Convergencia Sucesiones convergentes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Convergencia Sucesiones convergentes"

Transcripción

1 Lección 6 Convergencia Vamos a estudiar la noción de convergencia de sucesiones en un espacio métrico arbitrario, generalizando la que conocemos en R. La definimos de forma que quede claro que se trata de una noción topológica, y de hecho veremos que la topología de un espacio métrico queda caracterizada por las sucesiones convergentes. En R con la topología usual, veremos que la convergencia de una sucesión de vectores equivale a la de sus sucesiones de componentes, lo que nos llevará a discutir el producto de espacios normados o de espacios métricos Sucesiones convergentes Sabemos que una sucesión de elementos de un conjunto E /0 es una aplicación ϕ : E, que se denota por {x n, donde x n = ϕ(n) para todo n. Las sucesiones parciales de {x n son las de la forma {x σ(n) donde σ : es estrictamente creciente. En lo que sigue, E será un espacio métrico cuya distancia denotamos por d. Decimos que una sucesión {x n de puntos de E converge a un punto x E, y escribimos {x n x, cuando cada entorno de x contiene a todos los términos de la sucesión, a partir de uno en adelante. Así pues: {x n x [ U U(x) m : n m x n U ] (1) Tenemos claramente una noción topológica, sólo involucra los entornos de x. Por tanto, al hablar de convergencia de sucesiones en un espacio métrico E, no es necesario especificar la distancia concreta d que estemos usando en E, sino solamente la topología que genera. En particular, como en R usamos siempre la topología usual, para una sucesión de vectores de R, podemos hablar de su convergencia, sin ninguna ambigüedad. Por otra parte, es claro que en (1), en vez de entornos, podemos usar sólo bolas abiertas, {x n x [ ε > 0 m : n m d(x n,x) < ε ] (2) y si E = X es un espacio normado tendremos {x n x [ ε > 0 m : n m x n x < ε ] 31

2 6. Convergencia 32 Esto se aplicará a R con cualquier norma cuya topología sea la usual. Para = 1 será {x n x [ ε > 0 m : n m x n x < ε ] luego la única noción de convergencia que vamos a usar en R es la que ya conocíamos. Volviendo al caso general, la afirmación que aparece a la derecha de (2) significa, lisa y llanamente, que la sucesión {d(x n,x) converge a cero. Por tanto, la convergencia de una sucesión de puntos de un espacio métrico, equivale siempre a la convergencia a cero de una concreta sucesión de números reales no negativos: {x n x {d(x n,x) 0 (3) Esta equivalencia permite trasladar a cualquier espacio métrico propiedades conocidas de la convergencia en R, como hacemos enseguida. Decimos que la sucesión {x n es convergente, cuando existe x E tal que {x n x, en cuyo caso x es único. En efecto, si también {x n y, por ser d(x,y) d(x,x n ) + d(x n,y) para todo n, usando dos veces (3) vemos que d(x,y) = 0, luego x = y. Decimos que x es el límite de la sucesión {x n y escribimos x = lím{x n = lím x n. n Usando también (3), relacionamos la convergencia de una sucesión con la de sus sucesiones parciales. De {x n x se deduce que toda sucesión parcial de {x n también converge a x. Vemos igualmente que, fijado k, se tiene {x k+n x {x n x {x 2n 1 x y {x 2n x Por ejemplo, si existen x E y k tales que para n > k se tiene x n = x, entonces {x n x Caracterización secuencial de la topología Es muy importante observar que la convergencia de sucesiones determina la topología de cualquier espacio métrico: En todo espacio métrico E, un punto x E es adherente a un conjunto A E si, y sólo si, existe una sucesión de puntos de A que converge a x. Si x A, para cada n podemos tomar x n B(x,1/n) A, obteniendo una sucesión {x n de puntos de A tal que {d(x n,x) 0, luego {x n x. Recíprocamente, si {x n x con x n A para todo n, es obvio que U A /0 para todo U U(x), luego x A. Deducimos que un conjunto A E es cerrado si, y sólo si, A contiene a los límites de todas la sucesiones de puntos de A que sean convergentes: A = A [ x n A n, {x n x E x A ] Así pues, la topología de un espacio métrico queda caracterizada por la convergencia de sucesiones: si conocemos la convergencia de sucesiones, conocemos las conjuntos cerrados, luego conocemos la topología.

3 6. Convergencia 33 Por tanto, cualquier propiedad topológica de un espacio métrico E admitirá siempre una caracterización secuencial, es decir, en términos de convergencia de sucesiones. Para A E, vemos por ejemplo que A es denso en E si, y sólo si, todo punto de E es el límite de una sucesión de puntos de A. En la misma línea, deducimos también una cómoda caracterización de la equivalencia entre dos distancias: Si d 1 y d 2 son dos distancias en un conjunto E, equivalen las afirmaciones siguientes: (i) La topología generada por d 1 está incluida en la generada por d 2. (ii) Toda sucesión convergente para la distancia d 2 es convergente para d 1. Por tanto, d 1 y d 2 son equivalentes si, y sólo si, dan lugar a las mismas sucesiones convergentes. (i) (ii). Sea {x n una sucesión de puntos de E y supongamos que {x n x E para la distancia d 2. Si U es un entorno de x para la distancia d 1, aplicando (i) tenemos que U también es entorno de x para d 2. Por tanto, existe m tal que x n U para n m, y esto nos dice que {x n x para la distancia d 1. (ii) (i). Para A E, bastará ver que si A es cerrado para d 1, también lo es para d 2. Si x es un punto adherente al conjunto A para d 2, bastará ver que x A. Por el resultado anterior, existe una sucesión {x n de puntos de A tal que {d 2 (x n,x) 0. Tomamos entonces y 2n 1 = x n e y 2n = x para todo n, con lo que también tenemos {d 2 (y n,x) 0. Aplicando (ii) sabemos que la sucesión {y n es convergente para la distancia d 1, pero su límite no puede ser otro que x, puesto que y 2n = x para todo n. Así pues, tenemos {d 1 (x n,x) 0 y, por ser A cerrado para la distancia d 1, concluimos que x A, como se quería Convergencia en R Ha quedado claro que, para conocer la topología usual de R, basta conocer la convergencia de sucesiones de vectores de R, cuyo estudio se puede reducir al de la convergencia en R. Para ello, ni siquiera necesitamos usar una norma o distancia concreta en R, basta mirar a las componentes de los términos de la sucesión: Para toda sucesión {x n de vectores de R y todo x R, se tiene: {x n x {x n (k) x(k) k I Por tanto, {x n es convergente si, y sólo si, {x n (k) es convergente para todo k I. En efecto, basta pensar, por ejemplo, que para todo n se tiene x n (k) x(k) x n x k I y x n x 1 = x n (k) x(k) Si {x n x, tenemos { x n x 0 y la primera desigualdad nos da {xn (k) x(k) para todo k I. Recíprocamente, si ocurre esto último, la segunda desigualdad nos dice que { xn x 1 0, es decir, {xn x.

4 6. Convergencia 34 Usaremos a menudo este resultado para trasladar de R a R diversos resultados acerca de la convergencia de sucesiones. Pero antes, lo establecemos en un contexto más general Producto de espacios normados Los mismos procedimientos que, a partir del valor absoluto, nos permitieron definir tres normas equivalentes en R, sirven para definir otras tantas normas en cualquier producto de espacios normados. Por su relación más directa con el producto cartesiano, casi siempre es preferible usar la norma del máximo. Cuando se trabaja con varios espacios normados, es una sana costumbre denotar por a las normas de todos ellos. o hay peligro de confusión, pues según cual sea el vector cuya norma usemos en cada momento, estará claro en qué espacio calculamos dicha norma. Supongamos pues que, para cada k I tenemos un espacio normado X k, y consideremos el espacio vectorial producto X = X 1 X 2... X. Igual que hacíamos en R, para x X y k I denotamos por x(k) X k a la k-ésima componente de x. Las operaciones de X tienen entonces el mismo aspecto que las de R : para x,y X, λ R y k I, se tiene ( x + y ) (k) = x(k) + y(k) y ( λx ) (k) = λx(k) Convertimos X en un espacio normado, sin más que definir x = máx { x(k) : k I x X pues se comprueba sin ninguna dificultad que es una norma en X. Decimos que X con la norma es el espacio normado producto de los espacios normados X 1, X 2,..., X. También decimos que la topología de la norma es la topología producto de las topologías de la norma en X 1, X 2,..., X. Obviamente, la topología usual de R es un ejemplo de topología producto, en el que todos los factores son idénticos: R con la topología usual. También es fácil ver que, si para M pensamos que R +M = R R M, la topología usual de R +M es el producto de la usual de R por la usual de R M. Esto permite definir normas en R, con 3, que hasta ahora no han aparecido. Por ejemplo, si para x,y,z R definimos (x,y,z) = máx { x 2 + y 2, z, obtenemos una nueva norma en R 3, cuya topología es la usual de R 3. Las bolas para esta norma tienen forma cilíndrica: B(0,1) = { (x,y,z) R 3 : x 2 + y 2 1, 1 z 1 Para trabajar con la topología producto, es muy cómodo usar la convergencia de sucesiones, que sabemos caracteriza a dicha topología. El mismo razonamiento que hemos usado en R nos dice que, conocer la convergencia en el producto, equivale a conocerla en los factores: Si X = X 1 X 2... X es un producto de espacios normados, para toda sucesión {x n de vectores de X y todo x X, se tiene: {x n x {x n (k) x(k) k I

5 6. Convergencia 35 En efecto, basta tener en cuenta que, para cualesquiera n y k I, se tiene x n (k) x(k) x n x x n ( j) x( j) j= Producto de espacios métricos Todo lo que hemos hecho con un producto de espacios normados puede hacerse, de forma enteramente análoga, con un producto de espacios métricos, así que lo repasamos brevemente. Supongamos que E 1, E 2,..., E son espacios métricos cuyas distancias denotamos todas por d, y consideremos el producto cartesiano E = E 1 E 2... E. Convertimos E en un espacio métrico sin más que definir d (x,y) = máx { d ( x(k),y(k) ) : k I x,y E pues se comprueba inmediatamente que d es una distancia en E. Con ella decimos que E es el espacio métrico producto de los espacios métricos E 1, E 2,..., E, y también que la topología generada por d es la topología producto de las generadas por las distancias de E 1, E 2,..., E. Entonces, para toda sucesión {x n de puntos de E, y todo x E, se tiene que {x n x si, y sólo si, {x n (k) x(k) para todo k I. Observemos finalmente la coherencia entre los dos productos que hemos considerado. Si X = X 1 X 2... X es un producto de espacios normados, entonces el espacio métrico X también es el producto de los espacios métricos X 1, X 2,..., X, puesto que la distancia asociada a la norma del producto de espacios normados, coincide obviamente con la distancia d del producto de espacios métricos Ejercicios 1. Sea E un conjunto no vacío con la distancia discreta. Qué sucesiones de puntos de E son convergentes? 2. Sea E un espacio métrico, A E y x E. Probar que x A si, y sólo si, existe una sucesión de puntos A, distintos de x, que converge a x. 3. Sean {x n e {y n sucesiones de puntos de un espacio métrico E. Supongamos que {x n x E y que {y n y E. Probar que {d(x n,y n ) d(x,y). 4. Sea {x n una sucesión de vectores de un espacio normado X. Probar que {x n 0 si, y sólo si, { x n 0. Probar también que si {x n x X, entonces { x n x, pero que en general el recíproco no es cierto. 5. Sean {x n e {y n sucesiones de vectores de un espacio normado X. Supongamos que {x n x X y que {y n y X. Probar que {x n + y n x + y.

6 6. Convergencia Sea {x n una sucesión de vectores de un espacio normado X tal que {x n 0, y sea {λ n una sucesión acotada de números reales. Probar que {λ n x n Sea {x n una sucesión de vectores de un espacio normado X tal que {x n x X, y sea {λ n una sucesión de números reales tal que {λ n λ R. Probar que {λ n x n λx. 8. Sean {x n e {y n sucesiones de vectores de un espacio pre-hilbertiano X. Supongamos que {x n x X y que {y n y X. Probar que { (x n y n ) (x y). 9. Sean E 1, E 2,..., E espacios métricos y E = A k E k para todo k I y A = E k A k. Probar que A = el espacio métrico producto. Sea A k y que A = Deducir que A es un abierto de E si, y sólo si, A k es un abierto de E k para todo k I, mientras que A es un cerrado de E si, y sólo si, A k es un cerrado de E k para todo k I. 10. Sean X 1, X 2,..., X espacios normados y X = Probar que definiendo X k A k. el espacio vectorial producto. x 1 = x(k) x X se obtiene una norma en X que es equivalente a la norma, es decir, la topología de la norma 1 es la topología producto. 11. Sean X 1, X 2,..., X espacios pre-hilbertianos con productos escalares denotados todos ellos por ( ), y sea X = X k el espacio vectorial producto. Probar que definiendo (x y) = (x(k) y(k)) x,y X se obtiene un producto escalar en X. Probar también que la norma asociada a dicho producto escalar es equivalente a la norma. 12. En el espacio vectorial C[0,1] de las funciones continuas de [0,1] en R se consideran las tres normas que ya conocemos, definidas para toda función x C[0,1], por ( 1 1/2 x = x(t) dt) 2, x 1 = 0 1 x = máx { x(t) : t [0,1] Para cada n sea x n C[0,1] la función dada por 0 x(t) dt y x n (t) = t n 1 t [0,1] Probar que {x n 0 tanto para la norma como para 1, pero no para.

Topología de un espacio métrico

Topología de un espacio métrico Tema 2 Topología de un espacio métrico uestro próximo objetivo es estudiar ciertas propiedades topológicas de un espacio métrico, así llamadas porque sólo dependen de una familia de subconjuntos del espacio

Más detalles

Subconjuntos notables de un Espacio Topológico

Subconjuntos notables de un Espacio Topológico 34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

Convergencia de sucesiones

Convergencia de sucesiones TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, ue llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

Apuntes de Análisis Funcional. Rafael Payá Albert. Departamento de Análisis Matemático. Universidad de Granada

Apuntes de Análisis Funcional. Rafael Payá Albert. Departamento de Análisis Matemático. Universidad de Granada Apuntes de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada Tema 1 Conceptos básicos en espacios normados En lo que sigue trabajaremos siempre con espacios

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Teorema del valor medio

Teorema del valor medio Tema 10 Teorema del valor medio Podría decirse que hasta ahora sólo hemos sentado las bases para el estudio del cálculo diferencial en varias variables. Hemos introducido el concepto general o abstracto

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Tema IX: TOPOLOGÍA. Tema IX: TOPOLOGÍA

Tema IX: TOPOLOGÍA. Tema IX: TOPOLOGÍA Tema IX: TOPOLOGÍA IX.1. Distancia euclídea en R n. Propiedades Definición DEF. Dados x, y R n, se define la distancia euclídea como: d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + + (x n y n ) 2 = xy n = 1:

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012 AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 212 Introducción Algunas fechas: 197: Noción de Operador lineal

Más detalles

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n.

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n. Capítulo 4 Series 4 Introducción Definición 4 Sea (x n ) n= una sucesión de números reales Para cada n N definimos n S n = x k = x + x 2 + + x n k= La sucesión (S n ) n se conoce como la serie infinita

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

Introducción a la topología

Introducción a la topología Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

Espacios normados de dimensión finita

Espacios normados de dimensión finita Tema 4 Espacios normados de dimensión finita Vamos a presentar aquí dos resultados fundamentales acerca de los espacios normados más sencillos, los de dimensión finita. Estudiaremos el Teorema de Hausdorff,

Más detalles

4. Resolución de indeterminaciones: la regla de L Hôpital.

4. Resolución de indeterminaciones: la regla de L Hôpital. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

A partir de la definición obtenemos las siguientes propiedades para estas funciones:

A partir de la definición obtenemos las siguientes propiedades para estas funciones: Capítulo 1 Conjuntos Supondremos conocidas las nociones básicas sobre teoría de conjuntos, tales como subconjuntos, elementos, unión, intersección, complemento, diferencia, diferencia simétrica, propiedades

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

Conjuntos Medibles. Preliminares

Conjuntos Medibles. Preliminares Capítulo 18 Conjuntos Medibles Preliminares En el capítulo anterior vimos que la medida exterior de Lebesgue no resulta σ-aditiva en todo R n. Ahora vamos a construir una familia M de subconjuntos de R

Más detalles

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos

Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

Aplicaciones lineales continuas

Aplicaciones lineales continuas Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Receptor de Correlación. Sistemas de Comunicación

Receptor de Correlación. Sistemas de Comunicación Receptor de Correlación Sistemas de Comunicación Facundo Mémoli * -Versión 2.- mayo, 22 * memoli@iie.edu.uy Índice. Introducción 3 2. Hipótesis y Planteo del Problema 3 3. Procedimiento 4 3.. Hipótesis

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Espacios Normados (Normas en R n )

Espacios Normados (Normas en R n ) Espacios Normados (Normas en R n ) Uno de los conceptos más importantes del cálculo y del analisis matemático es el de métrica o distancia. En R n la noción de metrico depende a su vez del concepto de

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Semana05[1/14] Relaciones. 28 de marzo de Relaciones Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Fórmula de Cauchy Fórmula de Cauchy

Fórmula de Cauchy Fórmula de Cauchy Lección 8 Fórmula de Cauchy Llegamos al que se puede considerar como punto culminante de la teoría local de Cauchy, probando el resultado que se conoce como fórmula de Cauchy. Nos da una representación

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

Matriz jacobiana de un campo vectorial

Matriz jacobiana de un campo vectorial Lección 17 Matriz jacobiana de un campo vectorial Como último caso particular de la noción de diferenciabilidad, suponemos ahora que el espacio normado de partida es R N con N > 1, y el de llegada es R

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Axiomas de separación

Axiomas de separación CAPíTULO 6 Axiomas de separación Tema 1. Axiomas de separación: conceptos básicos El objetivo de este capítulo es considerar ciertas propiedades topológicas que comparten algunos espacios topológicos y

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Transformaciones lineales y matrices

Transformaciones lineales y matrices CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( )

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( ) CONTINUIDAD DE FUNCIONES. TEOREMAS FUNDAMENTALES. Cuando una función es continua en un intervalo cerrado [ a, ] y en un extremo es positiva y en otro negativa, la intuición indica que, en algún punto intermedio

Más detalles

TEMA 2. ESPACIOS VECTORIALES

TEMA 2. ESPACIOS VECTORIALES TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7

Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7 Tema 7 Reglas de l Hôpital Estudiamos en este tema el método práctico más efectivo para calcular ites de funciones en los que se presenta una indeterminación del tipo [0/0], o [ / ]. Este método se atribuye

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Definición de la integral de Riemann (Esto forma parte del Tema 1)

Definición de la integral de Riemann (Esto forma parte del Tema 1) de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Series de números complejos

Series de números complejos Análisis III B - Turno mañana - Series 1 Series de números complejos 1 Definiciones y propiedades Consideremos una sucesión cualquiera de números complejos (z n ) n1. Para cada n N, sabemos lo que quiere

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

Una topología de los números naturales*

Una topología de los números naturales* Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles