Regla de la Cadena. df(x + tv) t=0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Regla de la Cadena. df(x + tv) t=0"

Transcripción

1 Regla de la Cadena Teorema: Si f : R R es diferenciable, entonces todas las derivadas direccionales existen. La derivada direccional en x en la dirección v está dada por [ ] [ ] [ ] Df v (x) = gradf(x) v = f(x) v = x (x) v + y (x) v2 + z (x) v Dem: Sea c(t) = x + tv de manera f(x + tv) = f(c(t)) aplicando el caso particular de la regla de la cadena df(c(t)) = f(c(t)) d(t) dt por otro lado c(0) = f(x), c (t) = v por lo tanto c (0) = v, así que df(x + tv) Df v (x) = dt = f(x) v t=0 Ejemplo: Sean f(x, y, z) = z 2 e yz. Calcular la razón de cambio de f en la dirección del vector unitario v = (,, ) en (, 0, 0) Solución: f v = (2xe yz, zx 2 e yz, yx 2 e yz ) (,0,0) (,, ) = (2, 0, 0)(,, ) = 2 Teorema: Supongamos que f(x) 0. Entonces f(x) apunta en la dirección a lo largo de la cual f crece mas rapido. Dem: Si v es un vector unitario, la razón de cambio de f en la direccón de v esta dada por f(x) v y f(x) v = f(x) v Cosθ = f(x) Cosθ donde θ es el ángulo entre f, v. Esta es máximo cuando θ = 0 y esto ocurre cuando v, f son paralelos. En otras palabras, si queremos movernos en una direcciön en la cual f va a crecer más rapidamente, debemos proceder en la direcciön en la cual f decrece más rapido, habemos de proceder en la dirección f. Caso particular de la regla de la cadena Supongamos que C : R R 2 es una trayectoria diferenciable y f : R R. Sea h(t) = f(c(t)) = f(x(t), y(t), z(t)) donde c(t) = (x(t), y(t), z(t)). Entonces t = x x t + y y t + z Esto es t = f(c(t)) c (t) donde c (t) = (x (t), y (t), z (t)) Dem: Por definición dh h(t) h(t 0 ) t 0 dt (t 0) = lím f(x(t), y(t), z(t)) f(x(t 0 ), y(t 0 ), z(t 0 )) sumando y restando h(t) h(t 0) = f(c(t)) f(c(t 0)) = f(x(t), y(t), z(t)) = + f(x(t 0), y(t), z(t)) + f(x(t 0 ), y(t), z(t)) f(x(t 0 ), y(t 0 ), z(t)) + f(x(t 0 )), y(t 0 ), z((t)) f(x(t 0 ), y(t 0 ), z(t 0 )) ( )

2 Aplicando el T.V.M. f(x(t), y(t), z(t)) f(x(t 0 ), y(t), z(t)) = x (c, y(t), z(t))(x(t) x(t 0)) f(x(t 0 ), y(t), z(t)) f(x(t 0 ), y(t 0 ), z(t)) = y (x(t), d, z(t)(y(t) y(t 0)) f(x(t 0 ), y(t 0 ), z(t)) f(x(t 0 ), y(t 0 ), z(t 0 )) = y (x(t), y(t), e)(z(t) z(t 0)) = x (c, y(t), z(t))(x(t) x(t 0))+ y (x(t), d, z(t))(y(t) y(t 0))+ z (x(t), y(t), e)(z(t) z(t 0)) tomando lím t t 0 y por la continuidad de las parciales t = x x t + y y t + z Ejemplo: Verificar la regla de la cadena para f(u, v, w) = u 2 +v 2 w donde u(x, y, z) = x 2 y, v(x, y, z) = y 2, w(x, y, z) = e xz así u u x + v v x + w n w x = 2x2 y(2xy) + ze xy = Ejemplo: En que dirección desde (0, ) crece mas rapido f(x, y) = x 2 y 2? Sol: El gradiente es f = (2x, 2y) (0,) = (0, 2) 2

3 Ahora cuando hablamos de los conjuntos de nivel f(x, y = k), si tenemos que c(t)ɛf f(c(t)) = K f (c(t)) = 0 f(c(0)) v = 0 Si v es un vector tangente t=0 entonces f es ortogonal a los conjuntos de nivel El gradiente es normal a las superficies de nivel. Sea f : R R una aplicación C y sea (x 0, y 0, z 0 ) un punto sobre la superficie de nivel S definida por f(x, y, z) = k, k = cte. Entonces f(x 0, y 0, z 0 ) Es normal a la superficie de enivel en el siguiente sentido: si v es el vector tangente en t = 0 de una trayectoria c(t) con c(0) = (x 0, y 0, z 0 ) entonces f v = 0. Dem: Sea c(f) en S, entonces f(c(t)) = K. Sea v como en la hipotesis entonces v = c (0) 0 = d dt f(c (t)) f(c(0)) v t=0

4 Caso particular de la regla de la cadena Supongamos que C : R R es una trayectoria diferencias y f : R R. Sea h(t) = f(c(t)) = f(x(t), y(t), z(t)) donde c(t) = x(t), y(t), z(t). Entonces t = x x t + y y t + z Esto es t = f(c(t)) c (t) donde c (t) = (x (t), y (t), z (t)) Demostración: Por definición t (t 0) = lím t 0 h(t) h(t 0 ) h(t) h(t 0 ) = f(c(t)) f(c(t 0)) = f(x(t), y(t), z(t)) f(x(t 0), y(t 0 ), z(t 0 )) sumando y restando = f(x(t), y(t), z(t)) f(x(t 0 ), y(t), z(t)) + f(x(t 0 ), y(t), z(t)) f(x(t 0 ), y(t 0 ), z(t)) + f(x(t 0 ), y(t 0 ), z(t)) f(x(t 0 ), y(t 0 ), z(t 0 )) Aplicando el Teorema del Valor Medio f(x(t), y(t), z(t)) f(x(t 0 ), y(t), z(t)) = x (c, y(t), z(t))(x(t) x(t 0)) f(x(t 0 ), y(t), z(t)) f(x(t 0 ), y(t 0 ), z(t)) = y (x(t), d, z(t))(y(t) y(t 0)) f(x(t 0 ), y(t 0 ), z(t)) f(x(t 0 ), y(t 0 ), z(t 0 )) = z (x(t), y(t), e)(z(t) z(t 0)) ( ) = (x(t) y(t)) (c, y(t), z(t)) x t t 0 + (x(t), d, z(t)) (y(t) y(t 0)) y t t 0 + (x(t), y(t), e) (z(t) z(t 0)) z t t 0 tomando el lím y por la continuidad de las parciales t t0 t = x x t + y y t + z... ( )

5 Ejemplo: Verificar la regla de la cadena para f(u, v, w) = u 2 + v 2 w donde u(x, y, z) = x 2 y, v(x, y, z) = y 2, w(x, y, z) = e xz asi u u x + v v x + w w x = 2x2 y(2xy) + ze xz Teorema: Si f : R R es diferenciable, entonces todas las derivadas direccionales existen. La derivada [ direccional ] en [ x en la ] dirección [ v ] esta dada por Df v (x) = gradf(x) v = f(x) v = x (x) v + y (x) v 2 + z (x) v Demostración: Sea c(t) = x + tv de manera f(x + tv) = f(c(t)) aplicando el caso particular de la regla de la cadena df(c(t)) = f(c(t)) d(t) dt por otro lado c(0) = f(x), c (t) = v c (0) = v asi que df(x + tv Df v (x) = dt = f(x) v t=0 Ejemplo: Sean f(x, y, z) = z 2 e yz. Calcular la razón de cambio de f en la dirección del vector ( ) unitario v =,, en (,0,0) Solución : ( f v = (2xe yz, zx 2 e yz, yx 2 e yz ) (,0,0) ( ) = (2, 0, 0),, ),, = 2 Teorema: Supongamos que f(x) 0. Entonces f(x) apunta en la dirección a lo largo de la cual f crece mas rapido. Demostración: Si v es una recta unitaria, la razón de cambio de f en la dirección v esta dada por f(x) v y f(x) v = f(x) v cos θ = f(x) cos θ donde θ es el ángulo entre f(x), v. Este es máximo cuando θ = 0 y esto ocurre cuando v, f(x), son paralelos. En otras palabras, si queremos movernos en una dirección en la cual f va a crecer más rapidamente, debemos proceder en la dirección en la cual f decrece más rápido, habremos de proceder en la dirección f(x). 2

6 Ejemplo: En que dirección desde (0, ) crece más rápido f(x, y) = x 2 y 2? Solución: El gradiente es f = (2x, 2y) (0,) = (0, 2) Ahora cuando hablamos de los conjuntos φ niveles f(x, y) = k, si tenemos que c(t) f f (c(t)) = 0 f(c(0)) v = 0 Si v es un vector tangente t = 0 entonces f es ortogonal a los conjuntos de nivel. El gradiente es normal a las superficies de nivel. Sea f : R R una aplicación C y sea (x 0, y 0, z 0 ) un punto sobre la superficie de nivel S definida por f(x, y, z) = k, k = cte. Entonces f(x 0, y 0, z 0 ) es normal a la superficie de nivel en el siguiente sentido: si v es el vector tangente en t = 0 de una trayectoria c(t) con c(0) = (x 0, y 0, z 0 entonces f v = 0 Demostración: Sea c(t) en S, entonces f(c(t)) = k. Sea v como en la hipotesis entonces v = c (0) 0 = d df t=0 f(c(t)) f(c(0)) v

7 4

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

= lim. y = f(x 0 ) + f (x 0 )(x x 0 )

= lim. y = f(x 0 ) + f (x 0 )(x x 0 ) Tema 4 Diferenciabilidad 4.1 Funciones Diferenciables Cuando estudiamos el Cálculo en una variable real, se definía función derivable en un punto como aquélla para la cual existía la derivada en dicho

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

3 Cálculo diferencial en varias variables

3 Cálculo diferencial en varias variables Introducción Derivadas parciales. Derivadas parciales de orden superior Función diferenciable. Diferencial total. Regla de la cadena. Derivadas de una función definida de manera implícita. (*) Derivación

Más detalles

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 11: Derivadas parciales y direccionales. Gradiente Introducción al Cálculo Infinitesimal I.T.I. Gestión Recordar: - Cálculo de ĺımites - Reglas de derivación Derivadas parciales f : R 2 R función

Más detalles

TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.)

TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) Problema 1 (i) Probar que el sistema { ln(x 2 + y 2 + 1) + z 2 = π sen(z 2 ) (x 2 + y 2 ) 3 2 + xz = 0, dene

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

1 Cálculo diferencial en varias variables.

1 Cálculo diferencial en varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 1 Cálculo diferencial en varias variables. 1.1 Funciones de varias variables. Límites y continuidad.

Más detalles

MATE1207 Primer parcial - Tema A MATE-1207

MATE1207 Primer parcial - Tema A MATE-1207 MATE7 Primer parcial - Tema A MATE7. Si su respuesta y justificación son correctas obtendrá el máximo puntaje. Si su respuesta es incorrecta podrá obtener créditos parciales de acuerdo a su justificación.

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

1 FUNCIONES DE R N EN R.

1 FUNCIONES DE R N EN R. 1 FUNCIONES DE R N EN R. 1. Idea de función. Si A R N, una función f : A R es una regla que asigna a cada punto x A un número f( x ) R. Ejemplos: Si x R 2 podemos considerar la función f( x )=(distancia

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3). CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0,

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0, Capítulo 1 Función implícita Problema 1 (i Probar que el sistema y + z x + 0 yz + xz xy 1 0 dene dos funciones implícitas y y(x z z(x en un entorno del punto (x y z ( 1 1. (ii Sea α la curva parametrizada

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

Diferenciabilidad, Regla de la Cadena y Aplicaciones

Diferenciabilidad, Regla de la Cadena y Aplicaciones Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Superficies Parametrizadas y Áreas

Superficies Parametrizadas y Áreas Superficies Parametrizadas y Áreas 1 Superficies Parametrizadas y Áreas Hasta ahora hemos estudiado (tema de matemáticas 5) superficies definidas como gráficas de funciones de la forma z = f (x, y). El

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES MATEMÁTICA II PROFESOR RICARDO SANTANDER BAEZA 2004 Ricardo Santander Baeza Universidad de Santiago de Chile

Más detalles

CAPÍTULO III. CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES

CAPÍTULO III. CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO III. CÁLCULO DIFERENCIAL DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Derivadas parciales. Derivadas direccionales. 2. Diferenciabilidad. 3. Plano tangente. 4. Derivación de funciones compuestas.

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x.

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x. clase C 1 clase C p 1. clase C 1 Consideremos U un abierto de R n, y F : U R m. Si para cada x U existe df (x), podemos definir una función df : U R m df (x) = ( 1 (x),..., m (x)) y tiene sentido estudiar

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

1 Función real de dos variables reales

1 Función real de dos variables reales Cálculo Matemático. Tema 10 Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 10: Funciones de dos variables. Curso 008-09 1 Función real de dos variables reales Hasta el momento

Más detalles

Campos sin divergencia y potenciales vectores

Campos sin divergencia y potenciales vectores Campos sin divergencia y potenciales vectores Jana Rodriguez Hertz Cálculo 3 IMERL 24 de mayo de 2011 campo sin divergencia campo sin divergencia campo sin divergencia X : Ω R 3, X = (A, B, C) campo sin

Más detalles

5. Composición de funciones de varias variables y reglas de la cadena

5. Composición de funciones de varias variables y reglas de la cadena 5. Composición de funciones de varias variables y reglas de la cadena En Análisis I se consideró la composición de una función de 1 variable con otra función también de 1 variable: la composición de x(u)

Más detalles

Problemario de Cálculo Diferencial de Varias Variables

Problemario de Cálculo Diferencial de Varias Variables Problemario de Cálculo Diferencial de Varias Variables 1 María José Arroyo Shirley Bromberg Patricia Saavedra Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa ÍNDICE 1 Geometría

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

Relación de ejercicios del tema 3

Relación de ejercicios del tema 3 Relación de ejercicios del tema 3 Asignatura: Curvas y Superficies. Grado en Matemáticas. Grupo: 3 0 -B Profesor: Rafael López Camino (Do Carmo, sección 2.2) 1. Demostrar que el cilindro {(x, y, z) R 3

Más detalles

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla.

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla. Extremos Locales Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor. Definicón.- Si f : u

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización Calificación: FECHA: 1/06/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Más detalles

R(t)=P+tV. (el nombre del parámetro es irrelevante)

R(t)=P+tV. (el nombre del parámetro es irrelevante) Rectas en el plano Parametrizaciones La recta que pasa por el punto P y tiene la dirección del vector V esta formada por los los puntos de la forma R(t)=P+tV donde t es un escalar. Esta es una parametrizacion

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o Capítulo 11 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor.

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

Integral de superficie.

Integral de superficie. Tema 4 Integral de superficie. 4.1 uperficies. Definición 4.1 ean IR 2 un conjunto conexo y κ: IR 3 una función continua. La imagen = κ se llama superficie descrita por κ. También se dice que κ es una

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Elementos de Cálculo en Varias Variables Departamento de Matemáticas ITESM Elementos de Cálculo en Varias Variables Ma130 - p. 1/47 En esta lectura se dará una revisión

Más detalles

Seminario de problemas-bachillerato. Curso Hoja 6

Seminario de problemas-bachillerato. Curso Hoja 6 Seminario de problemas-bachillerato. Curso 2012-13. Hoja 6 37. Dada una cuerda AB de una circunferencia de radio 1 y centro O, se considera la circunferencia γ de diámetro AB. Sea P es el punto de γ más

Más detalles

SISTEMAS DE REFERENCIA

SISTEMAS DE REFERENCIA CINEMÁTICA DE LA PARTÍCULA: SISTEMAS DE REFERENCIA 1.- Cinemática de la partícula 2.- Coordenadas intrínsecas y polares 3.- Algunos casos particulares de especial interés 1.- Cinemática de la partícula

Más detalles

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Sergio Blanes http://personales.upv.es/ serblaza Instituto de Matemtica Multidisciplinar Universidad Politécnica de Valencia Edificio 8-G, entrada

Más detalles

(Límites y continuidad, derivadas, estudio y representación de funciones)

(Límites y continuidad, derivadas, estudio y representación de funciones) ANÁLISIS I: CÁLCULO DIFERENCIAL (Límites y continuidad, derivadas, estudio y representación de funciones) Curso 009-010 -Enunciados: pg -Soluciones: pg 3 Curso 010-011 -Enunciados: pg 5 -Soluciones: pg

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

CONCEPTOS PRELIMINARES

CONCEPTOS PRELIMINARES CONCEPTOS PRELIMINARES Matemáticas II En R un conjunto abierto es la unión de intervalos abiertos. Tanto el concepto de conjunto abierto como de intervalo abierto se generaliza en el plano y en el espacio.

Más detalles

Sistemas autónomos. Introducción a la teoría cualitativa.

Sistemas autónomos. Introducción a la teoría cualitativa. Lección 4 Sistemas autónomos. Introducción a la teoría cualitativa. 4.1 Sistemas autónomos. Mapas de fase. En esta lección nos centraremos en el estudio de sistemas autónomos, es decir, aquellos que pueden

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 3 (DERIVADAS) Profesora: Yulimar Matute Febrero 2012 DERIVADAS POR DEFINICIÓN

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Práctica Ecuaciones diferenciales de primer orden.. Introducción Para resolver una ecuación diferencial en la forma F (x, y, y ) = 0, o bien y = f(x, y) (.) el Mathematica dispone del comando DSolve, cuya

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES 1 FUNCIONES DE VARIAS VARIABLES 1 Hasta ahora nos hemos preocupado del Cálculo Diferencial e Integral de funciones de una variable, sin embargo, en el mundo real las cantidades físicas dependen de dos

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

1 Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Guía preparada a partir de las secciones 11.5 a

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles