Integrales paramétricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integrales paramétricas"

Transcripción

1 5 Integrales paramétricas Página 1 de 29

2 1. uchas de las funciones que se manejan en Análisis atemático no se conocen mediante expresiones elementales, sino que vienen dadas a través de series o integrales. Un tipo particular de estas funciones son las llamadas integrales paramétricas o integrales dependientes de parámetros. Ejemplo de ellas son las expresiones del tipo donde Λ R p, [a, b] R, y F (λ) = b a f(λ, x) dx (λ Λ), f : Λ [a, b] R (λ, x) f(λ, x) es integrable Riemann en [a, b] para cada λ Λ. Página 2 de 29

3 El conocimiento de la regularidad y propiedades del integrando f nos permitirá decidir sobre la regularidad y propiedades de la integral paramétrica F, aún cuando no se disponga de una expresión explícita de F. Una técnica frecuentemente utilizada para el cálculo de determinadas integrales consiste en diferenciar o integrar una integral paramétrica auxiliar. Página 3 de 29

4 2. Tipos de integrales paramétricas 2.1. Simples Límites fijos Sean: Λ R p ; I = [a, b] R; y f : Λ [a, b] R (λ, x) f(λ, x) tal que f(λ, ) es integrable Riemann sobre I, para cada λ Λ. La función F (λ) = b a f(λ, x) dx (λ Λ) se llama integral paramétrica simple con límites de integración fijos y parámetro λ Λ. Página 4 de 29

5 Límites variables Sean: Λ R p ; a : Λ R, b : Λ R funciones acotadas, satisfaciendo a(λ) b(λ) (λ Λ); S(a, b) = { (λ, x) R p+1 : λ Λ, a(λ) x b(λ) } ; y f : S(a, b) R (λ, x) f(λ, x) tal que f(λ, ) es integrable Riemann sobre [a(λ), b(λ)], para cada λ Λ. La función F (λ) = b(λ) a(λ) f(λ, x) dx (λ Λ) se llama integral paramétrica simple con límites de integración variables y parámetro λ Λ. Página 5 de 29

6 2.2. últiples Sean: Λ R p ; R q, medible Jordan ; y f : Λ R (λ, x) f(λ, x) tal que f(λ, ) es integrable Riemann sobre, para cada λ Λ. La función F (λ) = f(λ, x) dx (λ Λ) se llama integral paramétrica múltiple con parámetro λ Λ. Página 6 de 29

7 Ejemplo (Integral paramétrica múltiple) Sean: F (λ) = Λ = ] π/2, π/2[, = { (x, y) R 2 : 0 x 1, 0 y x }, tan(λx) [ 1 + tan 2 (λy) ] { 0, λ = 0 dx dy = tan λ λ, λ 0. λ 2 Página 7 de 29

8 2.3. Reducción de integrales del tipo al tipo Sean: Λ R p ; a : Λ R, b : Λ R funciones acotadas, satisfaciendo a(λ) b(λ) (λ Λ); S(a, b) = { (λ, x) R p+1 : λ Λ, a(λ) x b(λ) } ; y f : S(a, b) R (λ, x) f(λ, x) tal que f(λ, ) es continua en [a(λ), b(λ)], para cada λ Λ. Se verifica: donde b(λ) a(λ) f(λ, x) dx = 1 0 g(λ, t)dt, g(λ, t) = f (λ, a(λ) + [b(λ) a(λ)] t) [b(λ) a(λ)] (λ Λ, t [0, 1]). Página 8 de 29

9 Demostración Para cada λ Λ, consideramos ϕ λ : [0, 1] [a(λ), b(λ)] t ϕ λ (t) = a(λ) + [b(λ) a(λ)] t. Esta aplicación es una biyección C con inversa C, y, por tanto, puede ser tomada como un cambio de variable para aplicar la regla de integración por sustitución: b(λ) a(λ) f(λ, x) dx = 1 0 f (λ, ϕ λ (t)) ϕ λ(t) dt = 1 0 g(λ, t) dt (λ Λ). Página 9 de 29

10 3. Continuidad de las integrales paramétricas 3.1. Simples Límites fijos Sean: Λ R p ; I = [a, b] R; y Si: f : Λ [a, b] R (λ, x) f(λ, x). Página 10 de 29

11 1. Λ es compacto, y 2. f es continua, entonces la integral paramétrica F (λ) = b existe y es uniformemente continua sobre Λ. a f(λ, x) dx (λ Λ) Página 11 de 29

12 Límites variables Sean: Λ R p ; a : Λ R, b : Λ R funciones que satisfacen a(λ) b(λ) (λ Λ); S(a, b) = { (λ, x) R p+1 : λ Λ, a(λ) x b(λ) } ; y f : S(a, b) R (λ, x) f(λ, x). Si: 1. Λ es compacto, y 2. a, b y f son continuas, entonces la integral paramétrica F (λ) = b(λ) a(λ) existe y es uniformemente continua sobre Λ. f(λ, x) dx (λ Λ) Página 12 de 29

13 3.2. últiples Sean: Λ R p ; R q, medible Jordan; y Si: f : Λ R (λ, x) f(λ, x). 1. Λ y son compactos, y 2. f es continua, entonces la integral paramétrica F (λ) = existe y es uniformemente continua sobre Λ. f(λ, x) dx (λ Λ) Página 13 de 29

14 Demostración Ya que se reduce a 3.1.1(sección 2.3) y éste es un caso particular de 3.2, basta probar 3.2. Demostración de 3.2 Puesto que f es continua, es continua en cada variable; luego, f(λ, ) es integrable Riemann sobre para todo λ Λ, y F existe. Página 14 de 29

15 Como Λ se supone compacto, sólo tenemos que comprobar que F es continua sobre Λ, es decir, que F es continua en cada λ 0 Λ. Pongamos = Si = 0, F es idénticamente nula, y no hay nada que probar. Por tanto, supondremos > 0. dx. Sea λ 0 Λ, y sea ε > 0. Al ser f continua en Λ, que es compacto (producto cartesiano de compactos), f es uniformemente continua en Λ. Así, existe δ > 0 tal que λ Λ y λ, x) (λ 0, x) < δ implica Claramente f(λ, x) f(λ 0, x) < ε λ λ 0 = (λ, x) (λ 0, x) (x ). (λ Λ, x ), Página 15 de 29

16 donde en el primer miembro tomamos la norma de R p y en el segundo la de R p+q. Luego, para λ λ 0 < δ podemos escribir F (λ) F (λ 0 ) = f(λ, x) dx f(λ 0, x) dx = [f(λ, x) dx f(λ 0, x)] dx f(λ, x) f(λ 0, x) dx ε < dx = ε, como queríamos demostrar Corolario Página 16 de 29 En las hipótesis de 3.1.1, y 3.2 anteriores, respectivamente, los límites siguientes existen y pueden calcularse como se indica, para λ 0 Λ:

17 b lím λ λ lím λ λ0 3.2 lím λ λ0 a b(λ) a(λ) f(λ, x) dx = b f(λ, x) dx = f(λ, x) dx = f(λ 0, x) dx; a b(λ0 ) a(λ 0 ) f(λ 0, x) dx; f(λ 0, x) dx. Página 17 de 29

18 4. Derivación de integrales paramétricas Los siguientes resultados de derivación de integrales paramétricas se conocen como Regla de Leibniz. Página 18 de 29

19 4.1. Simples Límites fijos Sean: Λ R p ; I = [a, b] R; y Si: f : Λ [a, b] R (λ, x) f(λ, x). 1. Λ es abierto, y 2. f es continua, con derivada parcial f/ continua en Λ I para algún i = 1,..., p (λ = (λ 1,..., λ p )), Página 19 de 29

20 entonces la integral paramétrica F (λ) = b a f(λ, x) dx (λ Λ) existe y es derivable respecto de λ i, teniéndose que F (λ) = b a f(λ, x) dx = b a f(λ, x) dx (λ Λ) Límites variables Sean: Λ R p ; a : Λ R, b : Λ R funciones acotadas, satisfaciendo a(λ) b(λ) (λ Λ); S(a, b) = { (λ, x) R p+1 : λ Λ, a(λ) x b(λ) } ; U abierto en R p+1 que contiene a S(a, b); y Si: f : U R (λ, x) f(λ, x). Página 20 de 29

21 1. Λ es abierto, y 2. a, b y f son continuas, con derivadas parciales a/, b/ y f/ continuas en sus respectivos dominios para algún i = 1,..., p (λ = (λ 1,..., λ p )), entonces la integral paramétrica F (λ) = b(λ) a(λ) f(λ, x) dx (λ Λ) existe y es derivable respecto de λ i, teniéndose que F (λ) = = = b(λ) a(λ) b(λ) a(λ) f(λ, x) dx f(λ, x) dx + b(λ) f (λ, b(λ)) a(λ) f (λ, a(λ)) (λ Λ). Página 21 de 29

22 4.2. últiples Sean: Λ R p ; R q, medible Jordan; y Si: 1. Λ es abierto; 2. es compacto; y f : Λ R (λ, x) f(λ, x). 3. f es continua, con derivada parcial f/ continua para algún i = 1,..., p (λ = (λ 1,..., λ p )), entonces la integral paramétrica F (λ) = f(λ, x) dx (λ Λ) existe y es derivable respecto de λ i, teniéndose que F (λ) = f(λ, x) f(λ, x) dx = dx (λ Λ). Página 22 de 29

23 Demostración Puesto que es un caso particular de 4.2, sólo demostraremos 4.2 y Demostración de 4.2 Como antes, suponemos > 0. Fijemos λ Λ. Queremos ver que existe F (λ)/, y se calcula como se afirma. Puesto que Λ es abierto, existe r λ > 0 tal que la bola cerrada de centro λ y radio r λ en R p, B(λ, r λ ) = {µ R p : λ µ r λ }, está contenida en Λ. Sea e i el i-ésimo vector unitario canónico de R p. Debemos demostrar: F (λ + ρe i ) F (λ) f(λ, x) lím = dx. ρ 0 ρ Página 23 de 29

24 La función ρ f(λ + ρe i, x) depende de x y está definida para ρ r λ, pues, en tal caso, λ + ρe i B(λ, r λ ) Λ: (λ + ρe i ) λ = ρe i = ρ e i = ρ r λ. Por el teorema de los incrementos finitos, F (λ + ρe i ) F (λ) = ρ = f(λ + ρe i, x) f(λ, x) dx ρ f(λ + θρe i, x) dx para cierto θ (0, 1), dependiente de x y de ρ [ r λ, r λ ]. Luego, F (λ + ρe i) F (λ) f(λ, x) dx ρ λ i f(λ + θρe i, x) f(λ, x) dx. Como f/ es continua en el compacto B(λ, r λ ), es uniformemente continua en dicho compacto. Así, dado ε > 0 existe δ > 0 tal que si ρ < δ < r λ y x, se Página 24 de 29

25 cumple Concluimos: Demostración de F (λ + ρe i) F (λ) ρ f(λ + θρe i, x) f(λ, x) < ε. f(λ, x) dx < ε dx = ε. Nos apoyaremos en 4.1.1, que está probado por ser un caso particular de 4.2. Puesto que a, b son continuas en Λ, S(a, b) U, y U es abierto, dado λ 0 Λ existen δ 0 > 0, h 0 > 0 tales que C 0 U, siendo aquí, C 0 = U(λ 0, δ 0 ) [a(λ 0 ) h 0, b(λ 0 ) + h 0 ] ; U(λ 0, δ 0 ) = {λ Λ : λ λ 0 < δ 0 } denota la bola abierta de centro λ 0 y radio δ 0 en R p. Página 25 de 29

26 Ahora, para λ λ 0 < δ 0 se tiene b(λ) a(λ) con I(λ) = f(λ, x) dx = I(λ) + I b (λ) I a (λ), (1) b(λ0 ) a(λ 0 ) f(λ, x) dx, I a (λ) = a(λ) a(λ 0 ) f(λ, x) dx, I b (λ) = b(λ) b(λ 0 ) f(λ, x) dx. La integral I(λ) tiene límites de integración fijos, luego le es de aplicación 4.1.1, donde reemplazamos Λ I por C 0 : Página 26 de 29 I(λ) λ=λ0 = b(λ0 ) a(λ 0 ) f(λ 0, x) dx. (2)

27 Veamos que I a (λ), I b (λ) son derivables en λ 0 respecto de λ i, y calculemos estas derivadas. Por analogía, basta considerar I b (λ). Sea e i el i-ésimo vector unitario canónico de R p. Se verifica: I b (λ) I b (λ 0 + ρe i ) I b (λ 0 ) λ=λ0 = lím ρ 0 ρ 1 b(λ0 +ρe i ) = lím f(λ 0 + ρe i, x) dx. ρ 0 ρ b(λ 0 ) Por el teorema de la media, existe ξ = ξ(ρ) [b(λ 0 ), b(λ 0 + ρe i )] tal que b(λ0 +ρe i ) b(λ 0 ) f(λ 0 + ρe i, x) dx = f(λ 0 + ρe i, ξ) [b(λ 0 + ρe i ) b(λ 0 )]. Página 27 de 29

28 Consecuentemente, I b (λ) λ=λ0 = lím ρ 0 [ b(λ0 + ρe i ) b(λ 0 ) = b(λ) λ=λ0 f(λ 0, b(λ 0 )). ρ ] f(λ 0 + ρe i, ξ) Aquí hemos usado la existencia de b(λ)/ en λ 0 y el hecho de que esto último se deduce de lo siguiente: lím f(λ 0 + ρe i, ξ) = f(λ 0, b(λ 0 )); ρ 0 lím ρ 0 (λ 0 + ρe i ) = λ 0 ; lím ρ 0 b(λ 0 + ρe i ) = b(λ 0 ) (pues b es continua en λ 0 ); b(λ 0 ) ξ b(λ 0 + ρe i ) implica lím ρ 0 ξ(ρ) = b(λ 0 ); y f es continua en (λ 0, b(λ 0 )). Página 28 de 29

29 Hemos probado: I b (λ) λ=λ0 = b(λ) λ=λ0 f (λ 0, b(λ 0 )). (3) Similarmente: I a (λ) λ=λ0 = a(λ) λ=λ0 f (λ 0, a(λ 0 )). (4) La combinación de (1), (2), (3) y (4) completa la demostración. Página 29 de 29

Integrales paramétricas propias

Integrales paramétricas propias Integrales paramétricas propias ISABEL ARRERO Departamento de Análisis atemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Tipos de integrales paramétricas 1 2.1. Simples..............................................

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Derivadas Parciales de Orden Superior

Derivadas Parciales de Orden Superior Capítulo 9 Derivadas Parciales de Orden Superior La extensión a funciones de varias variables del concepto de derivada de orden superior, aunque teóricamente no ofrece ninguna dificultad, presenta ciertas

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o Capítulo 11 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor.

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

7. CONVOLUCION Y DENSIDAD

7. CONVOLUCION Y DENSIDAD Hemos definido una relación de inclusión (7.1) 7. CONVOLUCION Y DENSIDAD Esta relación nos permite "pensar en" S n ) como un sub-espacio de S' n ); lo que indica que normalmente identificaremos uϕ con

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

Propiedades de la integral

Propiedades de la integral Capítulo 4 Propiedades de la integral En este capítulo estudiaremos las propiedades elementales de la integral. En su mayoría resultarán familiares, pues las propiedades de la integral en R se extienden

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

Sucesiones acotadas. Propiedades de las sucesiones convergentes

Sucesiones acotadas. Propiedades de las sucesiones convergentes Sucesiones acotadas. Propiedades de las sucesiones convergentes En un artículo anterior se ha definido el concepto de sucesión y de sucesión convergente. A continuación demostraremos algunas propiedades

Más detalles

6.1 Pruébese que la unión de un número finito de conjuntos acotados es un conjunto acotado.

6.1 Pruébese que la unión de un número finito de conjuntos acotados es un conjunto acotado. 6.1 Pruébese que la unión de un número finito de conjuntos acotados es un conjunto acotado. Dificultad [2] Supongamos que A 1, A 2,..., A n son conjuntos acotados y tomemos un punto cualquiera del espacio,

Más detalles

La integral doble sobre recintos no rectangulares

La integral doble sobre recintos no rectangulares La integral doble sobre recintos no rectangulares IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Conjuntos de tipos I II 2 3. Aplicaciones

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Ejercicio 2 opción A, modelo 5 Septiembre 2010

Ejercicio 2 opción A, modelo 5 Septiembre 2010 Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1

Más detalles

Operadores y funcionales lineales continuos

Operadores y funcionales lineales continuos Tema 3 Operadores y funcionales lineales continuos En este tema trabajamos con aplicaciones lineales entre espacios vectoriales. Puesto que los vectores de los espacios que nos interesan (espacios normados)

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

5. Integrales dobles de Riemann.

5. Integrales dobles de Riemann. 68 Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras. 19 Julio 2006. 5. Integrales dobles de Riemann. El desarrollo de la teoría de integrales múltiples de Riemann lo haremos con

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Teorema del valor medio

Teorema del valor medio Tema 10 Teorema del valor medio Podría decirse que hasta ahora sólo hemos sentado las bases para el estudio del cálculo diferencial en varias variables. Hemos introducido el concepto general o abstracto

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( )

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( ) CONTINUIDAD DE FUNCIONES. TEOREMAS FUNDAMENTALES. Cuando una función es continua en un intervalo cerrado [ a, ] y en un extremo es positiva y en otro negativa, la intuición indica que, en algún punto intermedio

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Transformada de Fourier

Transformada de Fourier Matemática 4 Segundo Cuatrimestre 2 Transformada de Fourier M. del C. Calvo Resultados previos Vamos a dar tres resultados que nos van a permitir justificar el paso al límite y la derivación bajo el signo

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

Sucesiones monótonas Monotonía. Tema 6

Sucesiones monótonas Monotonía. Tema 6 Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

Espacios compactos. 1. Cubiertas

Espacios compactos. 1. Cubiertas Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. La compacidad se puede estudiar desde dos puntos de vista: el topológico, a través

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

Las particiones y el Teorema de Bolzano

Las particiones y el Teorema de Bolzano Miscelánea Matemática 41 (005) 1 7 SMM Las particiones y el Teorema de Bolzano Carlos Bosch Giral Departamento de Matemáticas ITAM Río Hondo # 1 Tizapán San Angel 01000 México D.F. México bosch@itam.mx

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es:

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es: Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Área La integral definida Propiedades de la integral definida Teorema del valor medio para la integral definida Teoremas fundamentales del cálculo Aplicaciones de la integral definida: Área de una región

Más detalles

Funciones armónicas La parte real de una función holomorfa. Lección 10

Funciones armónicas La parte real de una función holomorfa. Lección 10 Lección 10 Funciones armónicas En una segunda serie de aplicaciones de la teoría local de Cauchy, empezamos por analizar las propiedades de la parte real e imaginaria de una función holomorfa, funciones

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Límites y Continuidad

Límites y Continuidad Tema 2 Límites y Continuidad Introducción En este tema se trata el concepto de límite de una función real de variable real y sus propiedades, así como algunas de las técnicas fundamentales para el cálculo

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

1. Teorema Fundamental del Cálculo

1. Teorema Fundamental del Cálculo 1. Teorema Fundamental del Cálculo Vamos a considerar dos clases de funciones, definidas como es de otras funciones Funciones es. F (t) = t a f(x)dx donde f : R R, y F (t) = f(x, t)dx A donde f : R n R

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

Fórmula de Cauchy Fórmula de Cauchy

Fórmula de Cauchy Fórmula de Cauchy Lección 8 Fórmula de Cauchy Llegamos al que se puede considerar como punto culminante de la teoría local de Cauchy, probando el resultado que se conoce como fórmula de Cauchy. Nos da una representación

Más detalles

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX

Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX Teoría de Geometría Afín y Proyectiva (G.A.P.) L A TEX Juan Miguel Ribera Puchades 2 de julio de 2007 1 Índice 1. Introducción 4 2. Tema 1: Espacio Afín 5 2.1. Definición, ejemplos y notación.................

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

1 LIMITES Y DERIVADAS

1 LIMITES Y DERIVADAS 1 LIMITES Y DERIVADAS 2.1 LA TANGENTE Y PROBLEMAS DE LA VELOCIDAD Problema de la tangente Se dice que la pendiente de la recta tangente a una curva en el punto P es el ite de las rectas secantes PQ a medida

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Conjuntos Medibles. Preliminares

Conjuntos Medibles. Preliminares Capítulo 18 Conjuntos Medibles Preliminares En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos de R

Más detalles

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias:

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: donde conocida como serie de Taylor (o serie de Maclaurin cuando ). Además la

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

El Teorema de Recurrencia de Poincaré

El Teorema de Recurrencia de Poincaré El Teorema de Recurrencia de Poincaré Pablo Lessa 9 de octubre de 204. Recurrencia de Poincaré.. Fracciones Continuas Supongamos que queremos expresar la relación que existe entre los números 27 y 0. Una

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles