R I 0,5 W 0,5 W W Resistecias de carbó os poteciómetros so resistecias co tres termiales: dos fijos e los extremos y uo móvil cuya posició puede ajustarse maualmete. Poteciómetro Poteciómetros as resistecias cerámicas puede disipar mucha potecia. 7 W Resistecia cerámica Resistecia cerámica

3 0//0 a resistecia eléctrica de ua DR varía depediedo de la catidad de luz que icida sobre su superficie. uato más luz icida meor es su resistecia eléctrica. DRs DR Se utiliza e circuitos detectores de ivel de luz para activació de alarmas, ecedido automático de luces, etc. os termistores so resistecias cuyo valor óhmico varía co la temperatura. Puede ser de dos tipos: NT y PT. E los NT la resistecia dismiuye al aumetar la temperatura. E los PT la resistecia aumeta al aumetar la temperatura. NT PT - tº + tº Se utiliza e circuitos detectores de ivel de calor como alarmas cotra icedios, termostatos de horos y sistemas de calefacció, etc. 3 4 Elemeto pasivo de almaceamieto de eergía U codesador está costituido por dos placas coductoras efretadas, llamadas armaduras, separadas por u material dieléctrico. uado se aplica al codesador ua diferecia de potecial, las placas queda cargadas co polaridades cotrarias, estableciédose u campo eléctrico etre ellas. odesador a relació etre la catidad de carga acumulada y la diferecia de potecial que ha provocado dicha acumulació, determia ua costate que caracteriza a todo codesador, deomiada capacidad. q( u( E el SI la capacidad se mide e Faradios F. Submúltiplos: µf-0-6 / F-0-9 / pf-0 - A REAIÓN u( E u codesador, la tesió u( existete etre sus placas será siempre proporcioal a la carga almaceada e ellas, de forma que: [] q( u( i( NO INEA El valor de u codesador depede exclusivamete de las características costructivas del mismo (superficie de las armaduras, separació etre las mismas y características del dieléctrico). Para obteer la característica I-V del codesador sólo teemos que derivar a ambos lados la ecuació [], obteiédose: dq ( d( [] i( De acuerdo co la ecuació [], cuado u codesador coduzca corriete, su tesió debe variar, ya que su derivada es distita de cero. Si embargo, cuado la tesió es costate, la itesidad a través del codesador siempre es ula, ya que la derivada de ua costate es cero. 5 6 A REAIÓN u( i( NO INEA Si itegramos a ambos lados de la ecuació [], obteemos la siguiete relació: [] i( i( u( i( Por lo tato, se establece como ecuacioes de defiició del codesador, las siguietes: i( De la ecuació de defiició aterior se deduce que si la tesió de u codesador se matiee costate, la itesidad se aula. Este es el comportamieto habitual de u codesador e corriete cotiua; cuado está cargado, el codesador actúa como u iterruptor abierto, aulado la corriete e la rama dode esté coectado. Ecuacioes de defiició de u codesador (modelo ideal, =cte) ircuito de carga y descarga de u codesador a través de ua resistecia de carga i( u( i( Flash carga y descarga () Flash carga y descarga () 7 8 3

4 0//0 Elemeto pasivo de almaceamieto de eergía Ua bobia está costituida por u hilo coductor arrollado u úmero N de vueltas sobre u úcleo de aire u otro material y diseñada especialmete para presetar u cierto coeficiete de autoiducció () cuya uidad de medida es el Herio (H). as pueñas iductacias lleva úcleo de aire y las grades iductacias lleva úcleo de material ferromagético porque preseta ua gra permeabilidad magética. Debido a su coeficiete de autoiducció, [], las bobias preseta ua caída de tesió e boras proporcioal a las variacioes de corriete, ya que se opoe a estas variacioes, freado las subidas y bajadas bruscas. Se deomia autoiducció a la producció de fem e ua bobia, como cosecuecia del aumeto o dismiució de la corriete que circula por ella. Segú la ley de ez, el setido de la corriete iducida será tal que su flujo se opoe a la causa que la produce. a fem de autoiducció sólo se produce mietras está variado la corriete, ya que la variació de la corriete ocasioará la variació del flujo magético Φ que la atraviesa. De la afirmació aterior se deduce que:. Para u flujo Φ costate, o habrá tesió iducida, co lo que para corriete cotiua ua bobia se comporta como u cortocircuito.. Para u flujo Φ variable, habrá ua tesió iducida que podrá ser egativa, positiva o ula, segú aumete, dismiuya o permaezca fija la corriete, co lo que para corriete altera, ua bobia presetará ua compoete resistiva (debida a la resistecia óhmica del coductor arrollado) y ua compoete iductiva (debida a la autoiducció de la bobia). 9 0 A REAIÓN u( i( NO INEA a f.e.m. autoiducida e la iductacia se expresará como: [] u( Si itegramos a ambos lados de la ecuació [], obteemos la siguiete relació: u( i ( u( Por lo tato, se establece como ecuacioes de defiició de la bobia, las siguietes: Elemeto RESISTENIA ONDENSADOR Ecuacioes de defiició Tesió Itesidad u( R i( i( G u( u( i( i( Ecuacioes de defiició de ua bobia (modelo ideal, =cte) u( i ( u( BOBINA u( i ( u( Elemeto RESISTENIA ONDENSADOR BOBINA Ecuació Potecia p ( u( i( R p ( Ri ( Gu ( R p ( u( du ( p ( p ( i( di ( p ( Eergía t w ( R Ri ( t w ( R Gu ( w ( u ( w ( i ( 3 Para represetar las itesidades y tesioes e u circuito eléctrico se admite los siguietes criterios de sigos: a Itesidad de corriete eléctrica idicará el setido de desplazamieto de cargas positivas (criterio debido a los estudios iiciales de Bejamí Frali). O sea, cotrario al movimieto de electroes. De esta maera, la itesidad de corriete eléctrica saldrá por el polo positivo del geerador y etrará por el polo egativo. E el caso de los elemetos pasivos del circuito (Resistecias,..), el termial por dode etre la itesidad de corriete eléctrica será más positivo que por dode salga la itesidad. Debido al cosumo de los elemetos pasivos. a diferecia de potecial eléctrico etre dos putos (ddp), si A tiee mayor potecial (eergía) que B, lo idicaremos co ua flecha idicado el setido de poteciales decrecietes y SIEMPRE u sigo + (A) (B) A B 4 4

5 0//0 as referecia so solamete u criterio de sigos que os permite medir las magitudes. El uso de uas referecias u otras e el estudio de u circuito o afecta al comportamieto real del mismo. 5 6 odesadores e serie Todos los codesadores adquiere igual carga Q Q... Q... Q 7 a tesió total del acoplamieto es igual a la suma de las tesioes e los extremos de cada codesador a capacidad total del acoplamieto es la iversa de la suma de las iversas de las capacidades de cada codesador V V... V... V Q Q Q Q V V Q V Q 8 odesadores e paralelo Bobias e serie a tesió e los extremos de la asociació es igual a la tesió e los extremos de cada codesador ada codesador adquiere ua carga segú su capacidad, siedo la carga total del acoplamieto, la suma de las cargas de cada codesador a capacidad total del acoplamieto es igual a la suma de las capacidades de cada codesador V V... V... V Q Q... Q... Q Q V V... V... V Q V Q V a tesió total del acoplamieto es igual a la suma de las tesioes e los extremos de cada bobia El coeficiete de autoiducció total del acoplamieto es igual a la suma de los coeficietes de autoiducció de cada bobia VV... V... V

6 0//0 Bobias e paralelo a tesió e los extremos de la asociació es igual a la tesió e los extremos de cada bobia El coeficiete de autoiducció total del acoplamieto es la iversa de la suma de las iversas de los coeficietes de autoiducció de cada bobia V V... V... V

Área Electrónica Laboratorio 4º Año TRABAJO PRÁCTICO Nº 1 ASOCIACIÓN DE RESISTENCIAS

Área Electrónica Laboratorio 4º Año TRABAJO PRÁCTICO Nº 1 ASOCIACIÓN DE RESISTENCIAS E.T. Nº 7 - D.E. XIII eg. V ÁCTICAS UNIFICADAS TABAJO ÁCTICO Nº ASOCIACIÓN DE ESISTENCIAS ) Itroducció Teórica a) esistecias Las resistecias está caracterizadas pricipalmete por: esistecia omial: es el

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

:: OBJETIVOS [3.1] :: PREINFORME [3.2]

:: OBJETIVOS [3.1] :: PREINFORME [3.2] :: OBJETIVOS [3.] Verificar que la resistecia equivalete a ua asociació de resistecias e serie se obtiee sumado aritméticamete las resistecias coectadas Verificar que la resistecia equivalete a ua asociació

Más detalles

Materiales de construcción de resistencia.( fabricación de resitores ) El resistor o resistencia es el elemento circuital más simple y de mayor uso.

Materiales de construcción de resistencia.( fabricación de resitores ) El resistor o resistencia es el elemento circuital más simple y de mayor uso. Laboratorio de Electróica Tema: Fabricació de resistores. Circuitos e paralelo y serie. Materiales de costrucció de resistecia.( fabricació de resitores ) El resistor o resistecia es el elemeto circuital

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR NVESDD SMON BOLV COMPOMENO DE L MQN CON Hoja Nº -63 EXCCÓN EN DEVCON 1. La máquia e derivació coectada a ua red de tesió costate. La ecuació para la tesió es (cosiderado circuito pasivo): + ). + E ( (

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

E a RT. b. Verdadero. El orden total de la reacción es la suma de los exponentes de las concentraciones de la ecuación de velocidad (n = = 3)

E a RT. b. Verdadero. El orden total de la reacción es la suma de los exponentes de las concentraciones de la ecuación de velocidad (n = = 3) Modelo 04. Preguta A.- La ecuació de velocidad para la reacció A + B C viee dada por la v k A B. Justifique si las siguietes afirmacioes so verdaderas o falsas: a) Duplicar la cocetració de B hace que

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

Calcular la resistencia equivalente de asociaciones de resistencias. Conocer los efectos energéticos de la corriente eléctrica y el efecto Joule.

Calcular la resistencia equivalente de asociaciones de resistencias. Conocer los efectos energéticos de la corriente eléctrica y el efecto Joule. Capítulo 3 Corriete cotiua y resistecia eléctrica 3.1 Itroducció 3.2 Corriete cotiua y corriete altera 3.3 Corriete y movimieto de cargas 3.4 Itesidad y desidad de corriete 3.5 Ley de Ohm. Resistecia 3.6

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Tema 7. Circuitos de corriente continua.

Tema 7. Circuitos de corriente continua. Tema 7. Circuitos de corriete cotiua. 7. Itesidad y desidad de corriete. Ecuació de cotiuidad. 7. Coductividad eléctrica. Ley de Ohm. 7.. Asociació de resistecias 7.3 Eergía de la corriete eléctrica. Ley

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

Rectificador de media onda

Rectificador de media onda Electróica y microelectróica ara cietíficos ectificador de media oda Como u diodo ideal uede mateer el flujo de corriete e ua sola direcció, se uede utilizar ara cambiar ua señal de ca a ua de cd. E la

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

JUNTURA METAL SEMICONDUCTOR

JUNTURA METAL SEMICONDUCTOR JUNTURA METAL SEMICONUCTOR. EQUILIBRIO E SISTEMAS E FERMI EN CONTACTO Supogamos dos sistemas co eergías de Fermi diferetes. esigamos como E F, ; g, ();f F, ();, () y v, () a las eergías de Fermi, la fució

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS TRABAJO PRÁCTICO N O. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS PARTE : SEÑALES Recomedacioes geerales: Utilice el comado stem para el graficado de las señales discretas. El uso de plot o se ajusta al

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO OBJETIOS: Se pretede cotrolar la temperatura de u ambiete reducido (e este caso la cabia de ua icubadora para eoatos),

Más detalles

Unidad 3. Construcción de números índice y aplicaciones al análisis económico

Unidad 3. Construcción de números índice y aplicaciones al análisis económico Uidad 3. Costrucció de úmeros ídice y aplicacioes al aálisis ecoómico Los úmeros ídices, utilizados co frecuecia e Ecoomía, Demografía y diferetes campos de la estadística aplicada, so valores coveietes

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Instalaciones eléctricas de baja tensión

Instalaciones eléctricas de baja tensión Istalacioes eléctricas de baja tesió Págia CÁLCULO DE LAS CORRIENTES DE CORTOCIRCUITO 1 Itroducció, causas y cosecuecias de los cortocircuitos... Itroducció Orige de los cortocircuitos 6 Tipos de cortocircuitos

Más detalles

CALIENTE AIRE HÚMEDO

CALIENTE AIRE HÚMEDO .- Itroducció.- CALIENTE AIRE HÚMEDO FUEGO AGUA SECO TIERRA FRIO.- Naturaleza eléctrica de la materia.-..- LOS RAYOS CATÓDICOS: La primera evidecia de partículas subatómicas se obtuvo e el estudio de la

Más detalles

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE Supogamos teer ua plata de trasferecia G(s) (ver la figura), que es estable y a la cual le igresamos ua señal siusoidal r(t) = a. se(ω.t). Se demuestra que

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

GUÍA DE ESTUDIO DE CIRCUITOS DE CORRIENTE CONTINUA

GUÍA DE ESTUDIO DE CIRCUITOS DE CORRIENTE CONTINUA UNESDD NCONL EXPEMENL FNCSCO DE MND E DE ECNOLOGÍ. COMPLEO CDEMCO EL SBNO DEPMENO DE FSC Y MEMÁC UNDD CUCUL: FÍSC POF. CMEN DN CONCEPCÓN GUÍ DE ESUDO DE CCUOS DE COENE CONNU COENE ELÉCC La corriete que

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

TRANSFORMADORES DE MEDICION

TRANSFORMADORES DE MEDICION TRANSFORMADORES DE MEDCON Trasformadores de Corriete (T Trasformadores de Tesió (TV T TV med. V med. Sirve para: Medició de mag. eléct. Accioam. de relés Todos cumple doble fució: Aislació Adaptació Trasformador

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Divisió de Plaificació, Estudios e Iversió MIDEPLAN Curso: Preparació y Evaluació de Proyectos EVALUACIÓN DE PROYECTOS: Coceptos Básicos Temario Matemáticas

Más detalles

C. INDICADORES DE EVALUACION DE PROYECTOS

C. INDICADORES DE EVALUACION DE PROYECTOS C. INDICADORES DE EVALUACION DE PROYECTOS 1. Matemáticas Fiacieras 1.1 Iterés simple e iterés compuesto Iterés simple es aquel que se calcula siempre sobre el capital origial, y por tato excluye itereses

Más detalles

Polarización de una onda

Polarización de una onda Polarizació La luz atural La luz se geera por u dipolo (ua carga eléctrica) que vibra a cierta frecuecia y por tato geera u campo eléctrico. ste campo implica, a su vez, el correspodiete campo magético

Más detalles

Laboratorio: Las magnitudes físicas

Laboratorio: Las magnitudes físicas Laboratorio: Las magitudes físicas Departameto de Física CONTENIDO Las magitudes físicas y sus medidas. Aálisis dimesioal. Errores o icertidumbres eperimetales. La medida de magitudes físicas y sus errores.

Más detalles

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos Departameto de Matemáticas Guía Iducció Matemática Objetivos: Eteder el pricipio del bue orde Realizar demostracioes matemáticas por medio del pricipio de iducció matemática El pricipio del bue orde: iducció

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

4 El Perceptrón Simple

4 El Perceptrón Simple El Perceptró Simple. Itroducció Ua de las características más sigificativas de las redes euroales es su capacidad para apreder a partir de algua fuete de iformació iteractuado co su etoro. E 958 el psicólogo

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Estudio Frecuencial de Sistemas Continuos de 1 er y 2º Orden

Estudio Frecuencial de Sistemas Continuos de 1 er y 2º Orden Uiversidad Carlos III de Madrid Departameto de Igeiería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica Estudio Frecuecial de Sistemas Cotiuos de 1 er y º Orde Estudio frecuecial de sistemas cotiuos

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

TEMA 7 Trenes de Engranajes

TEMA 7 Trenes de Engranajes Igeiería Idustrial. Teoría Máquias TEMA 7 Trees de Egraajes Haga clic para modificar el estilo de subtítulo del patró Objetivos: Itroducir el mudo de los trees de egraajes, aalizado los diversos tipos

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

Fluidos no newtonianos

Fluidos no newtonianos Fluidos o etoiaos Desde el puto de vista de la reología, los fluidos más secillos so los etoiaos, llamados así porque su comportamieto sigue la ley de Neto: El esfueo de corte es proporcioal al gradiete

Más detalles

Protón Neutrón Electrón

Protón Neutrón Electrón 1 Descubrimieto de las partículas subatómicas Tema 4. Estructura Atómica y Sistema Periódico Electró (Stoey, 1891) Protó (Rutherford, 1911) Neutró (Chadwick, 193) Crookes (1.875). rayos catódicos Viaja

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión:

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión: 1 CENTRALES IRÁULICAS TURBINAS IRÁULICAS INTROUCCIÓN E el capítulo aterior se hizo referecia a la trasformació eergética que se preseta e la tubería La eergía potecial del agua se trasforma e eergía de

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL República Bolivariaa de Veezuela Miisterio del Poder Popular para la Educació Superior Uiversidad Nacioal Experimetal Rafael María Baralt Programa: Igeiería y Tecología Proyecto: Igeiería e Gas Profesor:

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Tema: Análisis de ruido en circuitos electrónicos DCSE

Tema: Análisis de ruido en circuitos electrónicos DCSE Tema: Aálisis de e circuitos electróicos DCSE Ídice Itroducció Tipos de Caracterizació del Ejemplos de uido e A.O. uido e circuitos electróicos Deiició y propiedades Cualquier perturbació o luctuació ideseada

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles