ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs"

Transcripción

1 ANÁLISIS TEMPORAL Concepto generale 1. Régimen tranitorio y permanente. 2. Señale normalizada de entrada. 3. Repueta a ecalón de itema de tiempo continuo. 4. Relación entre la repueta temporal y la ituación de lo polo. 5. Sitema equivalente de orden reducido.

2 Bibliografía Ogata, K., "Ingeniería de control moderna", Ed. Prentice-Hall. Capítulo 5 Dorf, R.C., "Sitema moderno de control", Ed. Addion-Weley. Capítulo Kuo, B.C.,"Sitema de control automático", Ed. Prentice Hall. Capítulo 7 F. Matía y A. Jiménez, Teoría de Sitema, Sección de Publicacione Univeridad Politécnica de Madrid Capítulo 5

3 INTRODUCCIÓN Qué e perigue con el análii temporal? Análii de la etabilidad. Análii del régimen permanente. Análii dinámico, caracterización de la repueta temporal.

4 INTRODUCCIÓN u(t) U() y(t) G() 1 yt () = L [ GU ( ) ( ) ] Y() Y( ) = GU ( ) ( ) yt () = gt () ut () 2 S te p R e p o n e. 7 S te p R e p o n e Amplitude Amplitude T im e ( e c ) u(t) y( t) = y ( t) + y ( t) rt lim y ( t) = t rt y ( t) = lim y( t) rp Sitema Continuo t. 1 rp T im e ( e c ) y(t)

5 INTRODUCCIÓN Concepto de análii temporal Etabilidad: i ante una entrada acotada, la alida e acotada. Repueta tranitoria: ante un cambio a la entrada del itema, preenta un etapa tranitoria ante de alcanzar el equilibrio. (rapidez, ocilacione) Preciión en régimen permanente: un itema no iempre e capaz de eguir a la entrada en régimen permanente. (Error)

6 INTRODUCCIÓN Concepto de análii temporal u(t) U() G() y(t) Y() yt () = gt () ut () Y( ) = G( U ) ( ) yt () = L G( U ) ( ) 1 [ ]

7 SEÑALES NORMALIZADAS Impulo δ(t) u( t) = δ( t) U( ) = 1 Ecalón t < u( t) = u ( t) = U( ) = 1 t > Rampa u ( t) = tu ( t) U ( ) = t

8 RESPUESTA A ESCALÓN Si conideramo como entrada un ecalón unitario: u(t) u(t) U() Y( ) = U( G ) ( ) = yt () = L 1 t G() G ( ) = G ( ) t U( ) = La repueta del itema ante eta entrada erá: y(t) Y() g( τ) dτ 1

9 RESPUESTA A ESCALÓN u(t) U() G() y(t) Y() Y( ) = U( ) G( ) = y( t) = L 1 G ( ) = G( ) t g( τ) d τ Si σ i on lo polo reale de G() y α i ±jβ i lo imaginario (polo no múltiple), entonce G ( ) = 2 2 ( ) G( ) N( ) Y( ) = = ( σ) ( α) + β N ( ) ( α ) + β ( σ ) i i i ( 2 2 ) i i i

10 RESPUESTA A ESCALÓN u(t) U() G() y(t) Y() G () A B C + D Y() = = + + σ α + β i i i 2 2 i ( i) i = = y t L Y A Be Ee en t t 1 σit αit () ( ( )) i i ( βi ϕi) = + i + i i + i σit αit y( t) G() Be Ee en( β t ϕ ) t

11 RESPUESTA A ESCALÓN G ( ) G( ) = Y ( ) Y ( ) Y( ) 2 2 ( ) G( ) N ( ) = = = ( σ ) ( α ) + β N ( ) ( α ) + β ( σ ) i i i A B C + D = j j = = ( 3)( )( 1 2 ) Y ( ) 2 2 ( ) i i i ( 3 )( 2 5 ) ( 3 )[( 1) 2 ] = = + + i i i 2 2 σ i ( αi) βi = ( 3 ) [( 1) 2 ]

12 Recordar u () t 1 t > = t < 1 αt e u () t 1 + α e αt en( ωt) u () t ω 2 2 (( α) ω ) + +

13 RESPUESTA A ESCALÓN Y ( ) = ( 3) [( 1) 2 ] = = yt L Y A Be Ee en t t 1 σit αit () ( ( )) i i ( βi ϕi) yt 3 () = 2 + e t + een t (2) t t

14 RESPUESTA A ESCALÓN σ it α it y( t) = G () + B e + E e en( β t + ϕ ) t Término B ie σ i t i i i i e x p ( - a * t ) σ > σ < α Término E e it en( β t + ϕ ) i i i

15 RELACIÓN ENTRE LA SITUACIÓN DE LOS POLOS Y LA RESPUESTA TEMPORAL Etabilidad: Un itema e etable i exhibe una repueta acotada para toda entrada acotada. La repueta a ecalón debe tener un valor fijo y finito. Polo en emiplano negativo Ganancia etática. Régimen permanente G() y ( t) = lim y( t) = A rp t G( ) lim y( t) = lim = G() t

16 RELACIÓN ENTRE LA SITUACIÓN DE LOS POLOS Y LA RESPUESTA TEMPORAL Rapidez Ditancia de polo al eje imaginario σ it e, e α i t e ( t = 1) = e 2t 2 e ( t = 1) = e 2t 2 Ocilacione Polo imaginario, α i ±jβ (α i =) ±j β Een( βt + ϕ ) i i i

17 Concepto de polo dominante Lo polo ituado en el emiplano negativo originan repueta que e atenúan tanto má rápidamente cuanto má alejado etén del eje imaginario. e 2t e 1 t Polo() dominante: polo má cercano al eje imaginario. t Dominante

18 SISTEMA EQUIVALENTE DE ORDEN REDUCIDO Cancelación de raíce no dominante A B A<<B 6 A B

19 SISTEMA EQUIVALENTE DE ORDEN REDUCIDO Cancelación de pare polo/cero A B A<<B 6 A B El itema equivalente debe mantener la Ganancia etática

20 SISTEMA EQUIVALENTE DE ORDEN REDUCIDO Ejemplo Cancelación de raíce no dominante ( + 1) G( ) = < 1 ( + 2)( + 1.5)( + 1) G( ) = ( + 1).3 ( + 2)( + 1.5) Cancelación de pare polo/cero ( + 6) G( ) = 2 ( + 2)( + 6.5)( + 1) 6.5 < 6.25 G( ) 1 = 1.84 ( + 2)( + 1)

21 Polo y cero adicionale Polo adicionale: La adición de un polo a un itema hace que el pico e produzca má tarde y ea de menor cuantía. El itema e hace má lento. Polo adicionale: La adición de un cero a un itema hace que el pico e produzca ante y ea de mayor cuantía. El itema e hace má rápido. Eto efecto e aprecian má cuanto má cercano e encuentre la raíz del eje imaginario

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

DIAGRAMAS DE BLOQUES

DIAGRAMAS DE BLOQUES Univeridad Carlo III de Madrid Señale y Sitema DIAGRAMAS DE BLOQUES Diagrama de bloque. 1. Repreentación en diagrama de bloque. 2. Operacione con bloque. Dolore Blanco, Ramón Barber, María Malfaz y Miguel

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

3.2 Respuesta temporal de los sistemas lineales de segundo orden de tiempo continuo sin ceros

3.2 Respuesta temporal de los sistemas lineales de segundo orden de tiempo continuo sin ceros 38 Capítulo 3. Respuesta temporal 3.2 Respuesta temporal de los sistemas lineales de segundo orden de tiempo continuo sin ceros Herramienta interactiva: 3.2. t_segundo_orden Conceptos analizados en la

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

El método de súper y sub soluciones en el espacio de funciones casi periódicas.

El método de súper y sub soluciones en el espacio de funciones casi periódicas. El método de súper y sub soluciones en el espacio de funciones casi periódicas. Universidad de Buenos Aires - IMAS (CONICET) UMA - Bahía Blanca - 2016 Super y sub soluciones Problema periódico asociado

Más detalles

1. Diseño de un compensador de adelanto de fase

1. Diseño de un compensador de adelanto de fase COMPENSADORES DE ADELANTO Y RETARDO 1 1. Diseño de un compensador de adelanto de fase El compensador de adelanto de fase persigue el aumento del margen de fase mediante la superposición de la curva de

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Tema II: Análisis de circuitos mediante la transformada de Laplace

Tema II: Análisis de circuitos mediante la transformada de Laplace Tema II: Análisis de circuitos mediante la transformada de Laplace La transformada de Laplace... 29 Concepto e interés práctico... 29 Definición... 30 Observaciones... 30 Transformadas de Laplace funcionales...

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

Práctica 2. Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo

Práctica 2. Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo Práctica 2 Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo En esta práctica se pretende que el alumno tome contacto con una herramienta

Más detalles

Análisis de la Estabilidad de un Sistema Realimentado Se trata de analizar la estabilidad del sistema realimentado neativamente, M(, a partir de la re

Análisis de la Estabilidad de un Sistema Realimentado Se trata de analizar la estabilidad del sistema realimentado neativamente, M(, a partir de la re Tema 7 Análisis Frecuencial de los Sistemas Realimentados Gijón - Junio 5 1 Indice 7.1. Análisis de la estabilidad de un sistemas realimentado 7.. Maren de ase y de anancia 7..1. Diarama de Bode 7... Diarama

Más detalles

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta:

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta: INSTITUTO TECNOLÓGICO DE COSTA RICA II SEMESTRE 2013 ESCUELA DE INGENIERIA EN ELECTRÓNICA CURSO: EL-5408 CONTROL AUTOMÁTICO MEDIO: Examen 3 PROF: ING. EDUARDO INTERIANO Nombre: Carné Ordinal Parte I preguntas

Más detalles

Problemas Tema 1: Señales

Problemas Tema 1: Señales Curso Académico 009 00 Problemas Tema : Señales PROBLEMA. Una señal continua (t) se muestra en siguiente figura. Dibuje y marque cuidadosamente cada una de las siguientes señales [Prob.. del Oppenheim]:

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans Análii del Lugar Geométrio de la Raíe (LGR) o Método de Evan La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

CIRCUITOS ELÉCTRICOS. Temas:

CIRCUITOS ELÉCTRICOS. Temas: CIRCUITOS ELÉCTRICOS Temas: - Conceptos generales de circuitos eléctricos, ley de Ohm y de Kirchhoff. - Energía almacenada en bobinas y capacitores. - Teoremas de redes: Thevenin, Norton, superposición,

Más detalles

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema ANÁLISIS DE SISTEAS LINEALES 1. odeldo de item SISTEA Reliz FUNCIÓN Poee ESTRUCTURA Preent COPORTAIENTO Figur 1.1: Definición de Sitem Sitem: Un item reliz un función, poee un etructur y preent un comportmiento.

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

Esta expresión posee un polo doble en s=0 y dos polos simples en s= 1 y en s= 2.

Esta expresión posee un polo doble en s=0 y dos polos simples en s= 1 y en s= 2. Antitransformada de Laplace (Transformada Inversa de Laplace) Utilizamos la transformada de Laplace para trabajar con modelos algebraicos en los bloques en lugar de modelos en Ecs. Diferenciales que son

Más detalles

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN.

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN. PRAA 6: SSEA DE SEUENO. ONROL DE POSÓN. Aigatura: Sitema Lieale. º de geiería e Automática y Electróica ESDE. Departameto de Automática y Electróica uro 6-7 Práctica º 6: Sitema de Seguimieto. otrol de

Más detalles

Contenidos Control y Automatización

Contenidos Control y Automatización Tema 2: Modelos Matemáticos Susana Borromeo Juan Antonio Hernández Tamames Curso 2014-2015 Contenidos 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización. Función de Transferencia

Más detalles

DISEÑO REGULADORES EN LUGAR d. RAÍCES

DISEÑO REGULADORES EN LUGAR d. RAÍCES TEMA 9 DISEÑO REGULADORES EN LUGAR d. RAÍCES 9.- OBJETIVOS Conocida la forma de analizar la respuesta dinámica de los sistemas continuos, se pretende ahora abordar el problema de modificar dicha respuesta

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D TEMA 5. CINÉTICA QUÍMICA a A + b B c C + d D 1 d[a] 1 d[b] 1 d[c] 1 d[d] mol v = = = + = + a dt b dt c dt d dt L s El signo negativo en la expresión de velocidad es debido a que los reactivos desaparecen,

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO

E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO Análisis en el dominio de la frecuencia 121 E.T.S.I. INDUSTRIAL DE BEJAR UNIVERSIDAD DE SALAMANCA CAPITULO 9 ANALISIS EN EL DOMINIO DE LA FRECUENCIA 122 Problemas de ingeniería de control RESPUESTA FRECUENCIAL

Más detalles

TÉCNICAS DE COMPENSACIÓN USANDO EL LUGAR GEOMÉTRICO DE LAS RAÍCES.

TÉCNICAS DE COMPENSACIÓN USANDO EL LUGAR GEOMÉTRICO DE LAS RAÍCES. TÉCNICAS DE COMPENSACIÓN USANDO EL LUGAR GEOMÉTRICO DE LAS RAÍCES. Efecto de añadir Polo y Cero a GH(). Adición de Polo. En general, la adición de polo en el emiplano izquierdo produce una deformación

Más detalles

4. Control Vectorial. 1. Modelo dinámico del motor de inducción. 2. Control vectorial del motor de inducción. 3. Control vectorial Directo

4. Control Vectorial. 1. Modelo dinámico del motor de inducción. 2. Control vectorial del motor de inducción. 3. Control vectorial Directo 4. Control Vectorial Control de Máquinas Eléctricas Primavera 2009 1. Modelo dinámico del motor de inducción 2. Control vectorial del motor de inducción 3. Control vectorial Directo 4. Control vectorial

Más detalles

RESPUESTA FRECUENCIAL Función de transferencia del amplificador

RESPUESTA FRECUENCIAL Función de transferencia del amplificador Función de transferencia del amplificador A (db) A (db) A 0 3 db A M 3 db Amplificador directamente acoplado ω BW=ω H -ω L GB=A M ω H ω L ω H ω Amplificador capacitivamente acoplado Ancho de Banda Producto

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode 3. Modelos, señales y sistemas Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode CAUT1 Clase 4 1 Obtención experimental de modelos Muchos sistemas en la práctica pueden

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

Universidad de Chile

Universidad de Chile Univeridad de Chile Facultad de Ciencia fíica y Matemática Departamento de Ingeniería Eléctrica SD-20A Seminario de Dieño Guía Teórica N o 2 Circuito Generador de forma de onda (ocilador) Profeore : Javier

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

Tema II: Análisis de circuitos mediante la transformada de Laplace

Tema II: Análisis de circuitos mediante la transformada de Laplace Tema II: Análisis de circuitos mediante la transformada de Laplace La transformada de Laplace... 35 Concepto e interés práctico... 35 Definición... 36 Observaciones... 36 Transformadas de Laplace funcionales...

Más detalles

Bloque 3 Análisis de circuitos alimentados en corriente alterna. Teoría de Circuitos Ingeniería Técnica Electrónica

Bloque 3 Análisis de circuitos alimentados en corriente alterna. Teoría de Circuitos Ingeniería Técnica Electrónica Bloque 3 Análisis de circuitos alimentados en corriente alterna Teoría de Circuitos Ingeniería Técnica Electrónica 3. Introducción. Representación de ondas sinusoidales mediante fasores Corriente alterna

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 1 - LA TEMPERATURA Y OTROS CONCEPTOS BÁSICOS DE LA TERMODINÁMICA Introducción: características generales y objetivos de la termodinámica. Comparación de los criterios

Más detalles

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores

Más detalles

NOMBRE DE LA ASIGNATURA: Control CREDITOS: 4-2-6 APORTACIÓN AL PERFIL

NOMBRE DE LA ASIGNATURA: Control CREDITOS: 4-2-6 APORTACIÓN AL PERFIL NOMBRE DE LA ASIGNATURA: Control CREDITOS: 4-2-6 APORTACIÓN AL PERFIL Proporcionar los elementos para realizar el control lineal de sistemas dinámicos, además de desarrollar la habilidad en el uso de herramientas

Más detalles

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL.

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. INDICE 1.-INTRODUCCIÓN/DEFINICIONES 2.-CONCEPTOS/DIAGRAMA DE BLOQUES 3.-TIPOS DE SISTEMAS DE CONTROL 4.-TRANSFORMADA DE LAPLACE 1.- INTRODUCCIÓN/DEFINICIONES:

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

Señales y sistemas Otoño 2003 Clase 22

Señales y sistemas Otoño 2003 Clase 22 Señales y sistemas Otoño 2003 Clase 22 2 de diciembre de 2003 1. Propiedades de la ROC de la transformada z. 2. Transformada inversa z. 3. Ejemplos. 4. Propiedades de la transformada z. 5. Funciones de

Más detalles

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO:

6. CONTROL PID CLÁSICO. Consideremos el siguiente lazo de control SISO: 6. CONROL PI CLÁSICO 6. Etructura PI Crrepnde a la etructura de cntrl ma uada en el medi indutrial. La letra PI crrepnden a la accine: Prprcinal, Integral y erivativa. Su implicidad limita el rang de la

Más detalles

EXAMEN PARCIAL I

EXAMEN PARCIAL I UNIVERSIDAD NACIONAL DE INGENIERÍA - FIM MT 7 Control Moderno y Óptimo EXAMEN PARCIAL - 04I Problema : Un tanque vacio con masa m o es posicionado sobre g un resorte lineal con rigidez k. El tanque es

Más detalles

Estabilidad BIBO de Sistemas Lineales

Estabilidad BIBO de Sistemas Lineales Estabilidad BIBO de Sistemas Lineales Notas para el curso del Sistemas Lineales 2 UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE INGENIERÍA INSTITUTO DE INGENIERÍA ELÉCTRICA Montevideo, segundo semestre del 27

Más detalles

Pórticos espaciales. J. T. Celigüeta

Pórticos espaciales. J. T. Celigüeta Pórticos espaciales J. T. Celigüeta Pórtico espacial. Definición Estructura reticular. Barras rectas de sección despreciable. Cualquier orientación en el espacio. Barras unidas rígidamente en ambos extremos.

Más detalles

Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad

Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad Vemos que la región estable es el interior del circulo unidad, correspondiente a todo el semiplano izquierdo en s. El eje imaginario

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques

DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques DIAGRAMAS DE BOQUES 1. EEMENTOS DE UN DIAGRAMA DE BOQUES Un diagrama de bloques de un sistema es una representación gráfica de las funciones realizadas por cada componente y del flujo de las señales. os

Más detalles

APUNTES DE SISTEMAS DE CONTROL R. P.

APUNTES DE SISTEMAS DE CONTROL R. P. APUNTES DE SISTEMAS DE CONTROL R. P. Ñeco O. Reinoso N. García R. Aracil Elche, octubre, 2003 II Índice general Índice de Figuras Índice de Tablas Prólogo X XIX XXI I Análisis de sistemas continuos de

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Transformada de Laplace

Transformada de Laplace Capítulo 4 Transformada de Laplace La Transformada de Laplace es la herramienta de preferencia en el análisis de sistemas lineales e invariantes en el tiempo. Se le atribuye a Pierre-Simon de Laplace (749

Más detalles

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR SEMANA 10 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR TRANSFORMADA DE LA PLACE I. OBJETIVO Solucionar ecuaciones diferenciales mediante la transformada de la place. III. BIBLIOGRAFIA W.

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE

1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Problemas de correas PROBLEMA 1. DISEÑO MECÁNICO (Ingeniería Industrial)

Problemas de correas PROBLEMA 1. DISEÑO MECÁNICO (Ingeniería Industrial) DISEÑO MECÁNICO (Ingeniería Industrial) Problemas de correas PROBLEMA 1 Analizar y calcular las tensiones a lo largo de la correa plana de la transmisión de la figura, indicando el valor máximo y su situación.

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 13 de Agosto de 2009

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

SISTEMAS LINEALES DE PRIMER ORDEN

SISTEMAS LINEALES DE PRIMER ORDEN CAPÍTULO 7 SISTEMAS LINEALES DE PRIMER ORDEN 7.1. INTRODUCCION Estudiaremos el sistema de n ecuaciones lineales de primer orden: x 1 = a 11 (t)x 1 +a 12 (t)x 2 +...+a 1n (t)x n +f 1 (t) x 2 = a 21 (t)x

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

1 Análisis de la Respuesta Temporal

1 Análisis de la Respuesta Temporal Análisis de la Respuesta Temporal El estudio de la respuesta temporal de un sistema es de vital importancia para el posterior análisis de su comportamiento y el posible diseño de un sistema de control.

Más detalles

El desarrollo de la teoría de funciones de variable compleja sigue un

El desarrollo de la teoría de funciones de variable compleja sigue un 69 Análisis matemático para Ingeniería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 4 Integración en el plano complejo El desarrollo de la teoría de funciones de variable compleja sigue

Más detalles

TEMA 4: Análisis de sistemas

TEMA 4: Análisis de sistemas Dinámica de Sitema -4.- TEMA 4: Análii de itema 4..- Introducción. 4..- Efecto de lo polo en el comportamiento. 4.3.- Etabilidad 4.4.- Señale de prueba, tipo de repueta repueta y comportamiento. 4.5.-

Más detalles

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ANÁLISIS DE SISTEMAS Y SEÑALES 1418 4 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería de Control

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sitema y Señale Señale en Tiempo Dicreto Teorema de Muetreo Autor: Dr. Juan Carlo Gómez Señale en Tiempo Continuo: etán definida en un intervalo continuo de tiempo. Señale en tiempo dicreto:

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados.

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Ejercicio 1 Ver ejemplo 7.1 del capítulo 7 de las notas del curso (página 158). El resultado final de dicha

Más detalles

Teoría cualitativa de ecuaciones diferenciales

Teoría cualitativa de ecuaciones diferenciales 775 Análisis matemático para Ingeniería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Teoría cualitativa de ecuaciones diferenciales En este capítulo se inicia el estudio de lo que se

Más detalles

Respuesta libre en circuitos de primer orden

Respuesta libre en circuitos de primer orden espuesta libre en circuitos de primer orden Objetivos a) Establecer los conceptos más generales sobre los procesos que ocurren en los circuitos dinámicos, utilizando los criterios dados en el texto y en

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000 Resumen de Optica Miguel Silvera Alonso Octubre de 2000 Índice 1. Sistemas Opticos ideales 2 1.1. Espejo Plano................. 2 1.2. Espejo Esférico................ 2 1.3. lámina delgada................

Más detalles