Tema 1: Introducción a la Estadística Bayesiana

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 1: Introducción a la Estadística Bayesiana"

Transcripción

1 Tema 1: Introducción a la Estadística Bayesiana Introducción En general, se usan probabilidades de modo informal para expresar la información o la incertidumbre que se tiene acerca de observaciones de cantidades desconocidas. Sin embargo, el uso de probabilidades para expresar la información se puede hacer de modo formal. Desde el punto de vista matemático se puede demostrar que con el Cálculo de Probabilidades se puede representar de modo numérico el conjunto de racional de creencias, de modo que existe una relación entre probabilidad y e información y la regla de Bayes proporciona un modo natural de actualización de las creencias cuando aparece nueva información. Este proceso de aprendizaje inductivo por medio de la regla de Bayes es la base de la Inferencia Bayesiana. De manera general, los métodos bayesianos son métodos de análisis de datos que se derivan de los principios de la inferencia bayesiana. Estos métodos, proporcionan Estimadores de los parámetros que tienen buenas propiedades estadísticas; Una descripción parsimoniosa (simple) de los datos observados; Estimación de los datos missing y predicciones de futuras observaciones; Una metodología computacional potente para la estimación, selección y validación de modelos. La metodología bayesiana consta de tres pasos fundamentales: 1. Especificar un modelo de probabilidad que incluya algún tipo de conocimiento previo (a priori) sobre los parámetros del modelo dado. 2. Actualizar el conocimiento sobre los parámetros desconocidos condicionando este modelo de probabilidad a los datos observados. 3. Evaluar el ajuste del modelo a los datos y la sensibilidad de las conclusiones a cambios en los supuestos del modelo. 1

2 La diferencia fundamental entre la estadística clásica (frecuentista) y la bayesiana es el concepto de probabilidad. Para la estadística clásica es un concepto objetivo, que se encuentra en la naturaleza, mientras que para la estadística bayesiana se encuentra en el observador, siendo así un concepto subjetivo. De este modo, en estadística clásica sólo se toma como fuente de información las muestras obtenidas suponiendo, para los desarrollos matemáticos, que se pueden tomar tamaños límite de las mismas. En el caso bayesiano, sin embargo, además de la muestra también juega un papel fundamental la información previa o externa que se posee en relación a los fenómenos que se tratan de modelizar. Definiciones y Teoremas Básicos El concepto básico en estadística bayesiana es el de probabilidad condicional: Para dos sucesos A y B, P (A B) P (A B) P (B) P (A B) Se puede aplicar esta definición también a variables discretas o continuas. Desde el punto de vista bayesiano, todas las probabilidades son condicionales porque casi siempre existe algún conocimiento previo o experiencia acerca de los sucesos. Ley de la Probabilidad Total: Para un suceso A y una partición B 1,..., B k, k P (A) P (A B i )P (B i ) i1 Se puede aplicar el teorema a variables discretas: f(x) y f(x Y y)p (Y y) o a variables continuas: f(x) f(x y)f(y) dy. En una fábrica de galletas se embalan en 4 cadenas de montaje; A 1, A 2, A 3 y A 4. El 35% de la producción total se embala en la cadena A 1 y el 2%, 24% y 21% en A 2, A 3 y A 4 respectivamente. Los datos indican que no se embalan correctamente un porcentaje pequeño de las cajas; el 1% de A 1, el 3% de A 2, el 2.5% de A 3 y el 2% de A 4. Cuál es la probabilidad de que una caja elegida al azar de la producción total sea defectuosa? Defino como D defectuosa. 2

3 Luego, P (D) 4 P (D A i )P (A i ) i Supongamos que X Y Pois(Y ), una distribución Poisson, para x, 1, 2, para y >, donde Y Exp(β), una distribución exponencial Entonces, la distribución marginal de X es P (x y) yx x! e y f(y) β exp( βy) P (x) P (x y)f(y) dy y x x! e y β exp [ βy] dy β x! β x! y x exp [ (β + 1)y] dy y (x+1) 1 exp [ (β + 1)y] dy Para resolver la integral, se observa que el integrando está relacionado con una distribución gamma Ga(x + 1, β + 1) : NOTA: Si X Ga(a, b) su función de densidad es f(x; a, b) ba Γ(a) xa 1 exp[ bx], de este modo b a Γ(a) xa 1 exp[ bx]dx 1 x a 1 exp[ bx]dx Γ(a) b a 3

4 Luego P (x) β Γ(x + 1) x! (β + 1) (x+1) β x! x! (β + 1) (x+1) β (β + 1) (x+1) Si se denota como p β/(1 + β), entonces < p < 1 y despejando β P (x) ( p 1 + p ) x ( ) x 1 p 1 p 1 p p(1 p) x, para x, 1, 2,... Se observa que es una distribución geométrica con parámetro p. Si X θ Exp(θ) y θ Ga(α, β), la distribución marginal es f(x) θe θx βα Γ(α) βα Γ(α) βα Γ(α) θα 1 e βθ dθ θ α e (β+x)θ dθ θ (α+1) 1 e (β+x)θ dθ p 1 p, y el integrando está relacionado con otra distribución gamma, Ga(α + 1, β + x): Entonces, f(x) βα Γ(α) θ (α+1) 1 e (β+x)θ dθ Γ(α + 1) βα (β + x) α+1 Γ(α) αβ α (β + x) α+1, Γ(α + 1) (β + x) α+1. donde se ha utilizado la propiedad básica de la función gamma, Γ(α + 1) αγ(α). αγ(α) (β + x) α+1 No es una distribución estándar, pero si se define la v.a. Z X + β, se puede ver que Z tiene una distribución de Pareto. NOTA: Ver, por ejemplo, 4

5 Para ello aplicamos el teorema del cambio de variable: Sea X una v.a. con función de densidad p x y sea g una función diferenciable, monótona e invertible. Definimos otra v.a como Y g(x), entonces la función de densidad de Y es ( p Y (y) p X g 1 (y) ) dg 1 (y) dy O equivalentemente donde x g 1 (y). Ver demostración, e.g,. en p Y (y) p X (x) dx dy En el caso del ejemplo, f Z (z) f X (z β) 1 αβ α z α 1, para Z > β. Luego Z PA(β, α). La distribución de Pareto se aplicó inicialmente a la modelización del reparto de riqueza. Es la llamada ley 8-2 que afirma que el 2% de la poblacion posee el 8% de la riqueza. El teorema de Bayes Se tiene que, para los sucesos A 1,..., A n y B, P (A i B) P (B A i)p (A i ) P (B) P (B A i)p (A i ) n P (B A i )P (A i ) i1 P (B A i )P (A i ) Volviendo al ejemplo de las galletas, supongamos que descubrimos que una caja es defectuosa. Queremos calcular la probabilidad de que la caja proceda de A 1. P (A 1 D) P (D A 1)P (A 1 ) P (D)

6 Supongamos un juego televisivo en el que tienes que elegir entre tres puertas cerradas, A, B o C. Detrás de dos de las puertas hay una peineta y en la otra hay un coche, con igual probabilidad en los tres casos. Por tanto, la probabilidad de ganar el coche en cada una de las puertas es p(a) 1, p(b) 1, p(c) Después de que hayas elegido una puerta, digamos A, antes de mostrarte lo que hay detrás de la puerta, el presentador (Risto Mejide) abre otra puerta, digamos B, que tiene una peineta. En este punto te ofrece la opción de cambiar de la puerta A a la puerta C. Qué deberías hacer? liar... Intuitivamente parece que tú has elegido la puerta adecuada, pero que Risto Mejide te quiere así, desde un punto de vista inocente la probabilidad de encontrar el coche entre las dos puertas que quedan es 1. Pero esto es falso... 2 Asumimos que Risto Mejide va en tu contra (cobra de la productora de televisión) y calculamos cuál es la probabilidad de que el coche aparezca cuando él abre la puerta B, una vez que tú hayas abierto la puerta A: (i) La probabilidad de que Risto Mejide abra la puerta B dado que el coche está detrás de la puerta A es p (B RM A) 1 2 ya que le es indiferente abrir la puerta B o C. (ii) La probabilidad de que Risto Mejide abra la puerta B dado que el coche está detrás de la puerta B es p (B RM B) porque supones que no es estúpido. (iii) La probabilidad de que Risto Mejide abra la puerta B dado que el coche está detrás de la puerta C es p (B RM C) 1 Aplicando la definición de probabilidad condicionada se obtienen las siguientes distribuciones conjuntas: p (B RM, A) p (B RM A) p (A) p (B RM, B) p (B RM B) p (B) 1 3 p (B RM, C) p (B RM C) p (C)

7 Por otro lado, dado que los sucesos son mutuamente excluyentes, por la ley de probabilidad total p(b RM ) p (B RM, A) + p (B RM, B) + p (B RM, C) Finalmente, aplicando el teorema de Bayes, se tiene que p (A B RM ) p (B RM A) p (A) p(b RM ) p (C B RM ) p (B RM C) p (C) p(b RM ) Luego es mucho mejor que elijas la puerta C Se puede aplicar el teorema de Bayes a variables discretas y continuas. En el caso de que la v.a. X sea continua se tiene f(x y) f(y x)f(x) f(y) f(y x)f(x) R f(y x)f(x)dx, como el denominador f(y) es independiente de x, entonces se puede escribir el teorema en la forma de proporcionalidad ( ): f(x y) f(y x)f(x). Este resultado es útil para los cálculos porque implica que se pueden olvidar las constantes multiplicativas hasta el final de los cálculos en modelos complicados. Retomando el ejemplo de la Poisson, se tenía que Y Exp(β) y X Y Pois(Y ). Calculamos la distribución de Y x, sabiendo que la distribución marginal de X era una geométrica: f(y x) P (x y)f(y) P (x) y x e y βe βy x! β (β+1) x+1 (β + 1)x+1 y x e (β+1)y x! (β + 1)x+1 Γ(x + 1) y(x+1) 1 e (β+1)y que es la densidad de una variable gamma: Ga(x + 1, β + 1). Volviendo al ejemplo de la distribución de Pareto, donde X θ Exp(θ) y θ Ga(α, β), calculamos la distribución de θ dada una observación x. 7

8 f(θ x) f(x θ)f(θ) θx βα θe Γ(α) θα 1 e βθ θ (α+1) 1 e (β+x)θ que está relacionado con una distribución gamma, es decir, θ x Ga(α + 1, β + x). La media y varianza condicional. Dadas dos variables X e Y, definimos la media y varianza de X cuando Y y como E [X Y y] xf(x y) dx V ar [X Y y] (x E[X Y y]) 2 f(x y) dx El siguiente teorema nos proporciona la relación entre la esperanza y varianza marginal y la esperanza y varianza condicional. Teorema Dadas dos variables X e Y, se tiene que (i) E x [X] E y [E x [X Y ]] (ii) V ar x [X] E y [V ar x [X Y ]] + V ar y [E x [X Y ]] Demostración: (i) Se tenía que, en general, E(g(x)) g(x)f(x) dx por ello, como E[X Y ] es una función de Y, E y [E x [X Y ]] E x (X y)f(y) dy ( ) xf(x y)dx f(y) dy ( x ) f(x y)f(y)dy dx ( x ) f(x, y)dy dx xf(x) dx E x [X] 8

9 (ii) La demostración, que es más larga, se puede ver, por ejemplo, en el libro de Lee (212). Volviendo al ejemplo de la Poisson, se tenía que Y Exp(β) y X Y Pois(Y ).Supongamos que queremos calcular la media y varianza de X (y que no sabemos nada acerca de la distribución marginal de X que sabíamos de antes que sigue una distribución geométrica). E x [X] E y [E x [X Y ]] E y [Y ] porque X Y Pois(Y ) 1 β la media de la exponencial V ar x [X] E y [V ar x [X Y ]] + V ar y [E x [X Y ]] E y [Y ] + V ar y [Y ] porque media varianza Y 1 β + 1 β 2 Sustituyendo p β + 1 β 2 β y despejando β p, se obtiene que 1+β 1 p E[X] 1 p p q p V ar[x] 1 p p ( 1 p + p 1 p p 2 q p 2, que son los momentos que se obtienen directamente para la distribución geométrica en la notación habitual. Retomando el ejemplo de la distribución de Pareto, donde X θ Exp(θ) y θ Ga(α, β), se tiene ) 2 9

10 que E[X] E θ [E x [X θ]] E θ [1/θ] 1 β α θ Γ(α) θα 1 e βθ dθ βα Γ(α) θ (α 1) 1 e βθ dθ El integrando es el núcleo de una distribución gamma; Ga(α 1, β). Entonces, E[X] es decir, la esperanza sólo existe si α > 1. βα Γ(α 1) β Γ(α) β α 1 α 1, Hemos visto anteriormente que Z X +β PA(β, α). De este modo, podemos calcular la media de X utilizando también la fórmula para la media de una distribución Pareto: E[X] E[Z] β αβ β [para α > 1] α 1 β α 1. 1

Definición 1 (Probabilidad Condicional) Observación 1 Se puede aplicar la definición también a variables discretas o continuas.

Definición 1 (Probabilidad Condicional) Observación 1 Se puede aplicar la definición también a variables discretas o continuas. CAPÍTULO 1: ALGUNAS REGLAS DE PROBABILIDAD Para leer Lee: Capítulo 1 Definición 1 (Probabilidad Condicional) Para dos sucesos A y B, P (A B) P (A B) P (B) Observación 1 Se puede aplicar la definición también

Más detalles

Estadística I Tema 4: Probabilidad

Estadística I Tema 4: Probabilidad Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada

Más detalles

Repaso de Probabilidad y Estadística

Repaso de Probabilidad y Estadística Repaso de Probabilidad y Estadística Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Probabilidad 2 Definición.............................................................

Más detalles

Tema 6: Introducción a la Inferencia Bayesiana

Tema 6: Introducción a la Inferencia Bayesiana Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de

Más detalles

Lee, Capítulo 3, Secciones 3.1,3.2,3.4 y 3.5. Gelman et al, Capítulo 2, Secciones

Lee, Capítulo 3, Secciones 3.1,3.2,3.4 y 3.5. Gelman et al, Capítulo 2, Secciones CAPÍTULO 3: DISTRIBUCIONES CON- JUGADAS Para leer Lee, Capítulo 3, Secciones 3.1,3.2,3.4 y 3.5. Gelman et al, Capítulo 2, Secciones 2.4 2.7. Ejemplo 18 Supongamos que en la situación del Ejemplo 13, se

Más detalles

Mirando el diagrama Venn, vemos que A =(A y B) (A y B)

Mirando el diagrama Venn, vemos que A =(A y B) (A y B) En el Ejemplo 122, hemos aplicado otra regla útil de la probabilidad. Teorema 8 Para dos sucesos A y B, setiene P (A) =P (A B)P (B) +P (A B)P ( B). Demostración Ω A y B A y B A B Mirando el diagrama Venn,

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Modelo de Probabilidad

Modelo de Probabilidad Capítulo 1 Modelo de Probabilidad 1.1 Definiciones y Resultados Básicos Sea Ω un conjunto arbitrario. Definición 1.1 Una familia no vacía F de subconjuntos de Ω es llamada una σ-álgebra de subconjuntos

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

2 Modelos de probabilidad discretos sobre R

2 Modelos de probabilidad discretos sobre R UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Tema 5: Funciones homogéneas

Tema 5: Funciones homogéneas Tema 5: Funciones homogéneas f se dice homogénea de grado α si se verifica: f(λ x) = λ α f( x), x, λ > 0 Propiedades: 1. Si f y g son homogéneas de grado α, entonces f ± g es también homogénea de grado

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.

Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo

NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo NIVELACIÓN DE ESTADISTICA Qué es la probabilidad? La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Por ejemplo: tiramos un dado al aire y

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Se observa X, realización del fenómeno aleatorio. Lo anterior implica razonamiento inductivo.

Se observa X, realización del fenómeno aleatorio. Lo anterior implica razonamiento inductivo. Pruebas de Hipótesis Hay un contexto. Hay un fenómeno aleatorio de interés. ( ΩF,, P( θ )) Valor de θ desconocido. Se observa X, realización del fenómeno aleatorio. Lo anterior implica razonamiento inductivo.

Más detalles

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación

Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 7 de Septiembre, 25 Cuestiones 2 horas C. A partir de los procesos estocásticos X(t e Y (t incorrelados y de media cero, con funciones

Más detalles

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática

Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática DEPARTAMENT D ESTADÍSTICA I INVESTIGACIÓ OPERATIVA Fórmulas, Resultados y Tablas Cálculo de Probabilidades y Estadística Matemática A. Distribuciones de variables aleatorias. 1. Descripción de una distribución

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

10.1 Enfoque Bayesiano del problema de la estimación

10.1 Enfoque Bayesiano del problema de la estimación Chapter 10 Estimadores de Bayes 10.1 Enfoque Bayesiano del problema de la estimación puntual Consideremos nuevamente un problema estadístico de estimación paramétrico. Se observa un vector X = X 1,...,

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto

Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Estadística Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Octubre 2010 Contenidos...............................................................

Más detalles

ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA

ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA robabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA -XII- Grupo B.- Tres máquinas de una planta de montaje producen el %, 5% y 5% de productos, respectivamente. Se sabe que el %, %,

Más detalles

Estadística Bayesiana

Estadística Bayesiana Universidad Nacional Agraria La Molina 2017-1 Teoría de la decisión Riesgo de Bayes La teoría de decisión es un área de suma importancia en estadística ya que muchos problemas del mundo real pueden tomar

Más detalles

EVAU. Junio matematiib.weebly.com

EVAU. Junio matematiib.weebly.com Propuesta A 1A. x + a si x f(x) = { x + bx 9 si x > a) Se trata de una función definida a trozos a partir de dos funciones polinómicas, por lo que el único punto donde la función podría no ser continua

Más detalles

Tema 4. Probabilidad Condicionada

Tema 4. Probabilidad Condicionada Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.

Más detalles

Espacio de Probabilidad

Espacio de Probabilidad Capítulo 1 Espacio de Probabilidad 1.1 Definiciones y Resultados Básicos Sea Ω un conjunto arbitrario. Definición 1.1 Una familia no vacía F de subconjuntos de Ω es llamada una σ-álgebra de subconjuntos

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-

Más detalles

Modelo Uniforme discreto de Probabilidad (Modelo Clásico de Probabilidad)

Modelo Uniforme discreto de Probabilidad (Modelo Clásico de Probabilidad) Modelo Uniforme discreto de Probabilidad (Modelo Clásico de Probabilidad) 1. Definición y propiedades. Aditividad finita Definición 1. Sea Ω un conjunto finito no vacío. Definimos la medida de probabilidad

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA APLICACIONES DE LA INTEGRAL DEFINIDA Objetivo: El alumno analizará y comprenderá el uso y la aplicación de la integral definida en la resolución de problemas REGIONES PLANAS LIMITADAS POR DOS CURVAS Sean

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II MATRIZ DE ESPECIFICACIONES DE LA ASIGNATURA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUES DE CONTENIDO PORCENTAJE ASIGNADO AL BLOQUE ESTÁNDARES DE APRENDIZAJE Bloque 1. Procesos, métodos

Más detalles

3 ESTIMACION. 3.1 Introducción

3 ESTIMACION. 3.1 Introducción 3 ESTIMACION 3.1 Introducción En un problema estadístico, si los datos fueron generados a partir de una distribución de probabilidad F(x) desconocida, la Inferencia Estadística permite decir algo respecto

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta B 1. a) Despeja la matriz X en la siguiente ecuación

Más detalles

El parte meteorológico ha anunciado tres posibilidades para el fin de semana:

El parte meteorológico ha anunciado tres posibilidades para el fin de semana: Bioestadística Teorema de BAYES (estadística Bayesiana). El Teorema de BAYES se apoya en el proceso inverso al que hemos visto en el Teorema de la Probabilidad Total: Teorema de la probabilidad total:

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Cap. 3 : Variables aleatorias

Cap. 3 : Variables aleatorias Cap. 3 : Variables aleatorias Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 16 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de sistemas,

Más detalles

PROBABILIDAD Y ESTADISTICAS. Propósito del curso : Ingeniería Ingeniería en Sistemas. Hardware. Clave de la materia: 503

PROBABILIDAD Y ESTADISTICAS. Propósito del curso : Ingeniería Ingeniería en Sistemas. Hardware. Clave de la materia: 503 UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: PROBABILIDAD Y ESTADISTICAS DES: Ingeniería Ingeniería en Sistemas Programa(s) Educativo(s):

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 3. Probabilidad y variable aleatoria

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 3. Probabilidad y variable aleatoria Estadís5ca Tema 3. Probabilidad y variable aleatoria María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema

Más detalles

. Luego, para el período n + 1 los resultados estarán, en cualquier caso, en el conjunto {λ k n 0 } n+1. k= (n+1). Consideremos Y = λ U n

. Luego, para el período n + 1 los resultados estarán, en cualquier caso, en el conjunto {λ k n 0 } n+1. k= (n+1). Consideremos Y = λ U n Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Probabilidades MA, /5/9, Prof. Raúl Gouet Solución Control #. Considere una colonia de bacterias con población inicial

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

Hipótesis. (x), donde es el parámetro poblacional desconocido. Problemas Inferenciales sobre

Hipótesis. (x), donde es el parámetro poblacional desconocido. Problemas Inferenciales sobre Tema 7: Introducción a los Contrastes de Hipótesis Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f (x), donde es el parámetro poblacional desconocido Problemas Inferenciales

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL DEPARTAMENTO DE INGENIERÍA HIDROMETEOROLÓGICA LABORATORIO:

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL DEPARTAMENTO DE INGENIERÍA HIDROMETEOROLÓGICA LABORATORIO: 17 o 1765 5 FUNDAMENTACION En un sentido general la estadística es la ciencia que se ocupa de la colección, clasificación, análisis e interpretación de hechos o datos numéricos. Esta ciencia puede aplicarse

Más detalles

EXAMEN DE ESTADÍSTICA Junio 2011

EXAMEN DE ESTADÍSTICA Junio 2011 EXAMEN DE ESTADÍSTICA Junio 2011 Apellidos: Nombre: DNI: GRUPO: 1. Sea X una variable aleatoria discreta. Determine el valor de k para que la función p(x) { k/x x 1, 2, 3, 4 0 en otro caso sea una función

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Estadística I Tema 4: Probabilidad

Estadística I Tema 4: Probabilidad Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1) PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

PROCESOS DE MARKOV DE TIEMPO CONTINUO

PROCESOS DE MARKOV DE TIEMPO CONTINUO CHAPTER 3 PROCESOS DE MARKOV DE TIEMPO CONTINUO 3.1 Introducción En este capítulo consideramos el análogo en tiempo continuo de las Cadenas de Markov de tiempo discreto. Como en el caso de tiempo discreto,

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza

ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza ESTADÍSTICA I Tema 4: Estimación por intervalos de confianza El concepto de intervalo de confianza (IC) IC aproximados basados en el TCL: intervalos para una proporción Determinación del mínimo tamaño

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables continuas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Distribuciones de probabilidad continuas

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Familias de distribuciones

Familias de distribuciones Capítulo 2 Familias de distribuciones 2.1. Introducción Las distribuciones estadísticas son usadas para modelar poblaciones a través de un miembro de una familia de distribuciones. Cada familia se encuentra

Más detalles

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,

Más detalles

Tema 4. Probabilidad y variables aleatorias

Tema 4. Probabilidad y variables aleatorias Tema 4. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Documento 2 : Nuevas funciones a partir de otras

Documento 2 : Nuevas funciones a partir de otras Unidad 4: Funciones reales de una variable real Temas: Algebra de funciones. Composición de funciones. Funciones inyectivas, sobreyectivas, biyectivas. Función inversa. Capacidades. Manejar conceptos y

Más detalles

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13

Auxiliar 9. MNL y MLE. Daniel Olcay. 21 de octubre de 2014 IN4402. Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de / 13 Auxiliar 9 MNL y MLE Daniel Olcay IN4402 21 de octubre de 2014 Daniel Olcay (IN4402) Auxiliar 9 21 de octubre de 2014 1 / 13 Índice Modelos no lineales Probabilidad lineal Probit Logit Máxima verosimilitud

Más detalles

Dr. Francisco Javier Tapia Moreno. Octubre 14 de 2015.

Dr. Francisco Javier Tapia Moreno. Octubre 14 de 2015. Dr. Francisco Javier Tapia Moreno Octubre 14 de 2015. Nuestra explicación anterior de intersecciones y uniones indica que nos interesa calcular las probabilidades de sucesos tales como A y B y A o B. Estos

Más detalles

INTRODUCCIÓN A LA INFERENCIA BAYESIANA

INTRODUCCIÓN A LA INFERENCIA BAYESIANA Universidad de Carabobo Facultad Experimental de Ciencias y Tecnología Departamento de Matemáticas INTRODUCCIÓN A LA INFERENCIA BAYESIANA Profesor: Profesora: Alumna: Saba Infante Aracelis Hernández Andreina

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

Tablas de Probabilidades

Tablas de Probabilidades Tablas de Probabilidades Ernesto Barrios Zamudio José Ángel García Pérez José Matuk Villazón Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Mayo 2016 Versión 1.00 1 Barrios

Más detalles

2.3. Análisis bayesiano para datos normales

2.3. Análisis bayesiano para datos normales 2.3. Análisis bayesiano para datos normales 87 2.3. Análisis bayesiano para datos normales Otra de las situaciones más frecuentes en la práctica estadística es aquella en la que nos encontramos con datos

Más detalles

Tema 1. Probabilidad y modelos probabiĺısticos

Tema 1. Probabilidad y modelos probabiĺısticos 1 Tema 1. Probabilidad y modelos probabiĺısticos En este tema: Probabilidad Variables aleatorias Modelos de variables aleatorias más comunes Vectores aleatorios 2 Tema 1. Probabilidad y modelos probabiĺısticos

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Independencia condicional Como hemos dicho, las probabilidades condicionales tienen las mismas propiedades que las probabilidades no condicionales. Un ejemplo más es el siguiente:

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Ciencias Básicas y Matemáticas

Ciencias Básicas y Matemáticas UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia Semestre: 4 Área en plan de estudios: Ingeniería Ingeniería en Tecnología de Procesos

Más detalles

Tema 2. Introducción a la Estadística Bayesiana

Tema 2. Introducción a la Estadística Bayesiana 2-1 Tema 2 Introducción a la Estadística Bayesiana El teorema de Bayes Ejemplo Interpretación Ejemplo: influencia de la distribución a priori Ejemplo: densidad de flujo Probabilidad bayesiana Ejemplo:

Más detalles

DISTRIBUCIÓN GAMMA. Guillermo Mir Piorno NIUB Ciencias Actuariales y Financieras ESTADÍSTICA ACTUARIAL NO VIDA

DISTRIBUCIÓN GAMMA. Guillermo Mir Piorno NIUB Ciencias Actuariales y Financieras ESTADÍSTICA ACTUARIAL NO VIDA DISTRIBUCIÓN GAMMA Guillermo Mir Piorno NIUB 11130641 Ciencias Actuariales y Financieras ESTADÍSTICA ACTUARIAL NO VIDA La distribución Gamma Es una distribución adecuada para modelizar el comportamiento

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles