CLASE VII EVAPOTRANSPIRACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CLASE VII EVAPOTRANSPIRACIÓN"

Transcripción

1 CLASE VII EVAPOTRANSPIRACIÓN 1. Introducción La evapotranspiración es la combinación de la evaporación desde la superficie de suelo y la transpiración de la vegetación. Los mismos factores que dominan la evaporación desde una superficie de agua abierta también dominan la evapotranspiración, los cuales son: el suministro de energía y el transporte de vapor. Además, el suministro de humedad a la superficie de evaporación es un tercer factor que se debe tener en cuenta. A medida que el suelo se seca, la tasa de evapotranspiración cae por debajo del nivel que generalmente mantiene en un suelo bien humedecido. Los cálculos de las tasas de evapotranspiración se efectúan utilizando los mismos métodos descritos para la evaporación en superficies de agua abierta, con ajustes que tienen en cuenta las condiciones de vegetación y de suelo (Van Bavel, 1996; Monteith, 1980). Con respecto a la evaporación fisiológica o transpiración, es el resultado del proceso físico y biológico por el cual el agua cambia del estado líquido al gaseoso, a través del metabolismo de la planta y pasa a la atmósfera. Veihmeyer considera dos tipos de procesos de transpiración, el primero se realiza por medio de los estomas de las hojas y el segundo desde las membranas húmedas, a través de la cutícula. Además se debe de incluir en el concepto de transpiración el agua empleada en los procesos de incorporación de tejido vegetal. Los factores que influyen en la transpiración son los siguientes: - Factores ambientales El aspecto físico del proceso de transpiración, está influenciado por los mismos factores ambientales que rigen a la evaporación, sin embargo algunos factores meteorológicos como la iluminación, la temperatura y la humedad de la atmósfera, tienen un doble efecto en la transpiración debido a su influencia en la abertura de los estomas. En relación al contenido de humedad del suelo, existen opiniones contrapuestas respecto a su influencia en la intensidad de la transpiración, de manera que algunos autores indican que ésta es independiente del contenido de humedad hasta que se alcanza el punto de marchitez permanente, mientras que otros suponen que es proporcional a la humedad disponible para las plantas. - Factores fisiológicos En su aspecto biológico, la transpiración es afectada por las características de la especie vegetal, edad, desarrollo, tipo de follaje y profundidad radicular. Una de las características de la especie vegetal, influenciada por las condiciones ambientales, es el número de estomas por unidad de área foliar, la cual varía de a por cm2, repartidas en una proporción de 3 a 1 entre la superficie inferior y la superficie de la hoja. Otra particularidad de la especie vegetal, está estrechamente relacionada con el tipo y desarrollo del sistema radicular. De manera práctica, la evaporación y la transpiración son procesos que se realizan en la naturaleza de forma simultánea, son interdependientes y es muy difícil su medición por separado. El cálculo de la evapotranspiración es fundamental para la estimación de la demanda de riego de un cultivo y la estimación del escurrimiento medio anual de una cuenca. 1 martes, 27 de abril de 2004

2 2. Conceptos básicos 2.1 Uso consuntivo Se expresa mediante la tasa de evapotranspiración (Etc) en mm/día o mm/mes, la cual depende, además de los factores del clima que afectan a la evaporación (Temperatura, humedad del aire, viento e intensidad de radiación solar), de las características fisiológicas de la cobertura vegetal y de la disponibilidad de agua en el suelo para satisfacer la demanda hídrica de la planta (transpiración y nutrición). Como la cantidad de agua que utiliza la planta para nutrirse es sólo en 1% de la que transpira, los términos uso consuntivo y evapotranspiración se pueden tomar como sinónimos. 2.2 La evapotranspiración potencial del cultivo de referencia (Eto). La evapotranspiración potencial de un cultivo de referencia (Eto) en mm/día, fue definida por Doorembos y Pruit (FAO, 1975) como: La tasa de evaporación en mm/día de una extensa superficie de pasto (grama) verde de 8 a 15 cm de altura, en crecimiento activo, que sombrea completamente la superficie del suelo y que no sufre de escasez de agua. 2.3 La evapotranspiración real (Etr) En la práctica, los cultivos se desarrollan en condiciones de humedad muy lejanas de las óptimas. Por este motivo para calcular por ejemplo la demanda de riego se a de basar en la evapotranspiración real (Etr), la cual toma en consideración al agua disponible en el suelo y las condiciones ambientales en las cuales se desarrolla un cultivo determinado. Siempre y cuando el cultivo en consideración disponga de agua en abundancia (después de un riego o de una lluvia intensa) y en condiciones de buena aireación del suelo, Etr equivale a Etc. La Etr nunca será mayor que Etc. Al aumentar la tensión del agua en el suelo, disminuye la capacidad de las plantas para obtener el volumen de agua requerido al ritmo impuesto por las condiciones del ambiente. Bajo estas condiciones disminuye la transpiración del cultivo por lo tanto Etr es inferior a Etc y también inferior a Eto. La evapotranspiración real de un cultivo, en cierto momento de su ciclo vegetativo, puede expresarse como : Etr = Eto * k (1) Donde : k : Coeficiente que corrige por la fase vegetativa del cultivo y por el nivel de humedad en el suelo. En un suelo sin limitación alguna para la producción, en lo que respecta a condiciones físicas, fertiliodad y salinidad, k puede discriminarse así: Donde : kc : Coeficiente de cultivo kh : coeficiente de humedad del suelo k = kc * kh (2) El coeficiente de cultivo kc, depende de las características anatomorfológicas y fisiológicas de la especie y expresa la variación de su capacidad para extraer agua del suelo durante el ciclo vegetativo. La especie vegetal y el tamaño de la planta representada por su volumen foliar y radical, gobierna el coeficiente kc. 2 martes, 27 de abril de 2004

3 El coeficiente de humedad, kh es una expresión del mecanismo de transporte de agua a la atmósfera a través del suelo y de la planta, que depende del grado de disponibilidad de agua, del gradiente de potencial hídrico entre el suelo y la atmósfera circundante y de la capacidad de dicho sistema para conducir agua. Cuando el suelo se va secando, se incrementa la resistencia a la difusión a través de los estomas de la vegetación y del espacio poroso del suelo. 3. Métodos para estimar la evapotranspiración potencial Existen varios métodos para determinar la evapotranspiración potencial. Los más comúnmente aplicados son los siguientes: - Método del Lisímetro - Método del tanque evaporímetro - Métodos empíricos 3.1 Método de Lisímetro Un lisímetro consiste en un recipiente enterrado y cerrado lateralmente, de modo que el agua drenada por gravedad (la que hubiera infiltrado hasta el acuífero), es captada por un drenaje. En su construcción debe tenerse cuidado de restituir el suelo que se excavo en unas condiciones lo más similares posibles a las que se encontraba. Próximo a él debe existir un pluviómetro. La Eto se despeja de la siguiente ecuación de balance hídrico en el lisímetro. Precipitación = Eto + Infiltración + almacenamiento (3) Para calcular almacenamiento, normalmente se mide la humedad del suelo y a partir de ahí, se calcula una lámina de agua equivalente expresada en mm. Mediante riego el método es más simple, debido a que se debe mantener el suelo en condiciones de humedad óptima y la ecuación sería la siguiente: 3.2 Método de tanque evaporímetro Precipitación + Riego = Eto + Infiltración (4) Este método consiste en encontrar una relación entre la tasa de evapotranspiración producida en un lisímetro y la tasa de evaporación producida en un tanque de evaporación clase A, en base al cual se determina un coeficiente empírico con el que se puede efectuar luego las lecturas de evaporación y obtener indirectamente la evapotranspiración potencial para condiciones ambientales específicas. El tanque de evaporación clase A permite estimar los efectos integrados del clima (Radiación, temperatura, viento y humedad relativa), en función de la evaporación registrada de una superficie de agua libre de dimensiones estandar. Eto = Ktanque * E (5) Eto Ktanque E : Evapotranspiración potencial (mm/día) : Coeficiente empírico de tanque : evaporación libre de tanque clase A (mm/día) Existe una metodología alternativa propuesta por FAO para determinar la evapotranspiración potencial a partir de registros de evaporación de tanque clase A. 3 martes, 27 de abril de 2004

4 Las características físicas del tanque clase A son: - Diámetro externo = cm. - Altura = 25.4 cm - Base a 5.0 cm del suelo - Estar rodeado de pasto corto en un radio de 50.0 m. - Debe ser llenado hasta 5.0 cm por debajo de su borde y evitar que el nivel baje más allá de 7.5 cm por debajo del mismo. Se utiliza las figuras 2.7 (A y B) y la tabla 2.1 adjuntas para determinar Ktanque. 3.3 Métodos Empíricos Método de Thorntwaite El procedimiento de cálculo es el siguiente: a. Se calcula el Indice de calor mensual,i, a partir de la temperatura media mensual ( C): t i = (6) 5 b. Se calcula el Indice de calor anual, I, sumando los 12 valores de i. I = i (7) c. Se calcula la Eto mensual sin corregir mediante la siguiente ecuación: a 10t Eto = 16 (8) Donde a = 675 * 10-9 I * 10-7 I * 10-5 I d. Corrección para el N de días del mes y N de horas de sol. I N d = Eto Eto (9) El método de Thornthwaite reporta resultados más o menos aceptables en regiones húmedas, dando valores demasiado bajos en regiones secas, agravándose aún más en regiones desérticas. Ejemplo: Mes Temperatura media mensual( C) indice de calor mensual i Eto mensual (mm/mes) Días del mes N horas de luz/día Eto mensual corregida (mm/mes) Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre I = a = Método de Thorntwaite 4 martes, 27 de abril de 2004

5 3.3.2 Método de Blaney-Criddle (Modificado por FAO) La fórmula original de Blaney-Criddle (Blaney H.F. & Criddle W.D, 1950), fue desarrollada en la región árida al Oeste de los Estados Unidos, para calcular la evaporación potencial durante un periodo dado. Esta fórmula toma en cuenta la temperatura media del periodo considerado y las horas de luz de día, expresadas como un porcentaje del total anual de horas luz. (Ver Tabla 2.10 A y B). Esta fórmula sencilla y fácil de aplicar, es más adecuada para zonas áridas y semi áridas y para periodos que no sean inferiores a un mes. Según la modificación hecha por FAO, primero se calcula el factor de uso consuntivo de Blaney-Criddle en mm/día : f = p * [ 0.46 * Tm ] (10) Donde : p : Porcentaje de horas de luz diaria. (Tabla 2.10 A y B) Tm : Temperatura media diaria en C. Posteriormente se utiliza la siguiente ecuación de regresión lineal: Eto (mm/día) = a + b * f (11) Donde : a y b son los coeficientes de regresión lineal entre Eto y f (Tabla 2.5) Para aplicar este método es necesario obtener los siguientes datos (por medición o estimación) de la velocidad del viento diurno (durante las horas de luz únicamente), la humedad relativa mínima (HRmín), el número de horas de isolación real (n) y el máximo posible de horas de insolación (N) según la tabla 2.11 A y B. Según Papadakis, J. (1962), el método de Blaney-Criddle, arroja cifras inadmisibles tanto en regiones húmedas como en desérticas o muy secas, en las primeras son demasiado altas y en las segundas demasiado bajas. No se recomienda para regiones elevadas (donde las temperaturas mínimas diarias son bajas), ni para las regiones ecuatoriales (en las cuales la variación diaria de la temperatura es reducida). Ejemplo: Datos Latitud 12 S Altitud 100 m. Mes Julio HR Mínima > 50% (Alta) n/n 0.7 (media) (u) diurno > 5 m/s (Alta) Tm ( C) 23.8 Solución p f (mm/día) 4.96 a b 1.16 Eto (mm/día) martes, 27 de abril de 2004

6 3.3.3 Método de Hargreaves La siguiente fórmula fue desarrollada por Hargreaves (Hargreaves G.L, Hargreaves G.H & Riley J.P, 1985) y (Hargreaves G.H. & Samani Z.A, 1991), a base de mediciones realizadas en lisímetros (Universidad de California). Donde : Eto = * Ra * (Tm ) * TD Eto : Evapotranspiración del cultivo de referencia (mm/día) Ra : Radiación extraterrestre (mm/día) (Tabla 2.24 A y B) Tm : Temperatura media diaria en C. TD : Diferencia de temperatura promedio diaria en el periodo considerado ( C). TD = Temperatura máxima media ( C) Temperatura mínima media ( C) Finalmente, la Evapotranspiración para el cultivo dado se calculará mediante la ecuación: Eto = Eto * Kc Donde Kc: Coeficiente del cultivo de Hargreaves (Tabla 2.25). Ejemplo: Datos Latitud Sur 12 Mes Julio Cultivo predominante Caña de Azúcar Periodo Vegetativo Medio Solución Ra (mm/día) 12.0 Tm ( C) 23.8 T.Máx.media ( C) 27.5 T.Mín.media ( C) 18.3 TD ( C) 9.2 Kc Caña de Azucar 1.2 Eto Método de Turc La ecuación es: ETo = P P L 2 2 Donde: P = Precipitación total anual (mm/año) L = T T 3 T = Temperatura media anual ( C) 6 martes, 27 de abril de 2004

7 3.4 Método semi-empírico Método de Penman (FAO) La ecuación de Penman, modificada por la FAO, estima el uso consuntivo del cultivo de referencia (pasto o grama) y predice la Eto, no solamente en las regiones frías y humedad, sino también, en las zonas calientes y áridas. En dichas zonas áridas, los factores aerodinámicos o advectivos (la humedad y el viento) predomina sobre el término energético (la radiación). El método de Penman distingue entre la influencia del viento durante las horas del día Udía y la del viento durante las horas de la noche Unoche, toma en consideración a la humedad relativa y a la radiación solar. Por lo tanto el método de Penman (modificado por la FAO) incluye un factor de ajuste 'c', basado en la humedad relativa máxima, la radiación solar y la relación entre la velocidad del viento durante las horas del día y de la noche. La ecuación general del Método de Penman es la siguiente: Donde: Eto = c [ w.( Rn) + (1 w). [ f ( u).( ea ed) ] Eto : Evapotranspiración potencial del cultivo de referencia (mm/día) c : Factor de Ajuste de Penman w : Factor de ponderación de Penman (Tabla 2.18) Rn : Radiación neta total (mm/día) f(u) : Función del viento ea : Presión del vapor del agua a saturación (mbar) ed : Presión del vapor del agua ambiente (mbar) - Rn = Rns - Rnl Rns Rnl : Radiación neta onda corta (mm/día) : Radiación neta onda larga (mm/día) - Rns = (1 - α). Rs Cobertura Albedo (α) Agua libre 0.08 Foresta Cultivos tallo largo (p.e. Caña azúcar) Cereales Cultivos talla corto Grass y pastos Suelo desnudo 0.10(Húmedo)-0.35(Seco) Nieve y Hielo 0.20(Viejo)-0.1(Nuevo) Rs : Radiación de onda corta (mm/día) n Rs = Ra N n : Duración media de las horas de sol (horas/día) N : Duración máxima de las horas de sol (horas/día) (Tabla 2.20 B) Ra : Radiación extra-terrestre (mm/día) (Tabla 2.19 B) - Rnl = f(t) x f(ed) x f(n/n) (mm/día) (Tabla 2.22) 7 martes, 27 de abril de 2004

8 f(t) f(ed) f(n/n) : Función de la temperatura del aire : Función de la presión del vapor de agua : Función de las horas de sol reales y máximas. - f(u) : Función del viento U 2 f ( u) = U 2 = f ( z) * U U2 : Velocidad del viento media diaria, medida a 2.0 m de altura sobre el nivel del suelo (km/día). f(z) : Tabla ed = ea * HR(%)/100 ed : presión de vapor de agua ambiente (mbar) ea : Presión del vapor de agua a saturación (mbar) (Tabla 2.16) Tener en cuenta que 1 mm Hg = mbar - Factor c (Tabla 2.23) - Los valores del Kc se encuentran en tablas. Ejemplo: Datos Solución ea (mbar) 20.6 f(z) 0.93 Tmed ( C) 18 Albedo 0.25 ed (mbar) 11.1 U2 (Km/día) HR med (%) 54 N 11.5 f(t) 14.2 f(u) HR máx (%) 90 n/n 0.78 f(ed) Alt.med.viento (m) 3 Ra (mm/día) 12 f(n/n) 0.8 V.viento 5.0 U (Km/día) 130 Rs 7.7 Rnl 2.2 Udía/Unoche 2/1 Altitud 2761 Rns 5.8 Rs 7.7 n 9 Rn 3.6 Factor c 0.95 Latitud Sur 12 Mes Julio w 0.72 Eto (mm/día) martes, 27 de abril de 2004

9 4. Demanda de agua para uso agrícola 4.1 Definiciones a. Cédula de cultivos Es la planificación de los cultivos a implantarse en un área determinada en función a las condiciones climáticas, periodo de desarrollo de los cultivos y la disponibilidad de agua. b. Módulo de Riego Es la cantidad de agua consumida y que debe aplicarse a un cultivo durante su periodo vegetativo (m 3 /ha) c. Demanda de agua de uso agrícola Es la cantidad de agua requerida por la cédula de cultivo. D p = Donde: Dp : Demanda de agua bruta para uso agrícola o demanda de agua del proyecto. Da : Demanda de agua neta para uso agrícola o demanda de agua del proyecto. Da Ef Da = Etr - (PE + CA + N) Donde: Etr = Kc. Eto (mm/mes) PE : Precipitación efectiva (mm/mes) CA : Capacidad de almacenamiento de suelo ( 2 i - 2 f ) N : Aporte del nivel freático Ef : Eficiencia de riego. Ef = Ec. Ed. Ea Ejemplo Donde Ec : Eficiencia de conducción Ed : Eficiencia de distribución Ea : Eficiencia de aplicación Calcular la demanda de agua para irrigar 50 ha con cultivo de maíz (Durante su primer mes de periodo vegetativo) en la zona de Huaraz para el mes de diciembre, sabiendo que Etr = 56.2 mm/mes y PE = 10 mm/mes. Da = Etr - PE = = 46.2 mm/mes. Si además se conoce que: Ec = 55% Ed = 85% Ec = 90% Ef = 0.55 x 0.85 x 0.90 = 0.42 = 42% Dp = 46.2 / 0.42 = 110 mm/mes 2 Dp para 50 ha: 110 mm/mes x 50 ha x 1m 10000m = m 3 /mes 1000mm 1ha 1000l 1mes 1día 1hora Dp en (l/s) = m 3 /mes x 3 = 20.5 l/s 1m 31días 24horas 3600seg 9 martes, 27 de abril de 2004

10 5. Estimación de la evapotranspiración real o déficit de escurrimiento en una cuenca 5.1 Balance hídrico en una cuenca Para calcular la evapotranspiración real de una cuenca debe tomarse en cuenta la cantidad de agua que efectivamente existe en la zona para evapotranspirarse. Para una cuenca cualquiera la ecuación de balance hídrico para un intervalo determinado, será igual a: Donde : P = Etr + Q + R P : Lámina precipitada (mm) Etr : Evapotranspiración real (mm) Q : Excedentes de agua, escurrimiento e infiltración (mm) R : Incremento o decremento en la reserva de agua utilizable por la vegetación (mm) Si se considera que el valor de las reservas al inicio y al final del periodo son iguales o despreciables en comparación con los valores de P y Q para un intervalo de gran duración (por ejemplo un año), se tiene que: Etr = P - Q El término Etr también se conoce como Déficit de Escurrimiento (D). Por otra parte, se ha observado que el déficit de escurrimiento varía mucho menos que el llamado coeficiente de escurrimiento (Q / P). 5.2 Estimación de la evapotranspiración real a partir de la humedad en el suelo Sin el humedecimiento de suelo por la lluvia, la evapotranspiración reducirá su contenido de humedad hasta que la pérdida de agua ya no pueda ocurrir a nivel potencial. Uno de los métodos más populares para estimar la evapotranspiración real (Etr) se basa en el cálculo de la evapotranspiración potencial (Eto), de manera que si se tiene abundante humedad en el suelo, las dos magnitudes serán iguales y cuando la humedad es escasa la evapotranspiración potencial será reducida por un factor que depende de la cantidad de agua en el suelo, esto es: Etr = Eto * (HD/HU) Donde HD : Contenido de humedad disponible en el suelo y HU : Contenido de humedad límite en relación con la textura del suelo. 10 martes, 27 de abril de 2004

Evaporación, Transpiración n y Evapotranspiración

Evaporación, Transpiración n y Evapotranspiración Evaporación, Transpiración n y Evapotranspiración Curso de Hidrología Departamento de Ingeniería a Civil y Minas División n de Ingeniería Universidad de Sonora Mayo de 2007 Introducción La presencia de

Más detalles

La evapotranspiración: concepto y métodos para su determinación. Capítulo I

La evapotranspiración: concepto y métodos para su determinación. Capítulo I La evapotranspiración: concepto y métodos para su determinación Capítulo I I. La evapotranspiración: concepto y métodos para su determinación I.1 Evapotranspiración La evaporación es el proceso por el

Más detalles

Evapotranspiración. El agua en el suelo. Zonas de humedad en un suelo

Evapotranspiración. El agua en el suelo. Zonas de humedad en un suelo Evapotranspiración El agua en el suelo Zonas de humedad en un suelo Concepto de Evapotranspiración. Utilidad. Unidades Evapotranspiración Real y Potencial Factores que influyen en la Evapotranspiración

Más detalles

CLASE V EVAPOTRANSPIRACIÓN

CLASE V EVAPOTRANSPIRACIÓN CLASE V EVAPOTRANSPIRACIÓN Escuela de Postgrado-Universidad Nacional Agraria La Molina 1. Introducción Según Ven Te Chow Hidrología Aplicada, 1994. La evapotranspiración es la combinación de la evaporación

Más detalles

Tema 4 Termodinámica de la atmósfera. Humedad atmosférica. Estabilidad e inestabilidad

Tema 4 Termodinámica de la atmósfera. Humedad atmosférica. Estabilidad e inestabilidad Tema 4 Termodinámica de la atmósfera. Humedad atmosférica. Estabilidad e inestabilidad 1 El ciclo hidrológico El agua se presenta en la naturaleza en los 3 estados de la materia (sólido, líquido y gaseoso).

Más detalles

TEMA 7: Evapotranspiración

TEMA 7: Evapotranspiración TEMA 7: Evapotranspiración MARTA GONZÁLEZ DEL TÁNAGO UNIDAD DOCENTE DE HIDRÁULICA E HIDROLOGÍA DEPARTAMENTO DE INGENIERÍA FORESTAL E.T.S. DE INGENIEROS DE MONTES UNIVERSIDAD POLITÉCNICA DE MADRID Dunne

Más detalles

Evapotranspiración. Concepto de Evapotranspiración. Utilidad. Unidades. May-2006

Evapotranspiración. Concepto de Evapotranspiración. Utilidad. Unidades. May-2006 Evapotranspiración May-2006 Concepto de Evapotranspiración. Utilidad. Unidades Evapotranspiración (en adelante, ET) es la consideración conjunta de dos procesos diferentes: la evaporación y la transpiración

Más detalles

Evapotranspiración de referencia (ET o )

Evapotranspiración de referencia (ET o ) 15 Parte A Evapotranspiración de referencia (ET o ) Esta parte del libro incluye los aspectos relacionados con la evapotranspiración de la superficie de referencia, denominada evapotranspiración del cultivo

Más detalles

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad 1. INTRODUCCIÓN 1.1. MARCO TEÓRICO Distribución vertical del agua en el suelo [1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad Figura 1 se pueden distinguir la

Más detalles

Del total de agua dulce que hay en la Tierra, casi el 80 % está en forma de hielo. Bajo forma líquida, cerca de un 1 % se considera superficial, y de

Del total de agua dulce que hay en la Tierra, casi el 80 % está en forma de hielo. Bajo forma líquida, cerca de un 1 % se considera superficial, y de AGUA en el SUELO Del total de agua dulce que hay en la Tierra, casi el 80 % está en forma de hielo. Bajo forma líquida, cerca de un 1 % se considera superficial, y de ella, en los suelos, habría entre

Más detalles

Requisitos del semillero

Requisitos del semillero Requisitos del semillero La tarea de la cama de siembra es proporcionar a la semilla las condiciones idóneas para una germinación rápida y uniforme. Esto requiere agua, aire, calor y un ambiente libre

Más detalles

INTERCAMBIO GASEOSO EN LAS PLANTAS. Edmundo Acevedo H Profesor Titular Universidad de Chile www.sap.uchile.cl

INTERCAMBIO GASEOSO EN LAS PLANTAS. Edmundo Acevedo H Profesor Titular Universidad de Chile www.sap.uchile.cl INTERCAMBIO GASEOSO EN LAS PLANTAS Edmundo Acevedo H Profesor Titular Universidad de Chile www.sap.uchile.cl Las plantas requieren mucha agua para ser productivas; 50-80 T / Ha dia para plantas C 3 y C

Más detalles

NECESIDADES DE AGUA DE LA REMOLACHA AZUCARERA

NECESIDADES DE AGUA DE LA REMOLACHA AZUCARERA NECESIDADES DE AGUA DE LA REMOLACHA AZUCARERA MODERNIZACIÓN DEL REGADÍO Y FUTURO DE LA REMOLACHA EN CASTILLA Y LEÓN 15 FEBRERO 2011 Rodrigo Morillo-Velarde agua Suelo atmósfera El agua es la base de la

Más detalles

III.3. INFILTRACION. III.3.1. Definición.

III.3. INFILTRACION. III.3.1. Definición. III.3. INFILTRACION El análisis de la infiltración en el ciclo hidrológico es de importancia básica en la relación entre la precipitación y el escurrimiento, por lo que a continuación se introducen los

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la 34 CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO 4.1 Lecho fluidizado con vapor sobrecalentado Potter [10], ha demostrado en una planta piloto que materiales sensibles a la temperatura pueden

Más detalles

Una caracterís=ca dis=n=va de las células guardianes es que están engrosadas y pueden tener hasta 5 µm de espesor, en contraste con una célula

Una caracterís=ca dis=n=va de las células guardianes es que están engrosadas y pueden tener hasta 5 µm de espesor, en contraste con una célula La Transpiración La transpiración es la pérdida de agua en forma de vapor a través de los estomas, cu7cula, y la peridermis (superficie suberizada con len=celas). De la can=dad total de agua que es absorbida

Más detalles

MÓDULO 3 CURVAS DE INFILTRACIÓN

MÓDULO 3 CURVAS DE INFILTRACIÓN MÓDULO 3 CURVAS DE INFILTRACIÓN Autores: Dr. Ing. Roberto Pizarro T. Ing. Juan Pablo Flores V. Ing. Claudia Sangüesa P. Ing. Enzo Martínez A. 1. INTRODUCCIÓN La infiltración el agua posee un rol fundamental

Más detalles

UNIDAD 2. Contenido de Humedad del Agua en el Suelo

UNIDAD 2. Contenido de Humedad del Agua en el Suelo UNIDAD 2. Contenido de Humedad del Agua en el Suelo CONTENIDO Índice de Ilustraciones y Tablas... 2 2.1. Contenido de Humedad del Suelo... 3 2.2. Retención de agua en el suelo... 6 2.3. Determinación del

Más detalles

PROPIEDADES FÍSICAS DEL SUELO

PROPIEDADES FÍSICAS DEL SUELO capítulo m PROPIEDADES FÍSICAS DEL SUELO ~ Textura Es el tamaño de las partículas que componen el suelo. De manera más específica, textura es la proporción de arcilla, limo y arena en un suelo. Arena gruesa

Más detalles

SISTEMA PERSONALIZADO DE ESTIMACIÓN DE AGUA EN EL SUELO

SISTEMA PERSONALIZADO DE ESTIMACIÓN DE AGUA EN EL SUELO SISTEMA PERSONALIZADO DE ESTIMACIÓN DE AGUA EN EL SUELO INTRODUCCIÓN Este sistema de estimación de agua en el suelo, desarrollado por la Unidad GRAS del INIA, tiene como finalidad contribuir en la toma

Más detalles

1. Definición. 2. Proceso Productivo

1. Definición. 2. Proceso Productivo SECADO SOLAR 1. Definición El secado mediante una corriente de aire, donde se aprovecha la radiación solar como fuente de energía, es uno de los tratamientos más antiguos. Se conoce como deshidratación

Más detalles

Capítulo 6. Valoración respiratoria

Capítulo 6. Valoración respiratoria 498 Capítulo 6. Valoración respiratoria 6.19. La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 6.19 La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 499

Más detalles

Consideraciones prácticas para el diseño y manejo de sistemas de riego Control de heladas

Consideraciones prácticas para el diseño y manejo de sistemas de riego Control de heladas Consideraciones prácticas para el diseño y manejo de sistemas de riego Control de heladas México 2012 Importancia de los sistemas de riego Todas las plantas necesitan agua para llevar a cabo sus procesos

Más detalles

Capítulo 4 EVAPORACIÓN Y TRANSPIRACIÓN. EVAPOTRANSPIRACIÓN

Capítulo 4 EVAPORACIÓN Y TRANSPIRACIÓN. EVAPOTRANSPIRACIÓN Capítulo 4 EVAPORACIÓN Y TRANSPIRACIÓN. EVAPOTRANSPIRACIÓN INTRODUCCIÓN Tanto la Evaporación como la Transpiración se suelen englobar en el concepto de Evapotranspiración. En el presente capítulo se tratarán

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire.

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. El proceso de secado es una de las operaciones más importantes en la industria

Más detalles

PRINCIPIOS ASOCIADOS A LAS RESPUESTAS DE LOS CULTIVOS AL MEDIOAMBIENTE

PRINCIPIOS ASOCIADOS A LAS RESPUESTAS DE LOS CULTIVOS AL MEDIOAMBIENTE PRINCIPIOS ASOCIADOS A LAS RESPUESTAS DE LOS CULTIVOS AL MEDIOAMBIENTE Edmundo Acevedo H. Profesor Titular Universidad de Chile Diciembre 2010 www.uchile.cl 1.- Los cultivos se pueden estudiar a diferentes

Más detalles

Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos

Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos ESTUDIO FAO RIEGO Y DRENAJE ISSN 02545293 56 Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos lluvia R s radiación evapotranspiración riego K c med

Más detalles

CONCLUSIONES GENERALES

CONCLUSIONES GENERALES 7 CONCLUSIONES GENERALES CONCLUSIONES. La intención de realizar un trabajo como este, era la de conocer con mayor profundidad, las posibilidades de la vegetación como un instrumento para mejorar la condiciones

Más detalles

Diez módulos de estación, extensores también se pueden agregar para proporcionar de 10 a 30 estaciones de irrigación.

Diez módulos de estación, extensores también se pueden agregar para proporcionar de 10 a 30 estaciones de irrigación. ND2i 0904 1 NutriDose II i El NutriDoseII i controla la inyección en línea en un sistema de fertirrigación de múltiples zonas. El controlador principal se usa junto con otros módulos para permitir que

Más detalles

Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos

Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos ESTUDIO FAO RIEGO Y DRENAJE ISSN 0254-5293 56 Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos lluvia R s radiación evapotranspiración riego K c

Más detalles

Decadal Nº 178. Para la eco región del Chaco Correspondiente al 3 er decadal de NOVIEMBRE del 2011

Decadal Nº 178. Para la eco región del Chaco Correspondiente al 3 er decadal de NOVIEMBRE del 2011 Decadal Nº 178 Para la eco región del Chaco Correspondiente al 3 er decadal de NOVIEMBRE del 2011 Contenido 1. COMO SE DEBE UTILIZAR ESTE BOLETÍN. 2. CUADRO DE INFORMACIÓN Y PRONÓSTICOS AGROMETEOROLÓGICOS.

Más detalles

Introducción al calor y la luz

Introducción al calor y la luz Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas

Más detalles

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación.

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación. FASES GASEOSA Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación. Porosidad del suelo Se denomina porosidad del suelo al espacio no ocupado

Más detalles

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO Glosario. (Del lat. glossarĭum). 1. m. Catálogo de palabras oscuras o desusadas, con definición o explicación de cada una de ellas. 2. m. Catálogo de palabras

Más detalles

Aspectos del Clima en Alba de Tormes

Aspectos del Clima en Alba de Tormes Aspectos del Clima en Alba de Tormes Temperatura La temperatura media anual según la serie climática desde 1945 a 1994 es de 12,8 Cº. Las temperaturas medias mensuales en la serie de los 50 años han sido:

Más detalles

EL CLIMA Y LA SALUD EN LA CIUDAD DE BUENOS AIRES. Lo que mata es la humedad, el frío, el calor

EL CLIMA Y LA SALUD EN LA CIUDAD DE BUENOS AIRES. Lo que mata es la humedad, el frío, el calor De Garin, Alicia Beatriz; Bejarán, Rubén Aníbal (marzo 2006). El clima y la salud en la ciudad de Buenos Aires : Lo que mata es la humedad, el frío, el calor... En: Encrucijadas, no. 36. Universidad de

Más detalles

Protocolo de la Estación Meteorológica Davis

Protocolo de la Estación Meteorológica Davis Protocolo de la Estación Meteorológica Davis Objetivo General Tomar los datos de atmósfera utilizando una Estación Meteorológica Davis Visión General Se instala una estación meteorológica para realizar

Más detalles

CAPÍTULO 1: INTRODUCCIÓN

CAPÍTULO 1: INTRODUCCIÓN CAPÍTULO 1: INTRODUCCIÓN En este proyecto se ha diseñado y realizado un dispositivo automático para gestionar los tiempos de riego óptimos aplicado a una pequeña extensión agrícola de aproximadamente 500

Más detalles

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Física Ambiental, I.T. Agrícola Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Universidad de Huelva. Dpto. de Física Aplicada. Prácticas de Física Ambiental, I.T. Agrícola 1 3. Densidad y humedad del aire 3.1.

Más detalles

Universidad de Córdoba Bonterra Ibérica y Paisajes del Sur

Universidad de Córdoba Bonterra Ibérica y Paisajes del Sur Optimizando el potencial de techos verdes para la rehabilitación energética de edificios: interacción entre sustratos reciclados, propiedades hídricas y eficiencia energética Universidad de Córdoba Bonterra

Más detalles

Auditorías Energéticas

Auditorías Energéticas Auditorías Energéticas IMPORTANTES RESULTADOS SE OBTIENEN CON LA REALIZACION DE AUDITORIAS ENERGETICAS APLICADAS A LOS SISTEMAS DE GENERACION, DISTRIBUCION Y CONSUMO DE VAPOR. LA REDUCCION DE COSTOS ES

Más detalles

Ficha Técnica Secado Solar

Ficha Técnica Secado Solar Ficha Técnica Secado Solar 13 1. Consideraciones Generales El secado es uno de los métodos más comunes para preservar o conservar los alimentos. Este método consiste en reducir o disminuir el contenido

Más detalles

Manejo del riego en un monte frutal con niveles freáticos críticos. Aplicación del modelo de balance hídrico Win-Isareg

Manejo del riego en un monte frutal con niveles freáticos críticos. Aplicación del modelo de balance hídrico Win-Isareg Facultad de Ciencias Agrarias (UNCo) Programa INTA-AUDEAS-CONADEV Manejo del riego en un monte frutal con niveles freáticos críticos. Aplicación del modelo de balance hídrico Win-Isareg Autores Ayelen

Más detalles

3. Circulación Oceánica y Clima

3. Circulación Oceánica y Clima Módulo I: Motores de la Biosfera 3. Circulación Oceánica y Clima Capítulo 13 El ciclo hidrológico Joaquim Ballabrera Unitat de Tecnologia Marina, CSIC, Barcelona joaquim@cmima.csic.es Introducción El

Más detalles

HOJA INFORMATIVA DE HORTICULTURA

HOJA INFORMATIVA DE HORTICULTURA HOJA INFORMATIVA DE HORTICULTURA COSECHA Y POST-COSECHA: Importancia y fundamentos Alejandro R. Puerta Ing. Agr. Agosto 2002 La cosecha y post - cosecha es una etapa de fundamental importancia en el proceso

Más detalles

METODOS PARA LA DETERMINACION DE LA EVAPOTRANSPIRACION PENMAN MONTEITH TANQUE TIPO A

METODOS PARA LA DETERMINACION DE LA EVAPOTRANSPIRACION PENMAN MONTEITH TANQUE TIPO A METODOS PARA LA DETERMINACION DE LA EVAPOTRANSPIRACION PENMAN MONTEITH Y TANQUE TIPO A Ing. Agr. M. Sc. Ramón M. Sánchez Hidrología y Riego METODO DE PENMAN Comenzó en 1948 con dos coeficientes :0.6 en

Más detalles

Rec. UIT-R P.527-3 1 RECOMENDACIÓN UIT-R P.527-3 * CARACTERÍSTICAS ELÉCTRICAS DE LA SUPERFICIE DE LA TIERRA

Rec. UIT-R P.527-3 1 RECOMENDACIÓN UIT-R P.527-3 * CARACTERÍSTICAS ELÉCTRICAS DE LA SUPERFICIE DE LA TIERRA Rec. UIT-R P.527-3 1 RECOMENDACIÓN UIT-R P.527-3 * CARACTERÍSTICAS ELÉCTRICAS DE LA SUPERFICIE DE LA TIERRA Rc. 527-3 (1978-1982-1990-1992) La Asamblea de Radiocomunicaciones de la UIT, considerando a)

Más detalles

UNIVERSIDAD DE SUCRE FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA CIVIL ASIGNATURA: LAB. GEOTACNIA I INFORME

UNIVERSIDAD DE SUCRE FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA CIVIL ASIGNATURA: LAB. GEOTACNIA I INFORME GRUPO N : 1 ASISTIERON: FECHA: 22 de Mayo del 2012 ENSAYO: Determinación de la densidad seca en campo por el método del cono de arena NORMA: OBJETIVO GENERAL Determinar la densidad seca y el contenido

Más detalles

CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA

CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA 3 CAPITULO 1: CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA 1.1 INTRODUCCIÓN El agua es el principal constituyente de los seres vivos, es la sustancia más abundante en la Tierra y es una fuerza importante que

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

Balance Hídrico Superficial

Balance Hídrico Superficial Sociedad Geográfica de Lima Balance Hídrico Superficial Cartilla Técnica Contribuyendo al desarrollo de una Cultura del Agua y la Gestión Integral de Recurso Hídrico LIMA - PERÚ 2011 CARTILLA TÉCNICA:

Más detalles

Colección DIVULGACIÓN MANEJO DEL RIEGO

Colección DIVULGACIÓN MANEJO DEL RIEGO Colección DIVULGACIÓN MANEJO DEL RIEGO Publicado en Instituto Nacional de Tecnología Agropecuaria Centro Regional Patagonia Norte Estación Experimental Agropecuaria Alto Valle Ruta Nac. 22, km 1190, Allen,

Más detalles

Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos

Evapotranspiración del cultivo Guías para la determinación de los requerimientos de agua de los cultivos ESTUDIO FAO RIEGO Y DRENAJE 56 Evapotranspiración del cultivo Evapotranspiración del cultivo En esta publicación se presenta una actualización del procedimiento para calcular la evapotranspiración de referencia

Más detalles

Red de Seguimiento de Cambio Global en la Red de Parques Nacionales CARACTERÍSTICAS TÉCNICAS EQUIPOS Y SENSORES DE ESTACIONES METEOROLÓGICAS.

Red de Seguimiento de Cambio Global en la Red de Parques Nacionales CARACTERÍSTICAS TÉCNICAS EQUIPOS Y SENSORES DE ESTACIONES METEOROLÓGICAS. Red de Seguimiento de Cambio Global en la Red de CARACTERÍSTICAS TÉCNICAS EQUIPOS Y SENSORES DE ESTACIONES METEOROLÓGICAS. Última actualización: junio 2013 INDICE GENERAL 1.- SENSORES METEOROLÓGICOS DE

Más detalles

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3. Flujos Turbulentos

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3. Flujos Turbulentos Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3 Flujos Turbulentos René Garreaud S. Carolina Meruane N. 2005 Índice 1. Antecedentes teóricos...............................

Más detalles

EMPRESA DE TRANSMISIÓN ELÉCTRICA S.A. GERENCIA DE HIDROMETEOROLOGÍA CENTRO DEL CLIMA DE PANAMÁ

EMPRESA DE TRANSMISIÓN ELÉCTRICA S.A. GERENCIA DE HIDROMETEOROLOGÍA CENTRO DEL CLIMA DE PANAMÁ EMPRESA DE TRANSMISIÓN ELÉCTRICA S.A. GERENCIA DE HIDROMETEOROLOGÍA CENTRO DEL CLIMA DE PANAMÁ CARACTERIZACIÓN CLIMÁTICA PARA LOS DISTRITOS DE PANAMÁ Y SAN MIGUELITO, SEGÚN LOS DATOS SUMINISTRADOS POR

Más detalles

TRANSDUCTORES CAPACITIVOS

TRANSDUCTORES CAPACITIVOS CLASE 10 -- TRANSDUCTORES CAPACITIVOS Un capacitor o condensador consiste en dos superficies conductivas separadas por un material dieléctrico, el cual puede ser un sólido, líquido, gas o vacío. La capacitancia

Más detalles

ESTIMACIÓN DE LA RADIACIÓN SOLAR

ESTIMACIÓN DE LA RADIACIÓN SOLAR UNIDAD DE APOYO TÉCNICO PARA EL SANEAMIENTO BÁSICO DEL ÁREA RURAL OPS/CEPIS/03.89 ESTIMACIÓN DE LA RADIACIÓN SOLAR Auspiciado por: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente Área

Más detalles

Informe sobre la relación humedad-dureza de la pista de hierba de HZ

Informe sobre la relación humedad-dureza de la pista de hierba de HZ HIPÓDROMO DE LA ZARZUELA, S. A. Informe sobre la relación humedad-dureza de la pista de hierba de HZ Juan Luis Martín Romero Conservador zonas verdes HZ Dirección Facultativa Ingeniero Agrónomo 06/03/2014

Más detalles

UBICACIÓN DE LA PLANTA

UBICACIÓN DE LA PLANTA SECCIÓN II UBICACIÓN DE LA PLANTA La adecuada ubicación de la planta industrial, es tan importante para su éxito posterior, como lo es la elección del proceso mismo, y por lo tanto para lograr esto, se

Más detalles

Apuntes Técnicos VEKA

Apuntes Técnicos VEKA El control de la condensación en la ventana Apuntes Técnicos VEKA cl l ntroldelacondensaciónenlaventanaelcontroldelacondensaciónenlaventanael l l l ontroldelacondensaciónenlaventanaelcontroldelacondensaciónen

Más detalles

Transpiración Definición Funciones fisiológicas: Fases: Tipos (vías de difusión del vapor de agua): Magnitud: Cuantificación

Transpiración Definición Funciones fisiológicas: Fases: Tipos (vías de difusión del vapor de agua): Magnitud: Cuantificación Definición: pérdida de vapor de agua desde la planta Funciones fisiológicas: Regula el contenido hídrico Refrigera la planta Genera tensión en el xilema Fases: Evaporación en las paredes celulares del

Más detalles

PR-SSI ACTIVIDAD 5: LA TRANSPIRACIÓN EN LAS PLANTAS GUÍA DEL MAESTRO(A)

PR-SSI ACTIVIDAD 5: LA TRANSPIRACIÓN EN LAS PLANTAS GUÍA DEL MAESTRO(A) PR-SSI ACTIVIDAD 5: LA TRANSPIRACIÓN EN LAS PLANTAS GUÍA DEL MAESTRO(A) Tiempo sugerido: 150 minutos Objetivos específicos: 1. Definir operacionalmente el concepto de transpiración en las plantas. 2. Inferir

Más detalles

PLANIFICACIÓN AGREGADA GESTION DE OPERACIONES II DAVID CATARI VARGAS

PLANIFICACIÓN AGREGADA GESTION DE OPERACIONES II DAVID CATARI VARGAS PLANIFICACIÓN AGREGADA GESTION DE OPERACIONES II DAVID CATARI VARGAS PLANIFICACIÓN AGREGADA o Traduce los planes anuales de la empresa a amplios planes de trabajo y producción de mediano plazo. o Objetivo:

Más detalles

2.3 EQUIPOS PARA MEDIR LA HUMEDAD DEL SUELO

2.3 EQUIPOS PARA MEDIR LA HUMEDAD DEL SUELO 39 2.3 EQUIPOS PARA MEDIR LA HUMEDAD DEL SUELO 2.3.1 Generalidades La cantidad de agua en el suelo es expresada por el porcentaje de humedad del suelo. La necesidad de riego, así como la de drenaje, se

Más detalles

Potenciales de optimización de reacciones de laboratorio -

Potenciales de optimización de reacciones de laboratorio - Potenciales de optimización de reacciones de laboratorio - Reglas básicas para síntesis sostenibles En el curso de la investigación sobre algunas reaccione incluidas en NOP se han podido identificar algunos

Más detalles

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad)

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) CAPITULO 5. PROCESO DE SECADO. 5.1 Descripción general del proceso de secado. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) para producir un producto sólido y

Más detalles

CÁLCULO DEL CAUDAL DEL CIRCUITO PRIMARIO UTILIZANDO LA CAÍDA DE PRESIÓN DEL GENERADOR DE VAPOR DE LA CENTRAL NUCLEAR ATUCHA 2

CÁLCULO DEL CAUDAL DEL CIRCUITO PRIMARIO UTILIZANDO LA CAÍDA DE PRESIÓN DEL GENERADOR DE VAPOR DE LA CENTRAL NUCLEAR ATUCHA 2 CÁLCULO DEL CAUDAL DEL CIRCUITO PRIMARIO UTILIZANDO LA CAÍDA DE PRESIÓN DEL GENERADOR DE VAPOR DE LA CENTRAL NUCLEAR ATUCHA 2 Luis Lencina Hugo Ballesteros 2014 ESSS CONFERENCE AND USER MEETING INTRODUCCIÓN

Más detalles

Termodinámica de la atmósfera. Ana Lage González http://www.meteogalicia.es

Termodinámica de la atmósfera. Ana Lage González http://www.meteogalicia.es Termodinámica de la atmósfera. Ana Lage González http://www.meteogalicia.es La composición del aire seco es bastante uniforme y la composición relativa de los gases se mantiene casi cte. hasta unos 90

Más detalles

Cómo se producen? Cómo se miden? Tipos de precipitación Distribución temporal y espacial

Cómo se producen? Cómo se miden? Tipos de precipitación Distribución temporal y espacial PRECIPITACIONES Cómo se producen? Cómo se miden? Tipos de precipitación Distribución temporal y espacial Qué se requiere? Que las microgotas o cristales de hielo crezcan hasta el tamaño requerido para

Más detalles

La Absorción del Agua

La Absorción del Agua La Absorción del Agua Importancia del Agua en las Plantas Es el cons5tuyente principal del protoplasma celular, en ocasiones representa hasta el 95% del peso total de la planta. Es el solvente en el que

Más detalles

3.1. ENSAYO COMPRESION NO CONFINADA (CNC).

3.1. ENSAYO COMPRESION NO CONFINADA (CNC). 3.1. ENSAYO COMPRESION NO CONFINADA (CNC). Tiene por finalidad, determinar la resistencia a la compresión no confinada (q u ), de un cilindro de suelo cohesivo o semi-cohesivo, e indirectamente la resistencia

Más detalles

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie..

C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. C()n()cer- el C()WP()rtamient() del air-e pe..-mite aplicar- cñteñ()s C()r-r-ect()s de manej() en el ac()ndici()namient() y almacenaie.. Ricardo Muñoz C. Ingeniero Agrónomo M.S. Sicrometría, en términos

Más detalles

Pronósticos. Pronósticos y gráficos Diapositiva 1

Pronósticos. Pronósticos y gráficos Diapositiva 1 Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:

Más detalles

Canal principal Distrito RUT. Los canales del sistema de distribución de agua para riego se clasifican de la siguiente manera:

Canal principal Distrito RUT. Los canales del sistema de distribución de agua para riego se clasifican de la siguiente manera: 9 2.1 CLASIFICACIOI\J DE LOS CANALES PARA RIEGO Canal principal Distrito RUT Los canales del sistema de distribución de agua para riego se clasifican de la siguiente manera: Canales principales. Canales

Más detalles

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION.

SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE TRANSPORTE Y ASIGNACION. UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA DE LA PRODUCCIÓN INGENIERÍA INDUSTRIAL SOLUCION DE MODELOS DE PROGRAMACION LINEAL EN UNA HOJA DE CALCULO. PROBLEMAS DE

Más detalles

Práctica 2B Ensayo Edométrico Prácticas de Laboratorio

Práctica 2B Ensayo Edométrico Prácticas de Laboratorio 2B ENSAYO EDOMÉTRICO 1. GENERALIDADES El ensayo edométrico sirve para cuantificar la compresibilidad de los suelos bajo cargas verticales en condiciones de confinamiento lateral. Esta situación se presenta

Más detalles

MOVIMIENTO INTEGRAL DEL AGUA EN RELACIÓN A LOS VEGETALES

MOVIMIENTO INTEGRAL DEL AGUA EN RELACIÓN A LOS VEGETALES MOVIMIENTO INTEGRAL DEL AGUA EN RELACIÓN A LOS VEGETALES FOTOSÍNTESIS: es el proceso biológico donde ingresa Pregunta 1 CO 2 y H 2 O con la participación de los cloroplastos y la luz y egresa un hidrato

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

PLAN DE ORDENACIÓN Y MANEJO AMBIENTAL DE LA MICROCUENCA DE LAS QUEBRADAS LAS PANELAS Y LA BALSA

PLAN DE ORDENACIÓN Y MANEJO AMBIENTAL DE LA MICROCUENCA DE LAS QUEBRADAS LAS PANELAS Y LA BALSA 2.3 CLIMATOLOGÍA 2.3.1 Generalidades Debido a la localización geográfica de la zona de estudio, ubicada en una zona de bajas latitudes, entre los 4º 35 y 3º 44 al norte del Ecuador, sobre la vertiente

Más detalles

MEDIDAS DE CONSERVACIÓN DE SUELOS FRENTE A LA EROSIÓN HÍDRICA

MEDIDAS DE CONSERVACIÓN DE SUELOS FRENTE A LA EROSIÓN HÍDRICA MEDIDAS DE CONSERVACIÓN DE SUELOS FRENTE A LA EROSIÓN HÍDRICA Apellidos, nombre Departamento Centro Gisbert Blanquer, Juan Manuel (jgisbert@prv.upv.es)) Ibáñez Asensio, Sara (sibanez@prv.upv.es Moreno

Más detalles

INFORMATIVO PRODUCTIVO

INFORMATIVO PRODUCTIVO Informativo Productivo INFORMATIVO PRODUCTIVO Edición #6 FERTILIZACIÓN DE TABACO Fertilización con dos fuentes de potasio al suelo y aplicación foliar con NUTRIMON SOLUNK.P y su efecto sobre el rendimiento

Más detalles

ELEMENTOS DEL CLIMA. Realizado por Elena García Marín

ELEMENTOS DEL CLIMA. Realizado por Elena García Marín ELEMENTOS DEL CLIMA Realizado por Elena García Marín ELEMENTOS DEL CLIMA: El tiempo meteorológico es el estado de la atmósfera en un instante y lugar concretos. Queda determinado por los valores de las

Más detalles

NORMA CHILENA OFICIAL NCh 1619-1979 ACÚSTICA - EVALUACIÓN DEL RUIDO EN RELACIÓN CON LA REACCIÓN DE LA COMUNIDAD

NORMA CHILENA OFICIAL NCh 1619-1979 ACÚSTICA - EVALUACIÓN DEL RUIDO EN RELACIÓN CON LA REACCIÓN DE LA COMUNIDAD NORMA CHILENA OFICIAL NCh 1619-1979 ACÚSTICA - EVALUACIÓN DEL RUIDO EN RELACIÓN CON LA REACCIÓN DE LA COMUNIDAD 0 INTRODUCCIÓN La reducción o limitación de ruidos que causan molestias es de una importancia

Más detalles

INTERCAMBIO DE CALOR ENTRE EL CUERPO Y EL MEDIO AMBIENTE

INTERCAMBIO DE CALOR ENTRE EL CUERPO Y EL MEDIO AMBIENTE Clima y Trabajo INTERCAMBIO DE CALOR ENTRE EL CUERPO Y EL MEDIO AMBIENTE En regiones en las cuales la temperatura es inferior a la del ser humano, el intercambio de calor entre el medio ambiente y el cuerpo

Más detalles

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 EBULLICIÓN La transferencia de calor a un líquido en ebullición es muy importante en la evaporación y destilación, así como en otros tipos

Más detalles

Tema 1: Generalidades

Tema 1: Generalidades Tema 1: Generalidades La vida comenzó en el agua del mar, y las condiciones que regían en aquel ambiente primitivo marcaron las características químicas de la materia viva. De tal manera, que todos los

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles

BOLSA DE CEREALES DE CÓRDOBA Y CÁMARA DE CEREALES Y AFINES DE CÓRDOBA

BOLSA DE CEREALES DE CÓRDOBA Y CÁMARA DE CEREALES Y AFINES DE CÓRDOBA BOLSA DE CEREALES DE CÓRDOBA Y CÁMARA DE CEREALES Y AFINES DE CÓRDOBA TRIBUNAL ARBITRAL Informe Número 65 Situación de Cultivos Invernales Niveles de fertilización Septiembre 2014 D.I.A. DEPARTAMENTO DE

Más detalles

Solubilidad. y se representa por.

Solubilidad. y se representa por. Solubilidad Solubilidad. La solubilidad mide la cantidad máxima de soluto capaz de disolverse en una cantidad definida de disolvente, a una temperatura determinada, y formar un sistema estable que se denomina

Más detalles

Nopon Sistema de Aireación de Burbuja Fina

Nopon Sistema de Aireación de Burbuja Fina Nopon Sistema de Aireación de Burbuja Fina Alta transferencia de oxígeno Importante ahorro energético Muy fáciles de montar Bajo coste de mantenimiento Sin problemas de obstrucción Resistentes a la corrosión

Más detalles

EL FONDO DE MANIOBRA Y LAS NECESIDADES OPERATIVAS DE FONDOS

EL FONDO DE MANIOBRA Y LAS NECESIDADES OPERATIVAS DE FONDOS 2 EL FONDO DE MANIOBRA Y LAS NECESIDADES OPERATIVAS DE FONDOS Las inversiones de una empresa están reflejadas en su activo. Una forma de clasificación de las diferentes inversiones es en función del plazo

Más detalles

COSECHANDO EL AGUA DE LLUVIA.

COSECHANDO EL AGUA DE LLUVIA. COSECHANDO EL AGUA DE LLUVIA. El progresivo desarrollo urbanístico de los países ha afectado enormemente a las agua de lluvia. Estas eran originalmente retenidas en superficie por el mismo terreno o bien

Más detalles

razón de 9 m 3 /min, como se muestra en la es de 1 Kf/cm 2. Cuál es la presión en el punto que en a?

razón de 9 m 3 /min, como se muestra en la es de 1 Kf/cm 2. Cuál es la presión en el punto que en a? 9.6 PROBLEMS RESUELTOS DE HIDRODINÁMIC.- Considérese una manguera de sección circular de diámetro interior de,0 cm, por la que fluye agua a una tasa de 0,5 litros por cada segundo. Cuál es la velocidad

Más detalles

4. BENEFICIOS DE LOS ÁRBOLES EN EL AMBIENTE URBANO

4. BENEFICIOS DE LOS ÁRBOLES EN EL AMBIENTE URBANO DOCUMENTO DE ARBORIZACION URBANA 4. BENEFICIOS DE LOS ÁRBOLES EN EL AMBIENTE URBANO LOS ÁRBOLES Y EL CLIMA Entre los componentes del clima sobre los que tiene efecto el bosque, los árboles y por consiguiente

Más detalles

Guía de estudio Nº 7

Guía de estudio Nº 7 Descubriendo la Ciencia por medio de la relación Suelo Agua Planta Instituto de Educación Rural - Liceo Técnico Profesional Paulino y Margarita Callejas Universidad de Chile - EXPLORA CONICYT Guía de estudio

Más detalles

FACTORES QUE INFLUENCIAN EL REGIMEN DE RIEGO A)FACTOR SUELO

FACTORES QUE INFLUENCIAN EL REGIMEN DE RIEGO A)FACTOR SUELO FACTORES QUE INFLUENCIAN EL REGIMEN DE RIEGO A)FACTOR SUELO FACTORES QUE INFLUENCIAN EN EL REGIMEN DE RIEGO FACTORES DEL SUELO. FACTORES DEL SISTEMA DE RIEGO. FACTORES DEL CULTIVO. FACTORES DEL CLIMA.

Más detalles

INFORME TECNICO RETRACCION PLASTICA REDTECNICA GRUPO POLPAICO

INFORME TECNICO RETRACCION PLASTICA REDTECNICA GRUPO POLPAICO INFORME TECNICO RETRACCION PLASTICA AGRIETAMIENTO POR RETRACCION PLASTICA Descripción breve En losas ocurre el agrietamiento a muy temprana edad, y penetra aproximadamente 12 a 25 mm. Sin embargo, en algunas

Más detalles

Gestión del depósito de inercia

Gestión del depósito de inercia www.gruponovaenergia.com www.froeling.com Gestión del depósito de inercia Nota Todas las funciones descritas y representadas en este folleto también están incorporadas en los modelos de calderas Turbomatic,

Más detalles

CAPITULO 3 LA TEMPERATURA

CAPITULO 3 LA TEMPERATURA CAPITULO 3 LA TEMPERATURA 1. CONCEPTO: La temperatura de un cuerpo indica en qué dirección se desplazará el calor al poner en contacto dos cuerpos que se encuentran a temperaturas distintas, ya que éste

Más detalles