Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados"

Transcripción

1 Métodos Numéricos SC 854 Auste a curvas c M Valezuela de marzo de Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que se auste de la meor maera a los datos La curva está defiida e forma paramétrica, y se debe ecotrar los valores de sus parámetros para hacer que algua medida de error se miimice Auste a u poliomio mediate míimos cuadrados Supoga que se desea austar a u poliomio de la forma P a 1 + a 1 + a + a +1 i1 1 El problema de auste cosiste e ecotrar los coeficietes a i que haga que este poliomio se parezca lo más posible a los datos de acuerdo a algua defició de error Defiimos el error ε del poliomio e el puto como la diferecia etre el valor que toma el poliomio y el valor f,esdecir, ε f P Ahora defiimos el error cuadrático total ξ como al suma de los errores al cuadrado para todos los datos, esto es, ξ ε 3 f P +1 f 4 i1 f a 1 a 1 a 1 a a +1 5 dode N es el úmero de datos Mediate el método de míimos cuadrados se ecuetra los valores de los coeficietes a i que hace que se miimice el valor de ξ Para obteer el valor de los coeficietes a i para producir míimo error, derivamos el error cuadrático total ξ respectoacadacompoetedea e igualamos a cero: a +1 a f i1 f i

2 Auste a curvas Métodos Numéricos SC 854 f i f i N Figura 1: Eemplo de auste a ua recta, parábola, y cúbica a a 1 f i1 f i Multiplicado por 1/ y despeado f se obtiee lo siguiete: i1 i1 i1 1 i1 f 10 f 11 1 f 1 f 13 Ivirtiedo el orde de las sumatorias obteemos que i1 i+1 f 14 c M Valezuela, de marzo de 008 Págia

3 Auste a curvas Métodos Numéricos SC 854 i1 i+1 f 15 i1 i1 i+1 1 i+1 1 f 16 f 17 El lado izquierdo de la primera ecuació puede epadirse de la siguiete maera: a 1 + a a + a i1 Las demás ecuacioes se epade de forma similar, y se obtiee lo siguiete: a 1 + a a + a +1 N a 1 N + a + + a + a +1 a 1 N + + a N a 3 + a +1 f 19 f 0 f 1 a 1 + a a N + a +1 f Lo aterior es u sistema de +1 ecuacioes co +1 icógitas que so los coeficietes a i Epresado este sistema de ecuacioes e forma matricial obteemos lo siguiete: 1 N a 1 f a f a 1 f 1 a +1 f que es lo mismo que N a +1 a a a 1 f f 1 f dode todas las sumatorias so Estaúltima forma es la usual de epresar las ecuacioes que defie el método de míimos cuadrados para auste a u poliomio de orde f 4 c M Valezuela, de marzo de 008 Págia 3

4 Auste a curvas Métodos Numéricos SC 854 Para austar a ua recta, es decir, P 1 a 1 + a,elsistemadeecuacioesesel siguiete: N a f a 1 f Para austar a ua parábola, es decir, P 3 a 1 + a + a 3, el sistema de ecuacioes es el siguiete: N a 3 f 3 a 3 f 4 a 1 f 3 Eemplo de auste a u poliomio Se quiere austar los datos de la figura 1 a poliomios de orde 1,, y 3 Para orde 1 se tiee a a de dode se obtiee que por lo tato P Para orde se tiee a a 3 a a de dode se obtiee que a por lo tato P Para orde 3 se tiee de dode se obtiee que a por lo tato P a 4 a 3 a a c M Valezuela, de marzo de 008 Págia 4

5 Auste a curvas Métodos Numéricos SC Auste a fucioes o lieales Es posible austar a otras curvas que o so poliomios coviertiedo el problema e uo de auste a u poliomio Para austar a ua curva de la forma y ae b se toma el logaritmo atural de la ecuació aterior, l y b +la Comparado la epresió de l y co u poliiomio de primer orde, P 1 a 1 + a,y haciedo las sustitucioes P porly, a 1 por b, ya por l a teemos que el sistema de ecuacioes siguiette os da el valor de las costates b y a: N l a b De forma similar, para austar a ua curva de la forma y a b se toma el logaritmo de la epresió aterior l y b l +la l f l f Comparado co la epresió de P 1 a 1 + a, y sustituyedo a 1 por b, a por l a, y por l teemos el sistema de ecuacioes siguiete: N l l a l f l l 3 b l l f que os da los valores de las costates a y b 5 Eemplo: Auste a ua epoecial i f i Austamos los datos ateriores a ua epoecial de la forma y ae b N l a l f b l f 31 Sustituyedo datos: l a b de dode l a 05136, y b 04163, es decir, y ep c M Valezuela, de marzo de 008 Págia 5

6 Auste a curvas Métodos Numéricos SC Eemplo de auste a a b i f i Auste los datos ateriores a la forma y a b N l l a l l b l f l l f Sustituyedo datos: l a b de dode l a 1356, y b 3740, es decir, y c M Valezuela, de marzo de 008 Págia 6

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Fracciones parciales

Fracciones parciales Fraccioes parciales Ua fució racioal puede ser llevada a otra equivalete depediedo del divisor 0de la misma, de tal modo que el divisor puede presetar térmios que permita factorizarlo atediedo a : a) Factores

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal Poliomios de Lagrage Dierecias Divididas Iterpolació Lieal Deiició: es el cálculo de valores para ua ució tabulada, e putos que o se tiee Posició X =?? 4 7 78 48 8 Tiempo Supogamos la cúbica de la siguiete

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Ejercicios Resueltos de Clasificación de Funciones

Ejercicios Resueltos de Clasificación de Funciones Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

Raices de Polinomios. Jorge Eduardo Ortiz Triviño

Raices de Polinomios. Jorge Eduardo Ortiz Triviño Raices de Poliomios Jorge Eduardo Ortiz Triviño jeortizt@ual.edu.co http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20 Guía de estudio Fraccioes parciales Uidad A: Clase 19 y 0 Camilo Eresto Restrepo Estrada, Lia María Grajales Vaegas y Sergio Ivá Restrepo Ochoa 1. 9. Fraccioes parciales Ua fracció racioal es ua expresió

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Suma y resta de monomios Para sumar o restar monomios semejantes se suman o restan los coeficientes y se deja la misma parte literal.

Suma y resta de monomios Para sumar o restar monomios semejantes se suman o restan los coeficientes y se deja la misma parte literal. 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I TEMA.- ÁLGEBRA PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

PRÁCTICA SOLUCIÓN DE ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES

PRÁCTICA SOLUCIÓN DE ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES Objetivos El alumo coocerá aplicará diversos métodos para la resolució de sistemas ecuacioes difereciales, implemetado programas orietados a objetos. Al fial de esta práctica el alumo podrá: Resolver ecuacioes

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N. Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Uidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo geeral Coocer e forma itroductoria los coceptos propios de la recurrecia e relació co matemática discreta. Objetivos específicos Coocer

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas Ecuacioes e Diferecias Recíprocas y Gustavo Adolfo Juárez; Silvia Iés Navarro Facultad de Ciecias Exactas y Naturales, Uiversidad Nacioal de Catamarca. E-mail: juarez.catamarca@gmail.com Recepció: 20/05/2014

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III : Derivadas de orde superior: Elaborada por: Wilfredo Saravia M Uiversidad Nacioal Autóoma de Hoduras Facultad de Ciecias Ecoómicas Guía de Ejercicios No DET 85, Métodos Cuatitativos III E los ejercicios

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

ANILLOS Rodrigo Vargas

ANILLOS Rodrigo Vargas CAPITULO III ANILLOS Rodrigo Vargas 1. Aillos y Homomorfismos 1. (a) Sea G u gruo abeliao (aditivo). Defiimos ua oeració de multilicació e G or ab 0 (ara todo a, b G). Eoces G es u aillo. (b) Sea S el

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

Olimpiada Costarricense de Matemáticas. Material para capacitación para Olimpiadas Costarricenses de Matemática

Olimpiada Costarricense de Matemáticas. Material para capacitación para Olimpiadas Costarricenses de Matemática Olimpiada Costarricese de Matemáticas Material para capacitació para Olimpiadas Costarriceses de Matemática 0 ÁLGEBRA Elaborado por: Christopher Trejos Castillo Co la colaboració de: Radall Blaco B. Alla

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010 Sucesioes 6º Ig, Mat A - Liceo Nº 3 - Profs.:Sergio Weiberger - Marcelo Valezuela 200 Itroducció: Así como f es ua fució y f(x) = 2x es la image de cada x, dode f(0) = 0 y f(3) = 6, e ua sucesió la aotaremos:

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Análisis de algoritmos

Análisis de algoritmos Tema 07: recursivos Solicitado: Ejercicios 04: recursivos M. e C. Edgardo Adriá Fraco Martíez http://www.eafraco.com edfracom@ip.mx @edfracom edgardoadriafracom 1 Coteido Recursividad Ecuacioes e recurrecia

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

CAPÍTULO 2. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE CAPÍTULO. SOLUCIÓN NUMÉRICA DE UNA ECUACIÓN NO-LINEAL EN UNA VARIABLE INTRODUCCIÓN El objetivo de este capítulo es estudiar alguos métodos uméricos para hallar raíces reales de ua ecuació o-lieal e ua

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL República Bolivariaa de Veezuela Miisterio del Poder Popular para la Educació Superior Uiversidad Nacioal Experimetal Rafael María Baralt Programa: Igeiería y Tecología Proyecto: Igeiería e Gas Profesor:

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES

1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES Moisés Villea Muñoz Vectores e,,,. DEFINICIÓN. ENFOQUE GEOMÉTRICO. IGUALDAD.4 OPERACIONES Los pares ordeados, que a se ha tratado, so los que llamaremos ectores de. Pero el iterés ahora es ser más geerales.

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles