1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200."

Transcripción

1 1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras esté entre 180 y Lanzamos una moneda 15 veces. Halla la probabilidad de obtener exactamente 9 caras. 4. Lanzamos una moneda 15 veces. Halla la probabilidad de obtener entre 8 y 12 caras. 5. Un examen tipo test consta de 38 preguntas con dos posibles respuestas cada una: Verdadero o Falso. Para aprobar se necesita contestar correctamente a 20 o más preguntas. Un alumno, que no ha estudiado, contesta lanzando una moneda (si sale cara pone Verdadero y si sale cruz pone Falso). Qué probabilidad tiene de aprobar? 6. Un examen tipo test consta de 38 preguntas con dos posibles respuestas cada una: Verdadero o Falso. Para aprobar se necesita contestar correctamente a 20 o más preguntas. Un alumno, que no ha estudiado, contesta lanzando una moneda (si sale cara pone Verdadero y si sale cruz pone Falso). Qué probabilidad tiene de acertar más de 24 y menos de 31 preguntas? 7. Calcula los siguientes números combinatorios: ( ) 10 = 2 ( ) 13 = 3 ( ) 10 = 8 ( ) 13 = Una máquina produce 12 piezas defectuosas de cada 1000 que frabrica. Si analizamos 40 piezas producidas por dicha máquina, calcula: Probabilidad de que haya sólo pieza una defectuosa Probabilidad de que no encontrar ninguna pieza defectuosa 9. En un grupo de 20 estudiantes, cada uno falta a clase el 4 % de los días. Calcula la probabilidad de que en un día determinado: No se registre ninguna falta Falten a clase menos de 3 estudiantes Falte sólo un estudiante 10. Si la probabilidad de nacer niña es del 56 % y seleccionamos una familia de 5 hijos, calcula: la probabilidad de que: Probabilidad de que tenga exactamente 3 niñas 1

2 11. El 20 Probabilidad de que tenga al menos 2 niñas Número medio de niñas en las familias de 5 hijos 12. La probabilidad de que se caiga un esquiador principiante es de 0,4. Si lo intenta 5 veces, Cuál es la probabilidad de que se caiga al menos 3 veces? 13. Disponemos de una caja con bombillas (algunas de ellas defectuosas). Elegimos 2 bombillas al azar. Consideremos la variable aleatoria Número de bombillas defectuosas. Se pide: Espacio Muestral Justificar que es una variable aleatoria discreta Tabla de distribución de probabilidad Comprobar que la suma de todas las probabilidades vale En una distribución Normal de media 110 y desviación típica 10, usa la gráfica (campana de Gauss) para calcular las siguientes probabilidades: P [X 110] P [110 < X < 120] P [110 < X < 130] 15. Consideremos una variable aleatoria X que sigue una distribución binomial B(7, 0,4). Calcula: a) P [X = 2] b) P [X = 5] c) P [X = 0] d) P [X > 0] e) P [X > 3] f) P [X 3] 16. En una distribución normal N(110, 10) calcula P [X 110] de dos formas: 17. Lanzamos 3 monedas. Consideremos la variable aleatoria Número de caras obtenidas. Se pide: Espacio Muestral Justificar que es una variable aleatoria discreta Tabla de distribución de probabilidad Media (esperanza matemática) y desviación típica 2

3 18. Disponemos de una diana con 6 círculos concéntricos numerados del 1 al 6. Obtenemos la siguiente tabla de distribución de probabilidad: Xi Pi 0,32 0,28 a 0,12 0,06 0,01 Halla el valor de a y de las siguientes probabilidades: P (X 4) P (X < 3) P (2 < X < 4) P (X < 4) 19. En una distribución Normal de media 110 y desviación típica 10, usa la gráfica (campana de Gauss) para calcular las siguientes probabilidades: P [120 < X < 130] P [X = 100] 20. Consideremos una variable aleatoria X que sigue una distribución binomial B(9, 0,2). Calcula: P [X < 3] P [X 3] P [X 0] P [X 1] P [X 9] 21. Sabiendo que Z representa la distribución Normal Estándar N(0, 1), usa las tablas para P [Z > 1, 47] 22. Sea X una distribución normal N(110, 10). Calcula P [110 < X < 120] de dos formas: 23. Completa la siguiente tabla de distribución de probabilidad de una variable aleatoria discreta y calcula los parámetros (media y desviación típica). Xi Pi Tenemos una urna con 3 bolas Rojas y 7 Verdes. Extraemos una bola al azar, anotamos su color y la devolvemos a la urna. Repetimos 5 veces la experiencia. Se pide: Probabilidad de obtener exactamente 3 bolas rojas 3

4 Probabilidad de obtener menos de 3 bolas rojas Probabilidad de obtener más de 3 bolas rojas Probabilidad de obtener alguna bola roja 25. Sabiendo que Z representa la distribución Normal Estándar N(0, 1), usa las tablas para P [Z 1, 47] 26. Sea X una distribución normal N(110, 10). Calcula P [110 X 130] de dos formas: 27. Justifica si la siguiente expresión representa una función de densidad: f(x) = 1 0, 5x x [0, 2] 28. Sabiendo que Z representa la distribución Normal Estándar N(0, 1), usa las tablas para P [Z 1, 47] 29. Sea X una distribución normal N(110, 10). Calcula P [120 < X < 130] de dos formas: 30. Justifica si la siguiente expresión representa una función de densidad: f(x) = 0, 5 x x [0, 2] 31. Sabiendo que Z representa la distribución Normal Estándar N(0, 1), usa las tablas para P [0, 45 < Z < 1, 47] 32. Sea X una distribución normal N(110, 10). Calcula P [90 < X < 100] de dos formas: 33. Lanzamos un dado 1000 veces. Calcula la probabilidad de obtener menos de 100 veces un Justifica si la siguiente expresión representa una función de densidad: f(x) = 0, 5 + 0, 5x x [0, 2] 35. Sabiendo que Z representa la distribución Normal Estándar N(0, 1), usa las tablas para P [ 1, 47 < Z < 0, 45] 36. Sabiendo que Z representa la distribución Normal Estándar N(0, 1), usa las tablas para 4

5 P [ 1, 47 < Z < 0, 45] 37. Halla el valor de k para que la siguiente función sea una función de densidad k si x [3, 8] f(x) = 0 si x / [3, 8] Calcula las siguientes probabilidades: P [2 < X 5] P [X = 6] P [5 < X 10] 38. Los pesos de 2000 soldados siguen una distribución normal de media 65 kg. y desviación típica 8 kg. Si elegimos un soldado al azar, calcula la probabilidad de que pese: Más de 61 kg. Entre 63 y 69 kg. Menos de 70 kg. Más de 75 kg. 39. Las calificaciones obtenidas por los alumnos en cierta prueba, siguen una distribución normal de media 55 puntos y desviación típica 10 puntos. El aprobado se consigue obteniendo 50 puntos o más. Calcula la probabilidad de que apruebe un alumno elegido al azar Si se presentan 400 alumnos, Cuántos podemos esperar que aprueben? 40. La siguiente gráfica (cuyo domino es [0, c]) es la función de densidad de una variable aleatoria continua. Expresa gráficamente las siguientes probabilidades: P [X = a] P [a X b] P [X b] P [X c] 5

6 41. La siguiente imagen muestra la función de probabilidad (o densidad) de una variable aleatoria continua que anota el tiempo de espera de un tren que pasa cada 20 minutos. Calcula las probabilidades que se indican. P [X 2] P [5 X 10] P [X 10] 42. Un juego consiste en extraer una carta de una baraja española (40 cartas) y: si sale Sota o Saballo recibimos 15 céntimos si sale As o Rey recibimos 5 céntimos si sale cualquier otra carta pagamos 4 céntimos Calcula la ganancia esperada. 43. Un tirador hace blanco en 3 de cada cuatro disparos. Si realiza 9 disparos: a) Probabilidad de acertar al menos 8 b) Cuál es el número esperado de aciertos? 44. Un estudiante contesta al azar 12 preguntas tipo test con 3 respuestas posibles cada una. Qué probabilidad tiene de acertar las 12? 45. El tiempo que tarda un ordenador con Sistema Operativo Windows en producir errores graves del sistema sigue una distribución normal de media de 20 días con desviación típica de 5 días. Si instalamos Windows en nuestro PC Qué probabilidad hay de que aguante más de 24 días sin producir ningún error grave del sistema? 46. Sea X una variable aleatoria que anota el triple de los puntos obtenidos al lanzar un dado (cuando sale número impar) y la mitad (cuando sale número par). Se pide: 47. Disponemos de un dado trucado con las siguientes probabilidades: P (1) = 0,1, P (3) = 0,05, P (4) = 0,2, P (6) = 0,4 Sabiendo que el número esperado (Esperanza Matemática) es 4, calcula P (5) = (probabilidad de obtener un 5) 48. Extraemos dos cartas (sin reemplazamiento) de una baraja española y consideramos la variable aleatoria Número de Ases obtenidos. Calcula media y desviación típica. 49. Extraemos una ficha de un juego de dominó y consideramos la variable aleatoria que anota la Suma de Puntos obtenidos. Calcula media y desviación típica. 6

7 50. La probabilidad de que enceste un jugador de baloncesto es de 0,3. Si tira 5 tiros, Cuál es la probabilidad de que enceste 2? 51. Las temperaturas del mes de Julio se distribuyen normalmente con una media de 26 C y una desviación típica de 4 C. Cuál es la Probabilidad de que en un día cualquiera de Julio haga entre 22 C y 28 C En Cuántos días habrá una temperatura entre 22 C y 28 C? 52. Hemos estudiado 12 de los 30 temas de un examen. Se eligen, al azar, 2 de los 30 temas. Consideremos la variable aleatoria que anota el número de temas que conocemos. Describe su tabla de distribución de probabilidades. 53. Disponemos de una urna con 3 bolas Rojas, 5 Blancas y 2 Verdes. Extraemos dos bolas y consideramos la variable aleatoria Número de bolas rojas obtenidas. Se pide: Tabla de distribución de probabilidad en los casos: a) Sin Reemplazamiento b) Con Reemplazamiento 54. Calcula la esperanza matemática y la desviación típica de una variable aleatoria discreta de la que conocemos su tabla de distribución de probabilidad: Xi Pi 0,1 a b c 0,2 y además sabemos que P [X 2] = 0, 75 y que P [X 2] = 0, Sabiendo que Z representa la distribución Normal Estándar N(0, 1), usa las tablas para P [Z = 1, 47] P [Z 1, 47] 56. Un tirador acierta en el blanco 4 de cada 5 disparos. Suponiendo que hace 20 disparos, calcula: a) Probabilidad de acertar los 20 b) Probabilidad de acertar al menos Sea X una variable aleatoria que anota la suma de puntos al lanzar dos dados. Se pide: 58. Sea X una variable aleatoria que anota la diferencia (en valor absoluto) de puntos al lanzar dos dados. Se pide: 7

8 59. Sea X una variable aleatoria que anota el producto de los puntos obtenidos al lanzar dos dados. Se pide: 60. Lanzamos simultáneamente una moneda y un dado. Sea X una variable aleatoria que anota los puntos obtenidos, tenienedo en cuenta que cuando sale cara se duplican (ejemplo: si obtenemos cara y 5 serían 10 puntos; si obtenemos cruz y 4 serían 4 puntos). Se pide: 61. Lanzamos un dado de quinielas tres veces (en este dado tres de sus caras son 1, dos caras contienen X y la tercera contiene un 2). Sea X una variable aleatoria que anota el número de variantes (las variantes son X ó 2). Se pide: 62. Lanzamos una moneda 8 veces. Calcula la probabilidad de ontener: a) exactamente 6 caras b) al menos 6 caras 63. Un examen tipo test consta de 20 preguntas con 4 opciones cada una. Teniendo en cuenta que no hemos estudiado nada (contestaremos al azar) y que no nos restan puntos al fallar, calcula la probabilidad de: a) sacar un 10 b) aprobar el examen (sacar un 5 ó más) 64. Las notas de un grupo de alumnos se distribuyen según una normal de media 5,2 y desviación típica 1,4. Si elegimos un estudiante al azar, calcula la probabilidad de que: a) tenga una nota igual o superior a 5 b) tenga una nota entre 6 y Sea X una variable aleatoria que anota el doble de los puntos obtenidos al lanzar un dado. Se pide: 8

9 66. Las naranjas de un agricultor se distribuyen normalmente con una media de 175 gramos y desviadción típica 25 gramos. Si elegimos una naranja al azar, calcula la probabilidad de que pese entre 165 y 185 gramos. 67. La vida media (en años) de los habitantes de un determinado pueblo sigue una distribución N(79, 9). Si elegimos un habitante al azar, calcula la probabilidad de que supere los 100 años 68. Las horas diarias de estudio de los alumnos de un determinado centro siguen una distribución normal de media 100 minutos y desviación típica 20 minutos. Si elegimos un estudiante al azar, calcula la probabilidad de que estudie diariamente dos horas o más. 69. La estatura de los estudiantes de un instituto sique una distribución normal de media 168 cm y desviación típica 20 cm. Si elegimos un estudiante al azar, calcula la probabilidad de que: a) mida más de 2 metros b) mida entre 1,70 y 1,80 metros 9

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

EJERCICIOS PROBABILIDAD

EJERCICIOS PROBABILIDAD EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

Espacio muestral. Operaciones con sucesos

Espacio muestral. Operaciones con sucesos Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;

Más detalles

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:

Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos: 1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización

Más detalles

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B: Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA DISTRIBUCIONES DE VARIABLE CONTINUA Página 63 REFLEXIONA Y RESUELVE Tiempos de espera Los trenes de una cierta línea de cercanías pasan cada 0 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja

Más detalles

m de ir hacia la izquierda o hacia la derecha. Imita el recorrido de un perdigón lanzando una moneda 7 veces y haciendo la asignación

m de ir hacia la izquierda o hacia la derecha. Imita el recorrido de un perdigón lanzando una moneda 7 veces y haciendo la asignación Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página 7 Por qué las casillas centrales del aparato de Galton están más llenas que las extremas? Para explicarlo, sigamos el camino recorrido por

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

Ejercicios de la Distribución Normal

Ejercicios de la Distribución Normal 1 Ejercicios de la Distribución Normal 1. Encuentre las siguientes probabilidades, siendo Z una variable aleatoria normal estándar a.p (Z < 1,00) b.p (Z < 0,63) c.p (Z < 1,38) d.p (Z > 1,15) e.p (Z > 2,13)

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº.- En una urna hay bolas numeradas de al. Etraemos una bola al azar y observamos

Más detalles

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician

Más detalles

EJERCICIOS DEL BLOQUE DE PROBABILIDAD.

EJERCICIOS DEL BLOQUE DE PROBABILIDAD. EJERCICIOS DEL BLOQUE DE PROBABILIDAD. 1.- Cuál es la probabilidad de sacar los dos ases al lanzar dos dados? 2.- Cuál es la probabilidad de obtener tres caras, lanzando al aire una moneda tres veces?.

Más detalles

Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles

Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles 2. Probabilidad de un suceso La

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página PRACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una gran caja vacía. Echamos en la caja R, 0 V

Más detalles

Ejercicios de Cálculo de Probabilidades

Ejercicios de Cálculo de Probabilidades Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor

Más detalles

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2 . ARITMÉTICA OPERACIONES CON FRACCIONES. Realiza las siguientes operaciones teniendo en cuenta el orden de prioridades: 8-5 ( 5. Opera y simplifica: 5 5 5+ + ( ) 5 5 5 : c) 7-4 -(5-5- + PROPIEDADES DE

Más detalles

PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.

PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento. PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC SIGMA 28 Abel Martín (*) y Rosana Álvarez García (**) En dos artículos anteriores ya hemos estudiado la distribución Binomial

Más detalles

TEMA 11. PROBABILIDAD

TEMA 11. PROBABILIDAD TEMA 11. PROBABILIDAD 11.1. Experimentos aleatorios. - Espacio muestral asociado a un experimento aleatorio. - Sucesos. Operaciones con sucesos. 11.2. Probabilidad. - Regla de Laplace 11.3. Experiencias

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

Ejercicios de probabilidad

Ejercicios de probabilidad 1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba

Más detalles

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.

Más detalles

RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO

RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de

Más detalles

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i ESTADÍSTICA 1.- Un equipo ciclista quiere estudiar el estado de las bicicletas a lo largo de cuatro años. Toma una muestra de 20 bicicletas y mira los Kilómetros que han recorrido: Kilómetros recorridos:

Más detalles

1. Combinatoria Sucesos aleatorios...

1. Combinatoria Sucesos aleatorios... PROBABILIDAD Índice: Página. Combinatoria..... Sucesos aleatorios...... Experimento aleatorio...... Tipos de sucesos....3. Operaciones con sucesos..... Sistema completo de sucesos....5. Experimentos compuestos...

Más detalles

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE

DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE A los padres del alumno/a de º de la ESO Puesto que su hijo no ha superado los objetivos de º de la ESO en el área de Matemáticas, es necesario

Más detalles

El caballero Mere escribe a Pascal en 1654 y le propone el siguiente problema:

El caballero Mere escribe a Pascal en 1654 y le propone el siguiente problema: Introducción Los fundamentos del cálculo de probabilidades surgen alrededor del año 1650, cuando sugerido por los juegos de dados, de cartas, del lanzamiento de una moneda, se planteó el debate de determinar

Más detalles

c) Extraer una bola de una urna que contiene 20 bolas numeradas del 1 al 20 y mirar el número que tiene la bola extraída.

c) Extraer una bola de una urna que contiene 20 bolas numeradas del 1 al 20 y mirar el número que tiene la bola extraída. TEMA 11: AZAR Y PROBABILIDAD SUCESOS ALEATORIOS Se llaman sucesos aleatorios a todos aquellos acontecimientos en cuya realización influye el azar. Para estudiar el azar y sus propiedades, se realizan experiencias

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

Tema 11 Cálculo de Probabilidades.

Tema 11 Cálculo de Probabilidades. Tema 11 Cálculo de Probabilidades. 11.1 Experimentos aleatorios. Espacio muestral PÁGINA 248 EJERCICIOS 1. Decide si los siguientes experimentos son aleatorios o deteministas. a) Medir apotemas de un pentágono

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2009

PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA SOLUCIONARIO UNIBERTSITATERA SARTZEKO HAUTAPROBAK 25 URTETIK GORAKOAK 2009ko MAIATZA ESTATISTIKA PRUEBAS DE ACCESO

Más detalles

EJERCICIOS UNIDAD 9: PROBABILIDAD

EJERCICIOS UNIDAD 9: PROBABILIDAD EJERCICIOS UNIDAD 9: PROBABILIDAD 1. (2012-M1-A-3) En un congreso de 200 jóvenes profesionales se pasa una encuesta para conocer los hábitos en cuanto a contratar los viajes por Internet. Se observa que

Más detalles

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII

Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/99 SP XII José Mª Chacón Íñigo IES Llanes, Sevilla Te explicamos como realizar la operación de distribución de probabilidad

Más detalles

Ejercicios para la recuperación de matemáticas de 2º de ESO.

Ejercicios para la recuperación de matemáticas de 2º de ESO. Ejercicios para la recuperación de matemáticas de 2º de ESO. Bloque I: Aritmética 1. Encuentra todos los números enteros que cumplen que su valor absoluto es menor que 10 y mayor que 6. 2. Calcula: a)

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental. Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar.

PROBABILIDAD. Experiencia aleatoria es aquella cuyo resultado depende del azar. PROBABILIDAD. 1 EXPERIENCIAS ALEATORIAS. SUCESOS. Experiencia aleatoria es aquella cuyo resultado depende del azar. Suceso aleatorio es un acontecimiento que ocurrirá o no dependiendo del azar. Espacio

Más detalles

Bloque 4. Estadística y Probabilidad

Bloque 4. Estadística y Probabilidad Bloque 4. Estadística y Probabilidad 2. Probabilidad 1. Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

EL AZAR Y LA PROBABILIDAD

EL AZAR Y LA PROBABILIDAD EL AZAR Y LA PROBABILIDAD Prof. José Luis Pittamiglio Los experimentos cuya realización depende del azar, se llaman sucesos aleatorios. La teoría de las probabilidades se ocupa de medir hasta qué punto

Más detalles

GUÍA DE EJERCICIOS N 14 PROBABILIDADES

GUÍA DE EJERCICIOS N 14 PROBABILIDADES LICEO CARMELA CARVAJAL DE PRAT PROVIDENCIA DPTO DE MATEMATICA GUÍA DE EJERCICIOS N PROBABILIDADES SECTOR: Matemática PROFESOR(es): Marina Díaz MAIL DE PROFESORES: profem.maulen@gmail.com marinadiazcastro@gmail.com

Más detalles

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades

Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,

Más detalles

5 2,7; ; ; 3; 3,2

5 2,7; ; ; 3; 3,2 Actividades de recuperación para septiembre 3º ESO, MATEMÁTICAS La recuperación de la asignatura consta de dos partes: Entregar los siguientes ejercicios resueltos correctamente. Aprobar el examen de recuperación.

Más detalles

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b). Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión

Más detalles

Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.

Más detalles

Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen:

Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen: 15 Probabilidad Ejercicio 15.1. Indica cuáles de los siguientes sucesos son aleatorios y cuáles no: a) Lanzar una moneda. b) Aprobar un examen de matemáticas. c) Acertar una quiniela de fútbol. d) Lanzar

Más detalles

Curs MAT CFGS-19 MÁS SOBRE LA PROBABILIDAD INTENTANDO ACLARARLA CON MUCHOS EJEMPLOS RESUELTOS

Curs MAT CFGS-19 MÁS SOBRE LA PROBABILIDAD INTENTANDO ACLARARLA CON MUCHOS EJEMPLOS RESUELTOS Curs 2015-16 MAT CFGS-19 MÁS SOBRE LA PROBABILIDAD INTENTANDO ACLARARLA CON MUCHOS EJEMPLOS RESUELTOS Lo básico: Experimento aleatorio: No puede predecirse el resultado por mucho que lo hayamos experimentado.

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a

Más detalles

T. 2 Modelos teóricos de distribución de probabilidad

T. 2 Modelos teóricos de distribución de probabilidad T. 2 Modelos teóricos de distribución de probabilidad 1. La distribución binomial 2. La distribución o curva normal El conocimiento acumulado en Psicología ha permitido evidenciar como algunas variables

Más detalles

Distribuciones binomial y normal

Distribuciones binomial y normal Distribuciones binomial y normal LITERATURA Y MATEMÁTICAS El teorema Como la mayoría de los que estamos presentes en esta aula, Laplace fue incomprendido por sus padres dijo Caine mientras caminaba por

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 0 Cálculo de probabilidades Recuerda lo fundamental Curso:... Fecha:... CÁLCULO DE PROBABILIDADES PROPIEDAD FUNDAMENTAL DEL AZAR. LEY DE LOS GRANDES NÚMEROS Repetimos un experimento un número N de veces,

Más detalles

Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

Son los experimentos de los que podemos predecir el resultado antes de que se realicen. PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores

Más detalles

A. Probabilidad. 4.- Razona la siguiente afirmación: si la probabilidad de que ocurran dos sucesos a la vez es menor que 2

A. Probabilidad. 4.- Razona la siguiente afirmación: si la probabilidad de que ocurran dos sucesos a la vez es menor que 2 A. Probabilidad.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor de 5? Sol: 0.55 2.- Sean A y B dos sucesos aleatorios. Supóngase que P(A)

Más detalles

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,

Más detalles

AÑOS

AÑOS Unidad 0. Distribuciones de probabilidad Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página 9 Distribución de edades Las edades de los habitantes de una población se distribuyen según la gráfica

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

UNIDAD XI Eventos probabilísticos

UNIDAD XI Eventos probabilísticos UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8.

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8. ROBLEMAS SOLUCIONADOS SOBRE VARIABLES ALEATORIAS CONTINUAS DIST NORMAL AROX DE LA DIST BINOMIAL ROFESOR ANTONIO IZARRO 1º (Castilla y León, Junio, 99 Sea X una variable aleatoria cuya función de distribución

Más detalles

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B). Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno

Más detalles

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos.

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos. .- CONCEPTOS BÁSICOS DE PROBABILIDAD Experimento aleatorio: Es aquel cuyo resultado depende del azar y, aunque conocemos todos los posibles resultados, no se puede predecir de antemano el resultado que

Más detalles

PROBABILIDAD TEORÍA Y EJERCICIOS

PROBABILIDAD TEORÍA Y EJERCICIOS ROBBILIDD TEORÍ Y EJERCICIO ROBBILIDD Definiciones: - Experiencia leatoria: es aquella cuyo resultado depende del azar: lanzamiento de un dado, una moneda, extraer una bola, una carta, etc. - Espacio Muestral:

Más detalles

Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios

Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios 1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.

Más detalles

3.Si A y B son incompatibles, es decir A B = entonces:

3.Si A y B son incompatibles, es decir A B = entonces: Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Página 7 REFLEXIONA Y RESUELVE Lanzamiento de monedas Al lanzar cuatro monedas pueden darse posibilidades: CCCC, CCC+, CC+C, CC++, C+CC, Complétalas y justifica los resultados

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A a) (.5 puntos) Resuelva el siguiente sistema y clasifíquelo atendiendo al número de soluciones: x + y + z = 0 x + 3y z = 17 4x + 5y + z = 17 b) (0.75 puntos) A la vista del resultado anterior,

Más detalles

3.Si A y B son incompatibles, es decir A B = entonces:

3.Si A y B son incompatibles, es decir A B = entonces: Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)

Más detalles

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. C u r s o : Matemática º Medio Material Nº MT - UNIDAD: GEOMETRÍA PROBABILIDADES I NOCIONES ELEMENTALES Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido

Más detalles

TALLER 3 ESTADISTICA I

TALLER 3 ESTADISTICA I TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral

Más detalles

Probabilidad Selectividad CCSS Murcia. MasMates.com Colecciones de ejercicios

Probabilidad Selectividad CCSS Murcia. MasMates.com Colecciones de ejercicios 1. [2014] [EXT-A] Un archivador contiene 15 exámenes desordenados, entre los cuales se encuentran dos que tienen la puntuación máxima. Con el fin de encontrarlos, vamos sacando uno tras otro, cuál es la

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

Prueba Matemática Coef. 1 NM-4

Prueba Matemática Coef. 1 NM-4 1 Centro Educacional San Carlos de Aragón. Sector: Matemática. Prof.: Ximena Gallegos H. Prueba Matemática Coef. 1 NM-4 Nombre: Curso: Fecha. Porcentaje de Logro Ideal: 100% Porcentaje Logrado: Nota: Unidad:

Más detalles

Probabilidad del suceso imposible

Probabilidad del suceso imposible 2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD

2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD Experiencias aleatorias La lotería, las rifas, el lanzar un dado, la bola de un bingo, etc. Son hechos, acciones,

Más detalles

FÓRMULES PRINCIPALS DEL TEMA

FÓRMULES PRINCIPALS DEL TEMA T E M A 3. - P R O B A B I L I D A D FÓRMULES PRINCIPALS DEL TEMA - Regla de Laplace c as os fa vo ra bl es p A( )= c a so sp os s i ble s - Probabilitat de la unió d'esdeveniments p( A B) = p( A) + p(

Más detalles

Ejercicios resueltos de probabilidad

Ejercicios resueltos de probabilidad Ejercicios resueltos de probabilidad 1) En un saco tenemos bolas con las letras de la palabra "MATEMÁTICAS" (en las bolas, ninguna letra tiene tilde). Sacamos cuatro bolas por orden Hay la misma probabilidad

Más detalles

UNIDAD II Eventos probabilísticos

UNIDAD II Eventos probabilísticos UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

c) Los sucesos elementales son: {S}, {U}, {E}, {R}, {T}

c) Los sucesos elementales son: {S}, {U}, {E}, {R}, {T} P RCTIC Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los sucesos: MENOR QUE ; B PR. c) Halla los sucesos «B,»

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD

Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD 1. Una bolsa contiene tres bolas (1 roja, 1 azul, 1 blanca). Se sacan dos bolas con reemplazo, es decir, se saca una

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es

Más detalles

Tema 7. Aproximación de la distribución Binomial a la Normal

Tema 7. Aproximación de la distribución Binomial a la Normal Tema 7. Aproximación de la distribución Binomial a la Normal Indice 1. Problemas de la distribución binomial... 2 2. Aproximación de la binomial a la normal... 2 Apuntes realizados por José Luis Lorente

Más detalles

Probabilidad Selectividad CCSS MasMates.com Colecciones de ejercicios

Probabilidad Selectividad CCSS MasMates.com Colecciones de ejercicios 1. [ANDA] [EXT-A] Se sabe que dos alumnos de la asignatura de Matemáticas asisten a clase, de forma independiente, el primero a un 85% de las clases y el segundo a un 35%. Tomando al azar un día de clase,

Más detalles