FÓRMULA DE CREDIBILIDAD PARA LA ESTIMACIÓN DE LAS CORRELACIONES ENTRE LÍNEAS DE NEGOCIO EN EL CÁLCULO DEL SCR DEL MÓDULO DE SUSCRIPCIÓN NO VIDA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FÓRMULA DE CREDIBILIDAD PARA LA ESTIMACIÓN DE LAS CORRELACIONES ENTRE LÍNEAS DE NEGOCIO EN EL CÁLCULO DEL SCR DEL MÓDULO DE SUSCRIPCIÓN NO VIDA"

Transcripción

1 Anales del Insttuto de Actuaros Españoles, 3ª época, 18, 2012/ FÓRMULA DE CREDIBILIDAD PARA LA ESTIMACIÓN DE LAS CORRELACIONES ENTRE LÍNEAS DE NEGOCIO EN EL CÁLCULO DEL SCR DEL MÓDULO DE SUSCRIPCIÓN NO VIDA Lluís Bermúdez * y Anton Ferr Abstract Solvency captal requrement (SCR) based on Solvency II standard formula s manly gven by some e-establshed parameters. Some of these parameters defne the lnes of busness correlaton matrx. Ths work ams to advance n the applcaton of models that use specfc parameters based n the own experence of each entty. A credblty formula, based on a bayesan model, s oposed to estmate the correlaton coeffcents between two lnes of busness of the mplct varable for the emum and reserve rsk. The applcaton to the yearly aggregated data of the Spansh non-lfe nsurance market leads to encouragng the use of alternatve models as opposed to the standard formula. Keywords: Standard Model, Internal Model, Premum and Reserve rsk, Underwrtng rsk, Solvency II, Bayesan estmaton. Resumen El requermento de captal de solvenca (SCR) basado en el Modelo Estándar de la drectva Solvenca II vene determnado por una sere de parámetros que la opa drectva establece. Entre éstos, los valores que defnen la matrz de correlacones entre líneas de negoco. Este trabajo, con el objetvo de avanzar en la aplcacón de modelos que utlzen parámetros específcos basados en la experenca opa de cada entdad, opone una fórmula de credbldad, basada en un modelo bayesano, para la estmacón de los coefcentes de correlacón entre dos líneas de negoco de la varable mplícta para el resgo de mas y reservas. De la aplcacón de esta * Dpto. Matemátca Económca, Fnancera y Actuaral, RISC-IREA; Unverstat de Barcelona, Av. Dagonal, 690, Barcelona. Dpto. Econometría, Estadístca y Economía Española, RISC-IREA; Unverstat de Barcelona, Av. Dagonal, 690, Barcelona. E-mal: (Lluís Bermúdez, autor para correspondenca), Los autores agradecen las sugerencas del revsor/a y la ayuda recbda del oyecto del Mnstero de Economía y Compettvdad, ECO Este artículo ha sdo recbdo en versón revsada el 31 de octubre de

2 Fórmula de credbldad para la estmacón de las... Anales 2012/ fórmula de credbldad a los datos agregados del conjunto del mercado español asegurador no vda se extraen conclusones que alentan el uso de modelos alternatvos a la fórmula estándar. Palabras clave: Modelo Estándar, Modelo Interno, Resgo de nsufcenca de mas y reservas, Solvenca II, Estmacón bayesana. 1. Introduccón La publcacón en el Offcal Journal of the European Unon de la Drectva 2009/138/EC del Parlamento Europero y del Consejo de 25 de Novembre de 2009 sobre el acceso y ejercco de la actvdad aseguradora y reaseguradora, tambén conocda como Solvenca II, marca el punto de partda ofcal en la puesta en marcha de meddas legslatvas de control de resgo en entdades aseguradoras. La Drectva está estructurada bajo el ncpo de los Tres Plares, que se corresponden con los requermentos cuanttatvos, los requermentos cualtatvos y la dscplna de mercado, respectvamente. El Plar I esenta un conjunto de normas que determnan los crteros para la obtencón de las necesdades de captal que una entdad debe mantener con un horzonte temporal anual, acordes al resgo asumdo por la entdad, que garantce un aceptable nvel de solvenca. El ncpal objetvo de los requstos económcos que establece la Drectva es cubrr las eventuales pérddas nesperadas que una entdad pudese sufrr como consecuenca de flutuacones nesperadas adversas en la snestraldad. Esta parte de las necesdades de captal es denomnada en la drectva como Solvency Captal Requrement (SCR). El SCR está acotado nferormente medante un umbral denomnado Mnmum Solvency Captal Requrement (MSCR), por debajo del cual una entdad no podría segur operando. La Drectva establece que el SCR debe ser obtendo medante un modelo que refleje el perfl de resgo de la entdad, y que sea adecuado atendendo a la naturaleza, escala y complejdad de los resgos asumdos por la msma. El modelo opuesto por el regulador es un conjunto de fórmulas y metodologías denomnado Modelo Estándar. No obstante, la Drectva establece que bajo certos requstos evos y autorzacón de la autordad compentente, el SCR pueda ser obtendo medante un Modelo Interno opuesto por la entdad aseguradora. El SCR, obtendo con cualquera de los modelos aceptados por el regulador, debe estar calbrado de tal forma que se corresponda con el valor en resgo (VaR) de los fondos opos de la 152

3 Llus Bermúdez y Anton Ferr Anales 2012/ entdad, a un horzonte temporal anual, calculado con un nvel de confanza del 99,5%. El Modelo Estándar puede ser utlzado por las entdades utlzando los parámetros establecdos por el regulador como oxy de mercado, o puede ser adaptado al perfl de resgo opo de cada entdad medante la estmacón de parámetros específcos basados en la experenca hstórca de la entdad 1. Pueden exstr dversas razones por la que una entdad decda reestmar los parámetros esentados por el regulador. Una posble razón puede dervarse de que las oxy sobrevaloren el verdadero perfl de resgo de la entdad, lo que conducría a una estmacón mayor del SCR de la que se dervaría de los parámetros específcos de la entdad. Por otra parte, otra razón para la estmacón de parámetros específcos podría venr determnada por el hecho que la estructura de negoco de una compañía aseguradora no se adapte a la opuesta por el regulador en la fórmula estándar 2, por lo que deba estmar los parámetros necesaros para obtener el SCR correspondente ajustándose al opo modelo de negoco. Nuestro objetvo es analzar, para el caso en que se opte por utlzar el Modelo Estándar con parámetros específcos o ben por un Modelo Interno, cómo abordar la estmacón de aquellos parámetros, ajustados al perfl de resgo de la entdad y consstentes con el modelo, de los que la Drectva no oporcona estmadores n metodologías para su obtencón. Con la fnaldad de reducr la dmensón de este objetvo, en este trabajo, nos centraremos en la estmacón de las correlacones entre líneas de negoco del submódulo de resgo de mas y reservas pertenecente al módulo de resgo de suscrpcón no vda. El resto del trabajo se estructura de la sguente manera. La seccón 2 descrbe la utlzacón del modelo estándar con parámetros específcos para el submódulo de resgo de nsufcenca de mas y reservas. La seccón 3 esenta el modelo bayesano para la estmacón de los coefcentes de correlacón entre líneas de negoco. La seccón 4 detalla los datos utlzados en la seccón 5, que muestra los resultados de aplcar el modelo bayesano 1 Según el artículo 104, apartado 7, de la Drectva: Preva aobacón de las autordades de supervsón, en el cálculo de los módulos del resgo de suscrpcón del seguro de vda, del seguro dstnto del seguro de vda y del seguro de enfermedad, las emesas de seguros y reaseguros podrán susttur un subconjunto de parámetros de la fórmula estándar por parámetros específcos de la emesa de que se trate. 2 Según el artículo 110 de la Drectva, cuando el perfl de resgo de una emesa de seguros o de reaseguros se aparte sgnfcatvamente de las hpótess aplcadas en el cálculo de la fórmula estándar, las autordades de supervsón, medante decsón motvada, podrán exgr que dcha emesa susttuya un subconjunto de los parámetros utlzados para el cálculo de la fórmula estándar por parámetros específcos de dcha emesa. 153

4 Fórmula de credbldad para la estmacón de las... Anales 2012/ opuesto para la estmacón de los coefcentes de correlacón entre líneas de negoco a la estmacón del SCR. Por últmo, la seccón 6 resume las ncpales conclusones obtendas. 2. Fórmula estándar con parámetros específcos para el resgo de nsufcenca de mas y reservas En este trabajo, nos basamos en el análss del SCR para el resgo de nsufcenca de mas y reservas que se derva del Modelo Estándar esentado en el qunto estudo de mpacto cuanttatvo (QIS-5) realzado en 2010 por el Commttee of European Insurance and Occupatonal Pensons (CEIOPS) 3. El SCR correspondente al resgo de mas y reservas es calculado en QIS-5 medante una fórmula cerrada, en adelante fórmula estándar, que depende de una medda de volumen, V, y de una aoxmacón del mean-value-at-rsk obtendo con un nvel de sgnfcacón del 99,5% a un horzonte temporal anual, asumendo una dstrbucón log-normal de la varable aleatora subyacente, : La exesón SCR = V. depende de un parámetro denomnado desvacón estándar combnada ( ). En la fórmula estándar, éste se obtene, en mer lugar, medante la agregacón de las correspondentes desvacón estándar de las mas y desvacón estándar de las reservas por línea de negoco, tenendo en cuenta la correlacón exstente entre éstas, dando lugar a lo que en QIS-5 se conoce como desvacón estándar por línea de negoco. Posterormente, medante la agregacón de éstas y tenendo en cuenta la correlacón exstente entre las líneas de negoco, se obtene la desvacón estándar combnada. Una compañía que etenda obtener el SCR correspondente al resgo de mas y reservas medante el uso de la fórmula estándar puede decdr entre utlzar los parámetros establecdos por el regulador como oxy, en la Tabla 1 y 2 se esentan los opuestos en QIS-5, o realzar estmacones de los parámetros dervadas de la opa experenca de su cartera. 3 Desde Enero 2011, EIOPA, European Insurance and Occupatonal Pensons Authorty. 154

5 Llus Bermúdez y Anton Ferr Anales 2012/ Como hemos vsto, la fórmula estándar depende de la desvacón estándar correspondente a la varable aleatora que reesenta el resgo de mas por línea de negoco, la desvacón estándar de la varable aleatora que reesenta el resgo de reserva por línea de negoco, la correlacón entre las varables aleatoras que reesentan los resgos de mas y reservas por línea de negoco, y la correlacón entre los pares de varables aleatoras que reesentan conjuntamente el resgo de mas y reservas por línea de negoco. Por lo tanto, una entdad que decda estmar nuevos parámetros basados en su opa experenca debe, en mer lugar, defnr los estmadores necesaros para la obtencón de los parámetros correspondentes a las dstntas desvacones estándar y correlacones, y en segundo lugar, decdr la nformacón necesara y la metodología para realzar dchas estmacones. En la Drectva no se especfca cómo abordar la estmacón de los dstntos parámetros necesaros para el cálculo del SCR. Debemos recurrr a las especfcacones técncas de QIS-5 para obtener ndcacones sobre este aspecto. En la Seccón 2, subseccón 10ª (SCR.10), con el objetvo de revsar la calbracón de los oxys de mercado opuestos por el regulador, se anma a los partcpantes en este estudo de mpacto a calcular los parámetros específcos, basados en la experenca opa de cada entdad, necesaros para la utlzacón de la fórmula estándar. Para el caso que nos ocupa, el modulo de subscrpcón no vda, los parámetros de la fórmula estándar que pueden ser substtudos en este estudo de mpacto por parámetros específcos de cada entdad son las desvacones estándar de los resgos de mas y reservas. En la msma subseccón se oponen dversas metodologías para la estmacón de las desvacones estándar de las varables que reesentan los resgos de mas y de reservas. Los parametros específcos a utlzar en la fórmula estándar se dervan de un Modelo de Credbldad que consdera, por una parte, las oxys de mercado opuestas por el regulador ( m ) y, por otra parte, las estmacones que resultan de utlzar los datos de la entdad aseguradora ( e ) y cualquera de las dos metodologías opuestas. Los factores de credbldad (c) venen tambén edetermnados, pero en general dependen del número de observacones que han sdo consderadas para la obtencón de los parámetros específcos y de la línea de negoco consderada. Para cada línea de negoco, los parámetros específcos de las desvacones estándar ( ) se obtenen medante la fórmula de credbldad: 155

6 Fórmula de credbldad para la estmacón de las... Anales 2012/ c 1 c. e m Sn embargo, para este estudo de mpacto, no se permten substtur los parámetros de la fórmula estándar correspondentes a las correlacones. Por esta razón, no se esentan metodologías n estmadores para obtener, por ejemplo, las correlacones entre líneas de negoco. En este trabajo, en la sguente seccón, oponemos una metodología para la estmacón de las correlacones entre líneas de negoco a partr de la experenca de cada entdad aseguradora para su utlzacón en el cálculo del SCR del submódulo de resgo de mas y reservas pertenecente al módulo de resgo de suscrpcón no vda cuando se opte, eva autorzacón del regulador competente, por el uso del Modelo estándar con parámetros específcos, o ben, por un Modelo Interno. Insados en el modelo de credbldad opuesto en las especfcacones técncas de QIS-5 para las desvacones estándar, planteamos un modelo de credbldad, basado en la metodología bayesana, para la estmacón de los coefcentes de correlacón entre dos líneas de negoco de la varable mplícta para el resgo de mas y reservas. Tabla 1 Desvacón Estándar (%) LoB Prmas Reservas I 10 9,5 II 7 10 III IV V VI 21,5 19 VII 6,5 9 VIII 5 11 IX X 17,5 20 XI XII Fuente:QIS-5 156

7 Llus Bermúdez y Anton Ferr Anales 2012/ Tabla 2 Correlacones entre líneas de negoco I II III IV V VI VII VIII IX X XI XII I 1 II 0,5 1 III 0,5 0,25 1 IV 0,25 0,25 0,25 1 V 0,5 0,25 0,25 0,25 1 VI 0,25 0,25 0,25 0,25 0,5 1 VII 0,5 0,5 0,25 0,25 0,5 0,5 1 VIII 0,25 0,5 0,5 0,5 0,25 0,25 0,25 1 IX 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 1 X 0,25 0,25 0,25 0,5 0,25 0,25 0,25 0,5 0,25 1 XI 0,25 0,25 0,25 0,25 0,5 0,5 0,5 0,25 0,5 0,25 1 XII 0,25 0,25 0,5 0,5 0,25 0,25 0,25 0,5 0,5 0,25 0,25 1 Fuente: QIS-5 3. Fórmula de credbldad para la estmacón del coefcente de correlacón entre dos líneas de negoco Como es ben conocdo, la metodología bayesana consttuye una forma más de aoxmarse a los modelos de credbldad (véase Gómez y Saraba, 2008). La dea de combnar, en nuestro caso, la nformacón del mercado con la nformacón de una entdad aseguradora medante una fórmula de credbldad puede realzarse a partr del paradgma bayesano. Esto es, combnando la nformacón del mercado (nformacón a or) con la nformacón de la entdad (nformacón muestral) medante el teorema de Bayes. En la metodología bayesana, alternatva a la estadístca frecuentsta o clásca, para la estmacón de parámetros se sguen los sguentes pasos. En mer lugar, dada una varable aleatora (Y) se especfca una dstrbucón de obabldad para los datos ( y ~ f ( ) ). A dferenca de la estadístca frecuentsta que consdera el parámetro como una constante, el parámetro se consdera una varable aleatora y, por tanto, se especfca una dstrbucón a or para éste ( ). En tercer lugar, se determna la dstrbucón conjunta o funcón de verosmltud ( f( y, ) ) y, aplcando el teorema de Bayes, se obtene la dstrbucón condconada del parámetro después de observar la muestra, conocda como dstrbucón a posteror ( y ). A partr de la dstrbucón a posteror podemos hacer nferenca y edccón sobre el parámetro. S tanto la dstrbucón a or como la dstrbucón a posteror pertenecen a una msma clase de dstrbucones, se obtenen fórmulas bayesanas de credbldad. 157

8 Fórmula de credbldad para la estmacón de las... Anales 2012/ En nuestro caso, estamos nteresados en una fórmula de credbldad para el coefcente de correlacón entre dos varables aleatoras, X e Y. Para ello, tomamos el modelo bayesano opuesto por Fsher (1915) y reformulado más recentemente por Lee (1989). Sguendo la notacón de este últmo, defnmos ( x, y ) como un conjunto de n pares ordenados de observacones con x ( x1, x2,..., x n) e y ( y1, y2,..., y n). Se asume que los pares se dstrbuyen conjuntamente como una dstrbucón normal bvarante con valores esperados y, varanzas 2 2 X Y X Y y coefcente de correlacón ( x, y ). Además, el coefcente de correlacón muestral r se defne como: r n 1( x x)( y y) Sxy n 2 n 2 ( x x) ( y y) SxSy, 1 1 donde x y x y S x x S y y S x x y y n n n n n ,, x ( ), y ( ), xy ( )( ). n n Fsher (1915), tras una sere de tedosas substtucones, obtene dos resultados nteresantes para el opósto que persegumos. En mer lugar, utlzando dstrbucones a or estándar para,, 2 y 2 X Y X Y, y una vez aplcado el paradgma bayesano, se obtene una razonable aoxmacón para la dstrbucón a posteror de : p x, y p 1 1 n donde p es su correspondente dstrbucón a or. Y en segundo lugar, substtuyendo tanh( ) y r tanh( z ), y después de otra aoxmacón, la varable aleatora se dstrbuye como una normal de r n 3 2 N meda z y varanza 1 : n 1 z,. n 158

9 Llus Bermúdez y Anton Ferr Anales 2012/ Con la anteror substtucón, se consgue obtener una fórmula de credbldad para el coefcente de correlacón y, de este modo, combnar dferentes fuentes de nformacón. Por ejemplo, dado un coefcente de correlacón muestral a or r obtendo a partr de un conjunto de n pares observados, podemos actualzar nuestro conocmento sobre el coefcente de correlacón medante la nformacón ovenente de un segundo conjunto de n l pares observados con coefcente de correlacón muestral r l. En este caso, nos encontramos ante la stuacón descrta anterormente, de dstrbucones a or y a posteror de la msma clase. Concretamente, la dstrbucón a posteror para z es normal con meda: n n z r r 1 l 1 post tanh ( ) tanh ( l ) n nl n nl y varanza n 1 n l. A partr de z post, podemos obtener un estmador puntual para el coefcente de correlacón medante ˆ r tanh( z ). El estmador opuesto es post el resultado de combnar, medante una fórmula de credbldad, la nformacón a or, r, con la nformacón de la segunda muestra, r l. La combnacón lneal se establece medante una ponderacones, o factores de credbldad, que dependen del número de observacones de ambas muestras, n y n l. El resultado anteror es aplcable al caso que nos ocupa. En mer lugar, debemos defnr las varables aleatoras X e Y sobre las que etendemos calcular el coefcente de correlacón. Su defncón dependerá de la opcón escogda para el cálculo del SCR, según se opte por el uso del Modelo Estándar con parámetros específcos, o ben, por un Modelo Interno. En el mer supuesto, sguendo a Gsler (2009), la exesón analítca para puede ser dervada a partr de consderar una varable aleatora Z, que reesenta la varable aleatora mplícta en la fórmula estándar para el resgo de ma y reservas para una línea de negoco : post 159

10 Fórmula de credbldad para la estmacón de las... Anales 2012/ Z X P Y R P R donde X reesenta el rato de snestraldad por línea de negoco, P es una medda del volumen de mas por línea de negoco, Y reesenta el rato de reservas por línea de negoco, y R es una medda del volumen de reservas por línea de negoco. En este caso, el objetvo sería la estmacón del coefcente de correlacón entre las varables Z y Z, sendo y j dos líneas de negoco dstntas. Para el supuesto en que se opte por un Modelo Interno, la defncón de las varables aleatoras sobre las que etendemos estmar el coefcente de correlacón dependerá de la opa estructura del modelo. Un Modelo Interno no necesaramente debe estar basado en una estructura modular de resgos en el sentdo que plantea Solvenca II. A pesar de ello, en este trabajo, se ha optado por mantener una estructura smlar a la del Modelo Estándar con la fnaldad de estmar un captal que sea comparable a aquél que se obtene del Modelo Estándar para el resgo de mas y reservas del módulo de suscrpcón no vda. Nuestra opuesta de Modelo Interno (Bermúdez et al., 2011, 2012a) es la sguente. Las edccones de las varables que conforman el resultado neto por línea de negoco son estmadas a través de un modelo de regresón lneal smple. A través de estas edccones son obtendas las edccones del resultado neto por línea de negoco. Posterormente, cada edccón del resultado neto por línea de negoco es agregada para obtener la edccón total del resultado neto. El SCR dervado del Modelo Interno es estmado como la dferenca entre el VaR obtendo con un nvel de confanza del 99,5%, y horzonte temporal anual, y el valor esperado de la edccón del resultado neto agregado, tras realzar una smulacón de la dstrbucón de obabldad de esta msma varable medante el uso de cópulas. En este Modelo Interno, las varables aleatoras sobre las que etendemos estmar el coefcente de correlacón, son pues las edccones del resultado neto por cada línea de negoco. En segundo lugar, debemos valorar las dos fuentes de nformacón que combnaremos en la fórmula de credbldad para la obtencón del coefcente de correlacón entre dos líneas de negoco. Por un lado, a partr de la experenca de snestraldad de cada entdad, recogda en una sere con nl pares observados, se calculará el coefcente de correlacón muestral, r l. j 160

11 Llus Bermúdez y Anton Ferr Anales 2012/ Por otro lado, la nformacón a or será la aportada por el regulador a partr de la nformacón de mercado. El coefcente de correlacón muestral a or, r, puede tomarse, por ejemplo, como el correspondente coefcente de correlacón de la matrz de coefcentes de correlacón entre líneas de negoco opuesto en QIS-5. Para la aplcacón de la fórmula de credbldad descrta anterormente, tan sólo restará realzar alguna hpótess sobre el número de pares observados, n, a partr del cual el regulador ha determnado la nformacón de mercado. Como hemos vsto, esta nformacón es necesara para determnar la varabldad de la dstrbucón a or del modelo bayesano consderado. No obstante, según se opte por un Modelo Estándar con parámetros específcos o por un Modelo Interno, la combnacón de la nformacón de mercado con la nformacón empírca de cada entdad puede tener una nteretacón dstnta según la varable mplícta que utlcemos. En mer lugar, deberíamos conocer la naturaleza de la matrz de correlacones opuesta por el regulador para el uso en el Modelo Estándar (Tabla 2) y que reesenta la únca nformacón de mercado dsponble. Tal como se ndca en las especfcacones técncas de QIS-5 4, para la agregacón de los módulos de resgo ndvduales con la fnaldad de obtener el SCR, son aplcadas correlacones lneales. Sn embargo, no se especfca qué varable ímplcta ha sdo utlzada. Como ya hemos supuesto anterormente, podemos pensar que la varable mplícta de esta matrz de correlacones se corresponde con la varable opuesta por Gsler (2009). De este modo, s optamos por la utlzacón del Modelo Estándar con parámetros específcos, la nformacón de mercado y la nformacón empírca de cada entdad venen reesentadas por la msma varable mplícta. No ocurre lo msmo s utlzamos un Modelo Interno y la varable mplícta que acabamos de defnr para este caso. En este segundo escenaro, deberíamos tener en cuenta la posble dstnta naturaleza de las nformacones combnadas en la fórmula de credbldad. Antes de esentar la aplcacón áctca de este modelo, con datos reales, mostramos con un sencllo ejemplo cómo puede ser obtendo el coefcente de correlacón entre dos líneas de negoco a partr de la fórmula de credbldad esentada. Consderemos que el coefcente de correlacón muestral entre dos líneas de negoco opuesto por el regulador, a partr de la nformacón de mercado, es 4 QIS5 Techncal Specfcatons, Annex to Call for Advce from CEIOPS on QIS5, Secton 2,

12 Fórmula de credbldad para la estmacón de las... Anales 2012/ r 0,5. En este sencllo ejemplo, suponemos que la nformacón de mercado ha sdo obtenda medante una sere hstórca de los 10 últmos años, n 10. Por otro lado, la entdad aseguradora ha obtendo un coefcente de correlacón muestral de r l 0,16, a partr de una sere hstórca opa de los 11 últmos años, n l 11. Por lo tanto, aplcando la fórmula de credbldad esentada anterormente, sn más que substtur los cuatro valores aquí supuestos, se obtene: z post tanh (0,5) tanh (0,16) 0, Y de ahí, el estmador puntual para el coefcente de correlacón entre las dos líneas de negoco resulta ˆ tanh(0,3461) 0, Datos A partr de la Memora Estadístca Anual de Entdades Aseguradoras publcada por la Dreccón General de Seguros y Fondos de Pensones (DGSFP) sobre balances y cuentas técncas del negoco no vda correspondentes al período para el conjunto de entdades que operan en el mercado español, ha sdo extraída la nformacón necesara para el cálculo del requermento de captal de solvenca correspondente al submódulo de resgo nsufcenca de mas y reservas del negoco no vda. Los datos recogdos referdos al conjunto del mercado corresponden a la nformacón agregada de Socedades Anónmas, Mutuas, Mutualdades de Prevsón Socal y Reaseguradoras. Asmsmo, la nformacón publcada corresponde a los ramos actualmente vgentes en la normatva contable. Para efectuar el cálculo del requermento de captal de solvenca se ha tendo en cuenta las nueve meras líneas de negoco opuestas en QIS-5 5, (I) Responsabldad cvl de vehículos a motor, (II) Otro tpo de responsabldades dervadas de vehículos a motor, (III) Marna, avacón y transporte, (IV) Incendo, (V) Responsabldad cvl, (VI) Crédto y caucón, 5 Una descrpcón detallada de las defncones de cada línea de negoco puede ser consultada en QIS

13 Llus Bermúdez y Anton Ferr Anales 2012/ (VII) Defensa jurídca, (VIII) Asstenca, (IX) Dversos. Se descarta la consderacón de las líneas de negoco (X) Reaseguro no oporconal Inmuebles, (XI) Reaseguro no oporconal Daños y (XII) Reaseguro no oporconal Marna, avacón y transporte, dado que se consdera que pueden oducr una dstorsón en los resultados ya que al tratarse de nformacón de mercado agregada, obvamente exste una correlacón perfecta negatva entre estas tres líneas de negoco, que corresponden a volúmenes de reaseguro aceptado, y aquellas líneas de negoco que ceden volúmenes a reaseguro. La correspondenca entre los ramos esentados en la memora y las líneas de negoco opuestas en QIS-5 se ha realzado tenendo en cuenta la recomendacón que UNESPA (2007) realzó a las entdades partcpantes en QIS- 5. Para cada línea de negoco se consderan las sguentes varables: 1) Prmas suscrtas netas de reaseguro, 2) Snestraldad neta de reaseguro, 3) Gastos (ncluyendo, gastos de explotacón, gastos mputables a estacones y otros gastos) y 4) Provsones técncas (ncluyendo, ovsón de estacones pendentes de lqudacón, ovsón de estacones pendentes de declaracón y ovsón para gastos nternos de lqudacón de snestros). A modo de resumen, en la Tabla 3 se muestran algunos estadístcos descrptvos de las varables consderadas. Tabla 3 Estadístcos descrptvos (*) de las varables Prmas Netas, Snestraldad Neta, Gastos y Provsones técncas, por línea de negoco LoB I II III IV V VI VII VIII IX Prmas Netas de Reaseguro Mín. 4,21 2,85 0,19 2,45 0,48 0,17 0,08 0,30 0,93 Cuart. 1º 5,34 3,69 0,24 3,38 0,72 0,23 0,11 0,38 1,13 Medana 5,87 4,43 0,30 4,87 1,05 0,34 0,12 0,49 1,38 Promedo 5,75 4,15 0,31 4,69 1,00 0,33 0,13 0,50 1,41 Desv. 0,76 0,70 0,08 1,58 0,33 0,11 0,03 0,13 0,34 Cuart. 3º 6,30 4,68 0,39 5,89 1,28 0,42 0,16 0,63 1,67 Máx. 6,66 4,94 0,44 6,87 1,41 0,49 0,17 0,67 1,90 Snestraldad Neta de Reaseguro Mín. 3,57 2,12 0,15 1,70 0,45 0,12 0,05 0,22 0,38 Cuart. 1º 4,14 2,49 0,16 2,35 0,58 0,16 0,07 0,27 0,46 Medana 4,41 2,97 0,19 3,20 0,72 0,20 0,07 0,35 0,57 Promedo 4,34 2,91 0,21 3,09 0,71 0,43 0,07 0,36 0,57 Desv. 0,43 0,54 0,06 0,92 0,17 0,44 0,01 0,10 0,13 Cuart. 3º 4,71 3,40 0,25 3,88 0,89 0,55 0,08 0,45 0,67 Máx. 4,84 3,64 0,33 4,40 0,92 1,44 0,09 0,48 0,75 Gastos 163

14 Fórmula de credbldad para la estmacón de las... Anales 2012/ Mín. 1,03 0,70 0,01 0,69 0,10-0,03 0,04 0,11 0,45 Cuart. 1º 1,22 0,82 0,02 0,88 0,12-0,00 0,05 0,13 0,50 Medana 1,33 0,96 0,04 1,14 0,17 0,03 0,05 0,16 0,56 Promedo 1,32 0,93 0,04 1,24 0,18 0,09 0,05 0,17 0,58 Desv. 0,17 0,14 0,02 0,43 0,06 0,14 0,00 0,04 0,10 Cuart. 3º 1,43 1,04 0,06 1,62 0,24 0,15 0,06 0,20 0,62 Máx. 1,63 1,10 0,08 1,84 0,26 0,35 0,07 0,23 0,76 Provsones Técncas Mín. 4,87 0,74 0,28 1,30 1,89 0,38 0,03 0,01 0,08 Cuart. 1º 5,31 0,91 0,31 1,82 2,72 0,49 0,05 0,01 0,10 Medana 6,18 1,04 0,42 2,43 3,55 0,55 0,05 0,02 0,14 Promedo 5,89 1,12 0,43 2,28 3,58 0,69 0,06 0,02 0,14 Desv. 0,68 0,29 0,12 0,56 1,10 0,35 0,02 0,01 0,04 Cuart. 3º 6,42 1,34 0,56 2,68 4,42 0,81 0,06 0,02 0,17 Máx. 6,67 1,59 0,59 2,96 5,11 1,62 0,12 0,06 0,21 Fuente: Propa / (*) Mles de mllones de euros 5. Resultados En mer lugar, con los datos descrtos en la seccón anteror, se han calculado los coefcentes de correlacón entre líneas de negoco tanto para las varables aleatoras mplíctas en la fórmula estándar como para las mplíctas en el Modelo Interno. La estmacón de estas correlacones empírcas ha sdo realzada medante el estmador habtual para el coefcente de correlacón lneal, el coefcente de correlacón de Pearson. En las Tablas 4 y 5, a efectos de comparar con las correlacones opuestas por el regulador (Tabla 2), se muestran las correlacones empírcas para cada caso. Una mera dferenca constatable es la esenca de correlacones empírcas negatvas. Éstas, de ser utlzadas, podrían amplar el efecto dversfcacón en la estmacón del SCR. Por otro lado, como consecuenca de la dstnta naturaleza de las varables mplíctas utlzadas en cada caso, exsten dferencas remarcables entre las correlacones empírcas de las Tablas 4 y 5. Como se comentó en la seccón 3, aunque desconocemos la varable mplícta de las correlacones opuestas por el regulador, consderamos que ésta concde con la opuesta por Gsler (2009) y, por tanto, con la utlzada para obtener las correlacones empírcas de la Tabla

15 Llus Bermúdez y Anton Ferr Anales 2012/ Tabla 4 Correlacones empírcas de la varable aleatora mplícta en la fórmula estándar I II III IV V VI VII VIII IX I 1 II 0,16 1 III 0,17 0,52 1 IV 0,71 0,04 0,27 1 V 0,81-0,05 0,13 0,65 1 VI -0,31-0,19-0,10-0,34-0,32 1 VII 0,54-0,12 0,09 0,31 0,48 0,00 1 VIII 0,22 0,07 0,31 0,01 0,23 0,09 0,82 1 IX -0,09-0,34-0,55 0,16-0,03-0,16-0,14-0,16 1 Fuente: Propa Tabla 5 Correlacones empírcas de la varable aleatora mplícta en el modelo nterno I II III IV V VI VII VIII IX I 1 II 0,73 1 III 0,47 0,55 1 IV 0,37 0,15 0,02 1 V -0,67-0,59-0,79-0,02 1 VI 0,29-0,02 0,60-0,09-0,73 1 VII 0,35-0,13 0,04 0,69-0,25 0,37 1 VIII 0,01 0,01 0,44-0,18 0,04-0,01-0,42 1 IX -0,07-0,20-0,62 0,17 0,25-0,25 0,26-0,66 1 Fuente: Propa En segundo lugar, en las Tablas 6, 7 y 8, se muestran las estmacones bayesanas de los coefcentes de correlacón, según el modelo opuesto en la seccón 3 y para el caso de la varable aleatora mplícta en la fórmula estándar, para tres hpótess dferentes sobre el número de pares/años observados, n, a partr del cual el regulador supuestamente ha obtendo la nformacón de mercado. Se han tomado n 20,10,5, respectvamente, para comobar el efecto de esta hpótess en las estmacones de las correlacones. Como puede aecarse, no se oducen grandes cambos en las estmacones cuando varíamos la hpótess sobre el número de pares/años observados por el regulador. Aunque no se muestran aquí, tambén se han calculado las respectvas correlacones bayesanas para el caso de la varable mplícta en el Modelo Interno. 165

16 Fórmula de credbldad para la estmacón de las... Anales 2012/ Tabla 6 Correlacones bayesanas de la varable aleatora mplícta en la fórmula estándar, n = 20 ; n l =11 I II III IV V VI VII VIII IX I 1 II 0,39 1 III 0,39 0,35 1 IV 0,44 0,18 0,26 1 V 0,64 0,15 0,21 0,41 1 VI 0,05 0,10 0,13 0,04 0,23 1 VII 0,52 0,30 0,20 0,27 0,49 0,34 1 VIII 0,24 0,36 0,44 0,34 0,24 0,20 0,52 1 IX 0,31 0,23 0,13 0,39 0,33 0,29 0,30 0,20 1 Fuente: Propa Tabla 7 Correlacones bayesanas de la varable aleatora mplícta en la fórmula estándar, n = 10 ; n l =11 I II III IV V VI VII VIII IX I 1 II 0,33 1 III 0,34 0,40 1 IV 0,52 0,14 0,26 1 V 0,69 0,10 0,19 0,48 1 VI -0,05 0,02 0,07-0,06 0,09 1 VII 0,52 0,20 0,17 0,28 0,49 0,26 1 VIII 0,24 0,29 0,41 0,26 0,24 0,17 0,63 1 IX 0,21 0,08-0,06 0,33 0,24 0,17 0,19 0,17 1 Fuente: Propa Tabla 8 Correlacones bayesanas de la varable aleatora mplícta en la fórmula estándar, n = 5 ; n l =11 I II III IV V VI VII VIII IX I 1 II 0,28 1 III 0,28 0,44 1 IV 0,59 0,10 0,26 1 V 0,74 0,05 0,17 0,54 1 VI -0,14-0,05 0,01-0,16-0,06 1 VII 0,53 0,09 0,14 0,29 0,48 0,17 1 VIII 0,23 0,22 0,38 0,18 0,24 0,14 0,71 1 IX 0,11-0,07-0,25 0,27 0,15 0,06 0,08 0,06 1 Fuente: Propa Fnalmente, con el objetvo de comobar el posble mpacto de la utlzacón de las dferentes correlacones consderadas en la estmacón del SCR, en la Tabla 9 se muestran los SCR obtendos en cada caso. En el Modelo Interno, para la agregacón de los resultados netos por línea de negoco, se ha utlzado la cópula gaussana. En Bermúdez et al. (2011, 2012a) se encuentra una detallada explcacón sobre la obtencón del SCR en ambos modelos. Por otro lado, en Ferr et al. (2012) y Bermúdez et al. 166

17 Llus Bermúdez y Anton Ferr Anales 2012/ (2012b) se analza la obtencón del SCR bajo un Modelo Interno como medda de resgo y las lmtacones que se dervan. Como puede aecarse, la estmacón del SCR puede varar de manera sgnfcatva según la matrz de correlacones que se consdere. Tabla 9 SCR dervado de la fórmula estándar y del modelo nterno con dstntas matrces de correlacón Matrz de correlacón Empírca Bayesana Bayesana Bayesana n = 5 ; n l =11 n = 10 ; n l =11 n = 20 ; n l =11 QIS-5 Fórmula estándar 6,02 6,31 6,43 6,53 6,65 Modelo nterno 5,96 6,57 6,92 7,36 8,07 Fuente: Propa Para los dos modelos, el menor SCR se obtene con la matrz de correlacones empírca. A medda que se ncorpora la nformacón de la matrz de correlacones opuesta por el regulador, el SCR aumenta hasta alcanzar el máxmo cuando exclusvamente utlzamos las correlacones opuestas por el regulador en QIS-5. La varacón en el SCR es mayor en el Modelo Interno que en la fórmula estándar. Este resultado, de un lado, es el resultado de combnar datos de dstnta naturaleza en la estmacón de las correlacones en el Modelo Interno. Como ya se ha comentado, las correlacones empírcas en este modelo lo son de una varable aleatora mplícta dferente a la que se supone para la fórmula estándar y, por tanto, para la matrz de correlacones de QIS-5. Por otro lado, la varable aleatora mplícta para el Modelo nterno, las edccones del resultado neto por línea de negoco, esenta, para estos datos, unas desvacones empírcas mayores que las opuestas por el regulador para la varable mplícta de la fórmula estándar. 6. Conclusones En Ferr et al. (2011) se realzó una estmacón del requermento de captal correspondente al resgo de suscrpcón no vda para el ejercco 2010 para el conjunto del mercado español asegurador no vda y un análss de sensbldad del SCR correspondente al resgo de suscrpcón en el negoco de no vda frente a cambos en la matrz de correlacones entre líneas de negoco. Y se concluyó que el SCR de este submódulo tene una gran sensbldad a los parámetros de los que depende el modelo y, en especal, a la matrz de correlacones entre líneas de negoco. Por esta y otras razones, se concluía que las entdades de seguro tenen sufcentes ncentvos para utlzar modelos alternatvos al Modelo Estándar y avanzar en modelos para el cálculo del requermento de captal de solvenca, ben a través de un 167

18 Fórmula de credbldad para la estmacón de las... Anales 2012/ Modelo Estándar con parámetros específcos, o ben a través de un Modelo Interno, parcal o completo, con la fnaldad de ajustar el requermento al perfl de la entdad. Sn embargo, para avanzar en esta dreccón es necesara la estmacón de los parámetros nherentes a cada modelo en base, por ejemplo, a la experenca de snestraldad de cada entdad. En este artículo, nsados por la metodología opuesta en las especfcacones técncas de QIS-5 para la estmacón, como parámetros específcos de la fórmula estándar, de las desvacones del resgo de mas y reservas, oponemos una fórmula de credbldad para la estmacón de los coefcentes de correlacón entre dos líneas de negoco de la varable mplícta para el resgo de mas y reservas. Para ello, hacemos uso de un modelo bayesano para la estmacón de coefcentes de correlacón. La fórmula de credbldad opuesta combna la nformacón del mercado (nformacón a or) con la nformacón de la entdad medante el teorema de Bayes. Para su utlzacón tan sólo es necesaro contar, por un lado, con el coefcente de correlacón muestral del mercado, en nuestro caso obtendo a partr de la matrz de correlacones de QIS-5, y el coefcente de correlacón muestral obtendo a partr de la opa experenca de la entdad. Por otro lado, es necesaro conocer el número de observacones (o años) de los que se han extraído los anterores coefcentes de correlacón muestrales. Con esta fórmula de credbldad, pueden estmarse los coefcentes de correlacón entre líneas de negoco para su aplcacón tanto en la fórmula estándar, cuando ésta se utlza con parámetros específcos de la entdad, como en un Modelo Interno. Úncamente deben defnrse, en cada caso, las varables aleatoras mplíctas de cada modelo sobre las que calculamos los coefcentes de correlacón. De la aplcacón de esta fórmula de credbldad a los datos agregados del conjunto del mercado español asegurador no vda, se extraen las sguentes conclusones. En mer lugar, los coefcentes de correlacón empírcos entre dos líneas de negoco pueden ser sustancalmente dstntos de aquellos opuestos por el regulador. En segundo lugar, la utlzacón de una fórmula de credbldad que combna la nformacón de mercado con la nformacón de cada entdad oporcona unos coefcentes de correlacón ntermedos. Fnalmente, la estmacón del SCR puede varar de manera sgnfcatva según la matrz de correlacones que se consdere. La fórmula de credbldad opuesta no está exenta de lmtacones. Éstas pueden ser dvddas en dos grupos. De un lado, las lmtacones relatvas al 168

19 Llus Bermúdez y Anton Ferr Anales 2012/ modelo bayesano utlzado y, por otro lado, las relatvas a la aplcacón de éste al caso que nos ocupa. Entre las meras, destacamos la hpótess de normaldad sobre la que se sustenta el modelo y las aoxmacones que se deben adoptar para consegur una fórmula de credbldad cerrada. Respecto al segundo grupo de lmtacones, destacar que éstas se orgnan por el desconocmento sobre dos aspectos de la nformacón de mercado opuesta por el regulador, en mer lugar, la varable aleatora mplícta en la matrz de correlacones de QIS-5 y, en segundo lugar, el número de observacones (o años) a partr de los que se han obtendo los coefcentes de correlacón de dcha matrz. Ambos aspectos son necesaros para una óptma aplcacón de la fórmula de credbldad opuesta. Con el objetvo de superar estas lmtacones, nuevos esfuerzos nvestgadores deberían ser abordados. Por una parte, la utlzacón de otros modelos bayesanos y de técncas de smulacón MCMC pueden ayudar a salvar las lmtacones teórcas del modelo bayesano consderado. Por otra parte, a medda que se conozcan más detalles sobre la fórmula estándar y sus parámetros en las meddas de nvel 2 comuntaras, es de esperar que se clarfquen los aspectos relaconados con la matrz de correlacones que opone el regulador como benchmark de mercado. Referencas Bermúdez, L., Ferr, A. y M. Gullén (2011). A correlaton senstvty analyss of non lfe underwrtng rsk n solvency captal requrement estmaton. XREAP No Bermúdez, L., Ferr, A. y M. Gullén (2012a). A correlaton senstvty analyss of non lfe underwrtng rsk n solvency captal requrement estmaton. ASTIN bulletn. Pendente de publcacón. Bermúdez, L., Ferr, A. y M. Gullén (2012b). On the use of Rsk Measures n Solvency Captal Estmaton. Internatonal Journal of Busness Contnuty and Rsk Management. Pendente de publcacón. Commttee of European Insurance and Occupatonal Pensons Supervsors, CEIOPS (2010). 5th Quanttatve Impact Study, Techncal Specfcatons. -techncal_specfcatons_ pdf (consultado 30/10/2012) Drectva 2009/138/EC del Parlamento Europeo y del Consejo de 25 de Novembre de 2009 sobre el acceso y ejercco de la actvdad aseguradora y reaseguradora. 169

20 Fórmula de credbldad para la estmacón de las... Anales 2012/ :PDF (consultado 30/10/2012) Ferr, A., Bermúdez, L. y M. Alcañz (2011). Análss de sensbldad a las correlacones entre líneas de negoco del SCR del módulo de suscrpcón no vda basado en la fórmula estándar. Anales del Insttuto de Actuaros, Ferr, A., Gullén, M. y Bermúdez, L. (2012). Solvency captal estmaton and rsk measures. Lecture Notes n Busness Informaton Processng, 115, Fsher, R.A. (1915). Frequency dstrbutons of the values of the correlaton coeffcents n sample of ndefntely large populaton. Bometrka, 10, Gsler, A. (2009). The Insurance Rsk n the SST and n Solvency II: Modellng and parameter estmaton. ASTIN Colloquum n Helsnk. Gómez-Dénz, E. y J.M. Saraba (2008). Teoría de la Credbldad: Desarrollo y Aplcacones en Prmas de Seguros y Resgos Operaconales. Fundacón Mapfre. Madrd (España). Lee, P.M. (1989). Bayesan Statstcs: An Introducton. Oxford Unversty Press. New York (EEUU). UNESPA (2007). El Modelo Español de Solvenca paso a paso. (consultado 30/10/2012) 170

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Documento para Consulta Pública

Documento para Consulta Pública Documento para Consulta Públca Borrador de Metodología para la Determnacón del Captal Basado en Resgo (CBR) de las Compañías de Seguros (tercera versón) Ejercco N 3 de Aplcacón del CBR Superntendenca de

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

MÉTODOS ESTOCÁSTICOS DE ESTIMACIÓN DE LAS PROVISIONES TÉCNICAS EN EL MARCO DE SOLVENCIA II

MÉTODOS ESTOCÁSTICOS DE ESTIMACIÓN DE LAS PROVISIONES TÉCNICAS EN EL MARCO DE SOLVENCIA II Insttuto de Cencas del Seguro MÉTODOS ESTOCÁSTICOS DE ESTIMACIÓN DE LAS PROVISIONES TÉCNICAS EN EL MARCO DE SOLVENCIA II Irene Albarrán Lozano Pablo Alonso González FUNDACIÓN MAPFRE no se hace responsable

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO

INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS HUMANISTICAS Y ECONOMICAS INVIRTIENDO EN PUBLICIDAD: ESTRATEGIAS DE LAS EMPRESAS DEL SECTOR COMERCIAL ECUATORIANO Resumen: Las decsones de

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

EL IMPACTO DE BASILEA III EN EL NEGOCIO FINANCIERO

EL IMPACTO DE BASILEA III EN EL NEGOCIO FINANCIERO EL IMPACTO DE BASILEA III EN EL NEGOCIO FINANCIERO RDF RskDynamcs ntothefuture: Software para determnar el efecto que se produce sobre el balance en escenaros macroeconómcos Ramon Tras Fundador y Presdente

Más detalles

ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO

ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO ESTRUCTURA DE MERCADO DEL SISTEMA BANCARIO BOLIVIANO OSCAR A. DIAZ QUEVEDO * * El análss y conclusones del presente trabajo son de exclusva responsabldad del autor y no reflejan necesaramente la opnón

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

SEMINARIO DE NOTAS TÉCNICAS Y RESERVAS

SEMINARIO DE NOTAS TÉCNICAS Y RESERVAS SEMINARIO DE NOTAS TÉCNICAS Y RESERVAS USO DE LA ESTIMACIÓN DE LA DISTRIBUCIÓN DE PROBABILIDAD PARA MUESTRAS PEQUEÑAS Y DE LA SIMULACIÓN EN LA INFERENCIA DE CARTERAS DE SEGUROS M. en I. JUAN CARLOS VARGAS

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores Nota técnca Estmacón del consumo daro de gas a partr de lecturas peródcas de meddores Por Salvador Gl, Gerenca de Dstrbucón del Enargas, A. azzn, Gas Natural Ban y R. Preto, Gerenca de Dstrbucón del Enargas

Más detalles

LIBRO II.- NORMAS GENERALES PARA LAS INSTITUCIONES DEL SISTEMA DE SEGUROS PRIVADOS

LIBRO II.- NORMAS GENERALES PARA LAS INSTITUCIONES DEL SISTEMA DE SEGUROS PRIVADOS EPUBLI DEL ECUADO LIBO II.- NOMAS GENEALES PAA LAS INSTITUCIONES DEL SISTEMA DE SEGUOS PIVADOS TITULO IV.- NOMAS DE PUDENCIA TÉCNI PITULO I.- NOMAS SOBE EL ÉGIMEN DE ESEVAS TÉCNIS (susttudo con resolucón

Más detalles

1. Sustituir el punto 1.1. de la Sección 1. de las normas sobre Tasas de interés en las operaciones de crédito por el siguiente:

1. Sustituir el punto 1.1. de la Sección 1. de las normas sobre Tasas de interés en las operaciones de crédito por el siguiente: "2014 - AÑO DE HOMENAJE AL ALMIRANTE GUILLERMO BROWN, EN EL BICENTENARIO DEL COMBATE NAVAL DE MONTEVIDEO" COMUNICACIÓN A 5590 10/06/2014 A LAS ENTIDADES FINANCIERAS, A LAS CAJAS DE CRÉDITO COOPERATIVAS

Más detalles

PARTICIPACIÓN LABORAL DE LAS MUJERES EN LAS REGIONES DE CHILE

PARTICIPACIÓN LABORAL DE LAS MUJERES EN LAS REGIONES DE CHILE Revsta UNIVERSUM Nº 25 Vol. 2 2010 Unversdad de Talca Partcpacón laboral de las mujeres en las regones de Chle Luz María Ferrada Bórquez Plar Zarzosa Espna Pp. 79 a 99 PARTICIPACIÓN LABORAL DE LAS MUJERES

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

Análisis del riesgo en seguros en el marco de Solvencia II: Técnicas estadísticas avanzadas Monte Carlo y Bootstrapping

Análisis del riesgo en seguros en el marco de Solvencia II: Técnicas estadísticas avanzadas Monte Carlo y Bootstrapping Insttuto de Cencas del Seguro Análss del resgo en seguros en el marco de Solvenca II: Técncas estadístcas avanzadas Monte Carlo y Bootstrappng Pablo Alonso González Irene Albarrán Lozano Prohbda la reproduccón

Más detalles

2 Criterios generales aplicados a las estructuras de hormigón

2 Criterios generales aplicados a las estructuras de hormigón ANEJO 7 ÍNDICE DE CONTRIBUCIÓN DE LA ESTRUCTURA A LA SOSTENIBILIDAD Consderacones generales El proyecto, la ejecucón y el mantenmento de las estructuras de hormgón consttuyen actvdades, enmarcadas en el

Más detalles

Índice de Precios de las Materias Primas

Índice de Precios de las Materias Primas May-15 Resumen Ejecutvo El objetvo del (IPMP) es sntetzar la dnámca de los precos de las exportacones de Argentna, consderando la relatva establdad en el corto plazo de los precos de las ventas externas

Más detalles

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Avances en Medcón, 5, 9 26 2007 ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Resumen Jame Arnau Gras ** Unverstat de Barcelona, España Las estructuras de dseño, así como

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

ESTIMACIÓN MEDIANTE DATOS DE PANEL DE LA INFLUENCIA DEL PODER ADQUISITIVO SOBRE EL MERCADO ASEGURADOR EN LAS PRINCIPALES ECONOMÍAS OCCIDENTALES

ESTIMACIÓN MEDIANTE DATOS DE PANEL DE LA INFLUENCIA DEL PODER ADQUISITIVO SOBRE EL MERCADO ASEGURADOR EN LAS PRINCIPALES ECONOMÍAS OCCIDENTALES ESTIMACIÓ MEDIATE DATOS DE PAEL DE LA IFLUECIA DEL PODER ADQUISITIVO SOBRE EL MERCADO ASEGURADOR E LAS PRICIPALES ECOOMÍAS OCCIDETALES Irene Albarrán Lozano (*) Pablo Alonso González (**) RESUME: Este

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO

ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO GOBIERNO DE CHILE MINISTERIO DE HACIENDA Dreccón de Presupuestos ANEXO METODOLOGÍA EVALUACIÓN DE IMPACTO Dvsón de Control de Gestón Santago, Mayo 2009 CHILE PRESENTACIÓN * El anexo que a contnuacón se

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

4 Contraste de hipótesis en el modelo de regresión múltiple

4 Contraste de hipótesis en el modelo de regresión múltiple 4 Contraste de hpótess en el modelo de regresón múltple Ezequel Urel Unversdad de Valenca Versón: 9-13 4.1 El contraste de hpótess: una panorámca 1 4.1.1 Formulacón de la hpótess nula y de la hpótess alternatva

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

Índice de contribución de la estructura a la sostenibilidad

Índice de contribución de la estructura a la sostenibilidad ANEJO 13º Índce de contrbucón de la estructura a la sostenbldad 1. Consderacones generales El proyecto, la ejecucón y el mantenmento de las estructuras de hormgón consttuyen actvdades, enmarcadas en el

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

La reforma del FCI ante las nuevas Perspectivas Financieras de la UE

La reforma del FCI ante las nuevas Perspectivas Financieras de la UE La reforma del FCI ante las nuevas Perspectvas Fnanceras de la UE Mara CUBEL (cubel@ub.edu) Crstna de GISPERT (crsdegspert@ub.edu) Unverstat de Barcelona Insttut d Economa de Barcelona Abstract En este

Más detalles

C I R C U L A R N 2.133

C I R C U L A R N 2.133 Montevdeo, 17 de Enero de 2013 C I R C U L A R N 2.133 Ref: Insttucones de Intermedacón Fnancera - Responsabldad patrmonal neta mínma - Susttucón de la Dsposcón Transtora del art. 154 y de los arts. 158,

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Algunos métodos de clasificación de puestos de trabajo en la empresa

Algunos métodos de clasificación de puestos de trabajo en la empresa lgunos métodos de clasfcacón de puestos de trabajo en la empresa. lgunos métodos de clasfcacón de puestos de trabajo en la empresa Canós Darós, Lourdes, loucada@omp.upv.es Pers Ortz, Marta, marpeor1@omp.upv.es

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

ANÁLISIS DE LAS VARIABLES QUE DETERMINAN LAS COMISIONES EN LOS PLANES DE PENSIONES. (versión preliminar de 15 de abril de 2004)

ANÁLISIS DE LAS VARIABLES QUE DETERMINAN LAS COMISIONES EN LOS PLANES DE PENSIONES. (versión preliminar de 15 de abril de 2004) ANÁLISIS DE LAS VARIABLES QUE DETERMINAN LAS COMISIONES EN LOS PLANES DE PENSIONES (versón prelmnar de 15 de abrl de 2004) Carmen Plar Martí Ballester e-mal: cmart@cofn.uj.es Mª Ángeles Fernández Izquerdo

Más detalles

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto Maestría en Economía Facultad de Cencas Económcas Unversdad Naconal de La Plata TESIS DE MAESTRIA ALUMNO Laura Carella TITULO Educacón unverstara: medcón del rendmento académco a través de fronteras de

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE Resolucón de 3 de juno de 2016, por la que se establece el proyecto educatvo nsttuconal denomnado JOSCAN, joven orquesta snfónca para Cantabra. Ley de Cantabra

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Características del hogar y salida de la pobreza:

Características del hogar y salida de la pobreza: Característcas del hogar salda de la pobreza: un análss de los hogares urbanos para el período postconvertbldad Jerónmo R. Carballo Unversdad Naconal de Córdoba Agosto 2004 Característcas del hogar salda

Más detalles

Estimación de la siniestralidad no declarada en el seguro de automóviles: una aplicación a través de modelos de recuento *

Estimación de la siniestralidad no declarada en el seguro de automóviles: una aplicación a través de modelos de recuento * Estmacón de la snestraldad no declarada en el seguro de automóvles: una aplcacón a través de modelos de recuento * Ordaz Sanz, José Antono jaordsan@upo.es Melgar Hraldo, María del Carmen mcmelhr@upo.es

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO. Miguel Niño Zarazúa *

IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO. Miguel Niño Zarazúa * IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO Mguel Nño Zarazúa Resumen Este estudo presenta una estmacón del mpacto del mcrocrédto sobre la

Más detalles

DETERMINANTES DE FRAGILIDAD EN LAS EMPRESAS COLOMBIANAS. Oscar Martínez A. *

DETERMINANTES DE FRAGILIDAD EN LAS EMPRESAS COLOMBIANAS. Oscar Martínez A. * DETERMINANTES DE FRAGILIDAD EN LAS EMPRESAS COLOMBIANAS Oscar Martínez A. * Banco de la Repúblca, Colomba omartam@banrep.gov.co Resumen Una de las mayores amenazas para toda empresa es caer en un estado

Más detalles

Código Sísmico de Costa Rica Edición 2002

Código Sísmico de Costa Rica Edición 2002 Edcón 2002 Resumen Ejecutvo Presentado a la Asamblea de Representantes del CFIA Preparado por Ing. Gullermo Santana, Ph.D. e Ing. Jorge Gutérrez, Ph.D.(LANAMME, UCR) 20 de novembre 2002 Nota: Referencas

Más detalles

Análisis de las variables que determinan las comisiones en los planes de pensiones

Análisis de las variables que determinan las comisiones en los planes de pensiones Análss de las varables que determnan las comsones en los planes de pensones Carmen Plar MARTÍ BALLESTER * Unverstat Jaume I Mª Ángeles FERNÁNDEZ IZQUIERDO Unverstat Jaume I Juan Carlos MATALLÍN SÁEZ Unverstat

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Efectos de la temporalidad sobre los beneficios de las empresas manufactureras españolas

Efectos de la temporalidad sobre los beneficios de las empresas manufactureras españolas Efectos de la temporaldad sobre los benefcos de las empresas manufactureras españolas César Rodríguez Gutérrez Unversdad de Ovedo Códgo JEL: J21, J41 Palabras clave: Empleo temporal, benefcos, productvdad

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

B.El por qué de la planificación económico financiera

B.El por qué de la planificación económico financiera Tema 1 Sobre la elaboracón de un sstema ntegrado de presupuestos 1.1. Introduccón a la planfcacón económca fnancera A. Qué son los planes económcos en la práctca? La realzacón de prevsones o la actuacón

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

EFICIENCIA Y REGULACIÓN EN EL GASTO SANITARIO EN LOS PAÍSES DE LA OCDE. Documentos Ocasionales N.º 1107. Pablo Hernández de Cos y Enrique Moral-Benito

EFICIENCIA Y REGULACIÓN EN EL GASTO SANITARIO EN LOS PAÍSES DE LA OCDE. Documentos Ocasionales N.º 1107. Pablo Hernández de Cos y Enrique Moral-Benito EFICIENCIA Y REGULACIÓN EN EL GASTO SANITARIO EN LOS PAÍSES DE LA OCDE 2011 Pablo Hernández de Cos y Enrque Moral-Bento Documentos Ocasonales N.º 1107 EFICIENCIA Y REGULACIÓN EN EL GASTO SANITARIO EN LOS

Más detalles

Análisis comparativo de la siniestralidad en el seguro de automóviles según el grado de cobertura *

Análisis comparativo de la siniestralidad en el seguro de automóviles según el grado de cobertura * Análss comparatvo de la snestraldad en el seguro de automóvles según el grado de cobertura * Melgar Hraldo, María del Carmen mcmelhr@upo.es Ordaz Sanz, José Antono jaordsan@upo.es Departamento de Economía,

Más detalles

INSYS Advanced Dashboard for Enterprise

INSYS Advanced Dashboard for Enterprise Enterprse Enterprse INSYS Advanced Dashboard for Enterprse Enterprse, es un tablero de control para llevar a cabo la Gestón de la Segurdad de la Informacón, Gestón de Gobernabldad, Resgo, Cumplmento (GRC)

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

UNIDAD 4. PRESUPUESTO DE VENTAS.

UNIDAD 4. PRESUPUESTO DE VENTAS. UNIDAD 4. PRESUPUESTO DE VENTAS. OBJETIVOS. 1. Dar a entender al estudante la mportanca prmordal del presupuesto de ngresos dentro de una empresa u organzacón. 2. Enseñar lo que realmente comprende un

Más detalles

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos Consderacones empírcas del consumo de los hogares: el caso del gasto en electrcdad y almentos Emprcal Consderatons of the Famles Consumpton: the Case uf the Expense n Electrcty and Food Maro Andrés Ramón

Más detalles

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA * CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente

Más detalles

Estimación de la Demanda: Pronósticos

Estimación de la Demanda: Pronósticos UNIVERSIDAD SIMON BOLIVAR Estmacón de la Demanda: Pronóstcos PS-4161 Gestón de la Produccón I 1 Bblografía Recomendada Título: Dreccón de la Produccón: Decsones Estratégcas. Capítulo 4: Prevsón Autores:

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles