Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación"

Transcripción

1 Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales. b Prueba que para todo x R se verifica que x2 cos x. 2 Solución. a Sea f x= x 2 x sen x cos x. Se trata de probar que f se anula en exactamente dos puntos. La función f es continua y f =, f π= f π=π 2 +. El teorema de Bolzano nos dice que f se anula en algún punto del intervalo ] π,[ y en algún punto del intervalo ],π[. Luego f se anula al menos en dos puntos. Veamos que no puede anularse en más de dos puntos. En efecto, la derivada de f es f x = x2 cos x. Como 2 cos x> para todo x R, se sigue que la derivada f solamente se anula en x =. Si la función f se anulara en tres o más puntos, en virtud del teorema de Rolle, su derivada debería anularse al menos en dos puntos, lo cual, según acabamos de ver, no ocurre. Concluimos que f se anula exactamente en dos puntos. Alternativamente, podemos razonar como sigue. Al ser f x< para todo x <, la función f es estrictamente decreciente en R, luego solamente puede anularse una vez en R. Análogamente, como f x> para todo x >, la función f es estrictamente creciente en R +, luego solamente puede anularse una vez en R +. b Sea hx=cos x + x2. Como h x=hx, y h=, bastará probar que h es creciente en [,+ [. 2 Como h x= x sen x y h x= cos x, se sigue que h es creciente y, como h =, se sigue que h x para todo x. Luego h es creciente en [,+ [. Finalmente, si x R, se tendrá que o bien es x o bien es x. En cualquier caso, deducimos que hx=h x h=, esto es x2 cos x. 2 Ejercicio 2. sen x log x a Calcula el límite lím x x 2 y estudia la convergencia de la serie log n sen/n. n b Estudia la convergencia de la serie n +2 α + α + +n α, donde α>. Solución. n α+ n n! n n y calcula el límite de la sucesión sen x a Sabemos que lím = es la derivada de sen x en x =. Por tanto, el límite pedido es una indeter- x x minación del tipo y podemos aplicar la regla de L Hôpital. sen x log x x x cos x sen x lím x x 2 = lím x sen x 2x = lím x x cos x sen x 2x Este límite también es una indeterminación del tipo y podemos aplicar otra vez la regla de L Hôpital. x cos x sen x x sen x sen x lím x 2x = lím x 6x 2 = lím x 6x = 6 Departamento de Análisis Matemático o Ingeniería de Telecomunicación

2 Ejercicios del examen del 29 de junio de 27 2 Por tanto, el límite pedido es igual a /6. Deducimos que para toda sucesión {x n } se tiene que En particular, haciendo x n = obtenemos que n sen xn log x lím n x x 2 n = 6 log n sen/n lím /n 2 = 6 Como la serie n n 2 es convergente, por tratarse de una serie de Riemann con exponente α=2>, n n α deducimos, por el criterio límite de comparación, que la serie de términos positivos n log n sen/n es convergente y, por tanto, la serie n log n sen/n es convergente. b Se trata de una serie de términos positivos. Sea = n n! n n Tenemos que + = n+ n / n+ 8 n+ El criterio del cociente no proporciona información sobre la convergencia de la serie pues + +. Aplicaremos el criterio de Raabe. Para calcular el límite de la sucesión n a n+ an+ = n < y observamos que es de la forma y n x n donde y n = n y x n = +. En estas condiciones sabemos que En nuestro caso lím x y n n = e L lím y n x n =L x y n n+ 8 n n n/= n = + 5 n + n/ e 5/ e / = e 2 n+ n+ n+ n Luego el límite es mayor que y la serie es convergente. lím n a n+ = 2 o Ingeniería de Telecomunicación

3 Ejercicios del examen del 29 de junio de 27 Ejercicio. Calcula a > por la condición de que el sector parabólico AOB sombreado en gris en la figura de la derecha tenga área mínima. El punto B es la intersección de la parábola y = x 2 con su normal en el punto A=a, a 2. B y = x 2 O A=a, a 2 Solución. Sabemos que lormal a una curva de ecuación y = f x en un punto a, f a es la recta de ecuación y = f a f a x a. En nuestro caso la curva es la parábola y = x2 cuyormal en el punto a, a 2 es la recta y = a 2 x a. La intersección de dicha recta con la parábola se obtiene resolviendo 2a la ecuación x 2 = a 2 2a x a, esto es, 2ax2 + x a 2a =, cuyas soluciones son ± +4a+ 2a 2 2a 4a = ± +8a 2 + 6a 4 4a = ± +4a 2 2 4a = ±+4a2 4a a = +2a2 2a Pongamos x = +2a2. Tenemos que B=x, x 2. El área del sector parabólico de la figura viene dada por 2a Ga= a x a 2 [ x a x2 dx = a 2 x 2a 4a x a2 ] x=a x = 4 x=x a + a+ 4a + 48a Para calcular el mínimo de esta función se procede de la forma usual. Calculemos los ceros de la derivada. G a=4a 2 + 4a 2 6a 4 = 4a2 + = 4a 2 + 4a 2 = 6a 4 4a2 + 6a 4 = a 4 = 6 Como a >, la única solución es a = /2. Teniendo en cuenta que G a=8a+ 2a + > para todo 4a5 a > y que lím G a=, lím a a + G a=+, deducimos que para < a < 2 es G a< y para 2 < a es G a >. De aquí se sigue que G decrece en ],/2] y crece en [/2,+ [, por lo que alcanza un mínimo absoluto en a = /2. Ejercicio 4. Calcula la integral Solución. Por definición Para calcular la integral + + xx 2 + x+ dx. xx 2 dx = lím + x+ t t t + xx 2 + x+ dx xx 2 dx t > + x+ usaremos la regla de Barrow. Calculemos una primitiva de la función xx 2 + x+ o Ingeniería de Telecomunicación

4 Ejercicios del examen del 29 de junio de 27 4 se trata de una función racional. Como el polinomio x 2 + x+ no tiene raíces reales, la descomposición en fracciones simples es de la forma xx 2 + x+ = A x + B x+ C x 2 + x+ Multiplicando e identificando numeradores = Ax 2 + x+ +B x+ Cx Haciendo x = obtenemos A=. Igualando coeficientes de x 2 se tiene A+B=, por lo que B=. Igualando coeficientes de x se tiene A+C=, luego C=. t xx 2 + x+ dx = t t x dx = logt 2 t x+ x 2 + x+ dx 2x+ x 2 + x+ dx 2 = logt 2 logt 2 + t+ + 2 log 2 = log = log t t 2 + t+ t t 2 + t+ = log 2 + π + log t + log 2 t + log 2 arctg t t 2 + t+ x 2 + x+ dx t 2/ 2x + x+ /2 2 + /4 dx 2+ dx 2t + + arctg 2t + arctg Como concluimos que lím log t + + t t 2 + t+ xx 2 + x+ 2t = lím arctg + = π t + 2 log dx = 2 + π π 2 = log 2 8 π Ejercicio 5. Sea a>. Calcula el volumen del sólido interior al cilindro x 2 + y 2 = ax, que está comprendido entre el plano z= y el cono x 2 + y 2 = z 2. Solución. Se trata de calcular el volumen del sólido { } A= x, y, z R : x a/2 2 + y 2 a 2 /4, z x 2 + y 2 Dicho sólido es la parte de R que queda dentro del cilindro circular recto de base la circunferencia en el plano XY de centro a/2, y radio a/2 y que está limitado superiormente por la gráfica del cono de ecuación z = x 2 + y 2. Puedes ver el cono y el cilindro en la gráfica de la derecha. o Ingeniería de Telecomunicación

5 Ejercicios del examen del 29 de junio de 27 5 Se trata de una región de las llamadas de tipo I, cuyo volumen vienen dado por VolA = x 2 + y 2 dx, y donde D D= { x, y : x 2 + y 2 ax } = { x, y : x a/2 2 + y 2 a 2 /4 } es el disco de centro a/2, y radio a/2. La simetría polar de la función a integrar indica que es conveniente hacer un cambio de variable a polares x= ρcos t, y = ρsen t. VolA = x 2 + y 2 dx, y = ρ 2 dρ, t donde D B= { ρ, t : ρcos t,ρsen t D } = { ρ, t : ρ a cos t } = { ρ, t : π/2 t π/2, ρ a cos t } Usando ahora el teorema de Fubini, tenemos π/2 [ a cos t ] VolA = ρ 2 dρ, t = ρ 2 dρ B π/2 dt = a π/2 π/2 B cos t dt = a π/2 π/2 cos t sen 2 t dt = 4a 9 Ejercicio 6. Hallar los extremos absolutos de la función f x, y=4x 2 + y 2 4x y en el conjunto M= { x, y R 2 : y, 4x 2 + y 2 4 } Solución. El conjunto M = {x, y R 2 : y, x 2 + y 2 } 4 es la parte de la elipse centrada en el origen de semiejes y 2 que queda en el semiplano superior. Se trata de un conjunto compacto cerrado porque incluye a su frontera y acotado y, como la función f es continua, el teorema de Weierstrass asegura que f alcanza un máximo y un mínimo absolutos en M. Dichos extremos deben alcanzarse o bien en el interior de M o en la frontera de M. Los puntos del interior de M que sean extremos locales de f tienen que ser puntos críticos de f, es decir, deben ser puntos de M donde se anule el gradiente de f. x, y=8x 4=, x x, y=2y = y Por tanto, f tiene un único punto crítico que es /2,/2 el cual, efectivamente, está en M. Los extremos absolutos de f en M pueden alcanzarse en la frontera de M. La frontera de M está formada por la parte superior de la elipse x 2 + y 2 = y por el segmento {x,, x }. Los extremos de f en 4 este segmento son fáciles de calcular pues son los extremos de la función hx= f x,=4x 2 4x donde x [,]. Como h x = 8x 4, los únicos posibles valores extremos de f en el segmento son h/2 = f /2,, h = f, y h= f,. Finalmente calculemos los valores extremos de f en la parte superior de la elipse x 2 + y 2 =. Para ello 4 los calculamos en toda la elipse y nos quedaremos con las soluciones que estén en el semiplano superior. Nuestro problema, pues, es calcular los extremos de f con la condición g x, y= x 2 + y 2 =. Se trata de 4 un problema de extremos condicionados. Formamos la función de Lagrange Fx, y,λ= f x, y+λg x, y= 4x 2 + y 2 4x y+ λ x 2 + y 2 4 o Ingeniería de Telecomunicación

6 Ejercicios del examen del 29 de junio de 27 6 y calculamos sus puntos críticos que serán las soluciones del sistema F x, y,λ=8x 4+2λx = x 4+λx = 2 F y x, y,λ=2y + 2 λy = 4+λy = 6 F λ x, y,λ= x2 + y 2 4 = 4x 2 + y 2 = 4 De las dos primeras ecuaciones deducimos que debe ser 4 + λ y que x = y. Sustituyendo esta igualdad en la tercera ecuación resulta x 2 = 4 x =± 2 Lo que nos proporciona una única solución positiva para y = 6. Obtenemos así que los posibles extremos de f en la parte superior de la elipse tienen que alcanzarse en el punto 2/,6/. Finalmente, calculemos los valores de f en todos los posibles puntos extremos. f /2,/2= 4, f /2,=, f,= 8, f,=, f 2/,6/ =4 2 El valor máximo absoluto de f en M es igual a 8 y se alcanza en el punto,. El valor mínimo absoluto de f en M es= 4 y se alcanza en el punto /2,/2. Ejercicio 7. Justifica que la ecuación z senx y+coszx z 2 y + = define implícitamente a z como función de x, y en un entorno del punto,,2. Calcula el plano tangente a la gráfica de la función zx, y en el punto,, 2. Solución. Pongamos f x, y, z = z senx y+coszx z 2 y +. Tenemos que f,,2 = y x, y, z = z senx y x senzx 2z y, por lo que,,2= 4. El teorema de la función implícita garantiza que z hay una función z = zx, y definida en un abierto U que contiene al punto, verificando que z, = 2 y f x, y, zx, y= para todo x, y U. El plano tangente a la gráfica de la función z = zx, y en el punto, es el plano tangente a la superficie definida implícitamente por f x, y, z= en el punto,,2. Sabemos que dicho plano tiene la ecuación cartesiana f,,2 x, y, z 2 =, donde f,,2 es el vector gradiente de f calculado en el punto,, 2. Tenemos que f x, y, z=z y cosx y z senzx, zx cosx y z 2,senx y x senzx 2z y luego f,, 2 = 2, 4, 4. Por tanto la ecuación del plano tangente pedido es 2, 4, 4 x, y, z 2 = x 2y 2z+ 6= Alternativamente, podemos razonar como sigue. El plano tangente a la gráfica de z = zx, y en el punto, viene dado por Puesto que z x,= z z,= z x x,,2 z,,2 z,x +,y y = 2, z y,= y,,2 z,,2 = o Ingeniería de Telecomunicación

7 Ejercicios del examen del 29 de junio de 27 7 Obtenemos que la ecuación de dicho plano es z 2= x y x 2y 2z+ 6= 2 la cual, naturalmente, coincide con la antes obtenida. Ejercicio 8. a Determina el valor de k para quer la ecuación diferencial 2x y 2 + y e x dx + 2x 2 y+ k e x dy = sea exacta. Resolver la ecuación para dicho valor. b Resolver la ecuación diferencial de valores iniciales y y 2y = e 2x, y= y =. Solución. a Pongamos Px, y=2x y 2 + y e x, Qx, y=2x 2 y+ k e x. La ecuación diferencial es exacta cuando Q x x, y= P y x, y 4x y+ k ex = 4x y+ e x k = Supuesto ya que k =, sabemos que la solución general de dicha ecuación diferencial viene dada por la familia de curvas implícitamente definida por f x, y = c donde c es una constante y f x, y es una función tal que Px, y= x, y, x Qx, y= x, y y La primera de estas condiciones implica, por la regla de Barrow, que x t, ydt = f x, y f, y= t x Pt, ydt = x 2t y 2 + y e t dt = x 2 y 2 + y e x y Pongamos hy= f, y. Luego f x, y=hy+ x 2 y 2 + y e x y. Derivando respecto a y esta igualdad y teniendo en cuenta la segunda condición deberá verificarse que Qx, y=h y+2x 2 y+ e x h y=qx, y 2x 2 y e x += Por lo que h debe ser una función constante. Concluimos que la solución general de la ecuación diferencial es la familia de curvas dada por x 2 y 2 + y e x y = c. b Calculemos primero la solución general de la ecuación homogénea. La ecuación característica es λ 2 λ 2=, cuyas soluciones son λ=2yλ=. Por tanto la solución general de la ecuación homogénea es la familia de curvas y h x=c e 2x +C 2 e x donde C y C 2 son constantes arbitrarias. Calculemos ahora una solución particular de la ecuación diferencial completa. Usaremos para ello el método de los coeficientes indeterminados. Teniendo en cuenta la forma del término general, la ecuación debe admitir una solución particular de la forma y p = cx e 2x para un valor de c que se calcula de forma que se verifique la igualdad y p y p 2y p = e 2x Haciendo los sencillos cálculos obtenemos que c = /. La solución general de la ecuación diferencial completa es yx= y h x+ y p x=c e 2x +C 2 e x + x ex Finalmente, calculemos C y C 2 por las condiciones iniciales. y=c + C 2 = y = 2C C 2 + = o Ingeniería de Telecomunicación

8 Ejercicios del examen del 29 de junio de 27 8 La solución única de este sistema de ecuaciones es C = C 2 =. La solución pedida es por tanto 9 sol x= 9 e2x + 9 e x + x ex o Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005 Soluciones de los ejercicios del examen de Primer curso de Ingeniería Informática - Febrero de 25 Ejercicio. A Dados los puntos A, y 2,2, calcula el camino más corto para ir de A a pasando por un punto

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

Ejercicio 2 opción A, modelo 5 Septiembre 2010

Ejercicio 2 opción A, modelo 5 Septiembre 2010 Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Matemáticas II. Segundo de Bachillerato. Curso Exámenes

Matemáticas II. Segundo de Bachillerato. Curso Exámenes Matemáticas II. Segundo de Bachillerato. Curso 0-03. Exámenes LÍMITES Y CONTINUIDAD o F. Límites y continuidad o F Ejercicio. Calcular el dominio de definición de las siguientes funciones: f(x) = 4 x h(x)

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas ir Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura ir ir Índice. Definiciones y propiedades Método de por

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

1. Examen de matrices y determinantes

1. Examen de matrices y determinantes 1 EXAMEN DE MATRICES Y DETERMINANTES 1 1. Examen de matrices y determinantes Ejercicio 1. Halla todas las matrices X no nulas de la forma [ ] a 1 X = 0 b tales que X = X. Puesto que: X = [ ] [ ] a 1 a

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 () Obtener la ecuación de la recta tangente a la curva x 3 +y 3 =9xy en el punto (, ). () La ley adiabática (sin pérdida ni ganancia de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Práctica 6. Extremos Condicionados

Práctica 6. Extremos Condicionados Práctica 6. Extremos Condicionados 6.1 Introducción El problema que nos planteamos podría enunciarse del modo siguiente: Sean A R n, f : A R una función de clase C 1 y M A. Consideremos la restricción

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Teorema del valor medio

Teorema del valor medio Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar y demostrar.

T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar y demostrar. EXAMEN TEÓRICO FINAL I T1. Dado y = f(x). Definir función continua en un punto, en un intervalo abierto y en un intervalo cerrado. T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

Ecuaciones diferenciales. Una introducción para el curso de Cálculo I y II.

Ecuaciones diferenciales. Una introducción para el curso de Cálculo I y II. Ecuaciones diferenciales. Una introducción para el curso de Cálculo I y II. Eleonora Catsigeras * 23 de julio de 2007 Notas para el curso de Cálculo II de la Facultad de Ingeniería. 1. Definición y ejemplos

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

integración de funciones racionales

integración de funciones racionales VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles