Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales."

Transcripción

1 Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos segmentos de 3 cm y de 4 cm. Se llama proporcionalidad de los segmentos al cociente de sus longitudes. Es decir, comparamos uno con el otro:, y decimos que tres veces el segmento es igual que cuatro veces el segmento. Supongamos que tenemos otros segmentos de 9 cm y de 12 cm la proporción entre ellos sería dice:. Por tanto, estos nuevos segmentos están en la misma proporción que los anteriores y se Los segmentos y son proporcionales a los segmentos y Lo escribimos así:. Ejemplo: Calcula la razón entre el segmento AB = 12 cm. y el segmento CD = 25 cm.: Autoevaluación Escribe la razón entre los segmentos RT = 24 cm. y PQ =21 cm. a) b) c) d) 2

2 Los segmentos cuyas longitudes son 1, 3, 5 y 15 cm. están en proporción? a) sí b) no c) No se puede saber Área de Matemáticas - Módulo IV Dados tres segmentos de longitudes a, b y c se denomina cuarta proporcional de a, b y c a un segmento de longitud x, tal que verifique. Dados dos segmentos de longitudes a y b se llama media proporcional a un segmento de longitud x, tal que verifique. Ejemplo: Dados los segmentos de 5 cm, 4 cm y 10 cm, calcula la cuarta proporcional Dados los segmentos de 10 cm. y 6 cm., calcula la media proporcional Autoevaluación: Calcula la cuarta proporcional de los segmentos a = 12 cm., b = 5cm. y c = 9 cm. a) b) c) d)

3 Calcula la media proporcional de los segmentos a = 12 cm. y c = 3 cm. a) 2 b) 4 c) 36 d) 6 Área de Matemáticas - Módulo IV El teorema de Thales nos dice: Si las rectas, son paralelas y cortan a otras dos rectas ( ), entonces, los segmentos que determinan en ellas son proporcionales, esto nos quiere indicar que: Ejemplo 1: Calcula la longitud del segmento B'C' del dibujo

4 Solución: Por el teorema de Thales, tenemos, por tanto: Ejemplo 2: Comprueba si son paralelas las rectas r, s y t del dibujo. Los segmentos que determinan las tres rectas son proporcionales porque. Por tanto, por el teorema de Thales las rectas tienen que ser paralelas. Autoevaluación Son paralelas las rectas a, b y c del dibujo?

5 a) sí b) no c) no se puede saber d) puede que sí y puede que no Calcula la longitud del segmento AB a) 3 b) 5 c) d) 75

6 Área de Matemáticas - Módulo IV Aplicaciones del teorema de Thales Veamos a continuación dos aplicaciones geométricas del teorema de Thales: 1. División de un segmento en partes iguales Si queremos dividir un segmento de 6 cm en tres partes iguales, es muy sencillo. Basta con tomar tres segmentos de 2 cm cada uno. Sin embargo, el problema no es tan sencillo si el segmento mide 7 cm, ya que el número 7 no es divisible por 3. Veamos como se divide un segmento AB cualquiera en tres partes iguales. 1. Por uno de sus extremos, por ejemplo A, trazamos una recta cualquiera r y a partir de A marcamos sobre la recta r la medida que queramos tres veces. Señalando los puntos M, N y T A continuación unimos el punto T con el extremo del segmento B. Trazamos rectas paralelas a TB por los otros puntos M y N y obtenemos los puntos C y D en el segmento AB. Si observamos la figura es un sistema de rectas paralelas cortadas por dos secantes. Aplicamos el teorema de Thales y tendremos: y como AM = MN = NT tendremos AD = DC = CB con lo que hemos dividido el segmento AB en tres partes iguales. 2. División de un segmento en partes proporcionales. Vamos a dividir un segmento AB en dos partes proporcionales a 2 y 3.

7 Para ello: Trazamos una recta r cualquiera que pase por A y seguidamente llevamos sobre ella un segmento de 2 y otro de 3 unidades, obteniendo los puntos M y N. Unimos N con B. Por M trazamos una recta paralela obteniendo el punto C. Hemos dividido el segmento AB en dos partes AC y CB, y aplicando el teorema de Thales tendremos: luego los segmentos AC y CB están en proporción de. /Aplicaciones_Teorema_Thales.htm#DIVISIÓN%20DE%20UN%20SEGMENTO%20EN%20PARTES%20IGU Área de Matemáticas - Módulo IV

8 Triángulos en posición de Thales Consideremos el dibujo. Tenemos dos triángulos que tienen el ángulo A común, el ángulo, y el ángulo. Por tanto, las rectas B'C' y BC son paralelas y se puede aplicar el teorema de Thales, por lo que los lados serán proporcionales: Si, además, mides los lados BC y B'C' veras que están en la misma proporción. Por tanto: Se dice que dos triángulos son semejantes si se pueden poner en posición de Thales o lo que es lo mismo- si sus ángulos son iguales y sus lados homólogos proporcionales Al número «r» que es el resultado del cociente se le llama razón de semejanza. Ejemplos Observa estos triángulos, en los que las medidas están dadas en cm, e indica razonadamente si son semejantes. Calcula, en caso afirmativo, la razón de semejanza. Como los tres ángulos son iguales tenemos que ver si los lados homólogos son semejantes.

9 , luego son proporcionales y por tanto los triángulos son semejantes y la razón de semejanza es 4. Un pino de 2,4 m de altura arroja una sombra de 2 m. En el mismo instante, un chopo arroja una sombra de 6,4 m Cuál es la altura del chopo? Tenemos, como se ve en la figura, dos triángulos semejantes. Por tanto, los lados homólogos son proporcionales y tendremos: m Autoevaluación Calcula, sabiendo que: cm, cm y cm a) 9 cm b) 3 cm c) 5,33 cm d) 6 cm Calcula x e y, en los triángulos semejantes

10 a) x = 6,875 cm y = 3,125 b) x = 4,4 cm y = 2 cm c) x = 3,204 cm y = 4,5 cm d) x = 4 cm y = 1 cm Área de Matemáticas - Módulo IV Si nos fijamos en el dibujo los polígonos se pueden descomponer en triángulos semejantes, y cuando esto ocurre se dice que las figuras son semejantes. Por tanto teniendo en cuenta la condición para que dos triángulos sean semejantes podemos enunciar: Dos polígonos o figuras se dice que son semejantes si tienen los lados homólogos proporcionales y sus respectivos ángulos iguales.

11 La razón de semejanza de los polígonos es la razón entre los lados homólogos y la representaremos por r. Ejemplo La figura ilustra las sombras producidas por una sombrilla y una estaca sobre el suelo. Cuál es la altura de la sombrilla? Llamamos x a la altura de la sombrilla, como los dos triángulos son semejantes por tanto escribimos la proporcionalidad entre los lados homólogos: m Área de Matemáticas - Módulo IV Escalas Supongamos que queremos dibujar nuestra habitación en un papel, dicha habitación tiene 5 m ancho por 3 m de largo. Para dibujarla, cada metro lo vamos a dibujar como 2 cm. Obtendríamos el siguiente dibujo.

12 Los 5 m reales de ancho, los representamos por 10 cm en papel. Por tanto, tenemos que:, es la razón de semejanza entre el dibujo y la realidad A esta proporción se le llama escala e indica que cada unidad en el dibujo son 50 unidades en la realidad. Para que un dibujo pueda ser correctamente interpretado debemos indicar la escala a la que está hecho. En el caso anterior diremos que la escala es 1:50 que es como es escriben las escalas en los planos. Autoevaluación Esta finca está dibujada a escala 1:2000. Calcula su superficie en m 2 a) 48 m 2 b) 83,33 m 2 c) m 2 d) 1000 m 2 Área de Matemáticas - Módulo IV

13 Relación entre los perímetros de polígonos semejantes Los rectángulos de la figura son semejantes y su razón de semejanza es r =. Si calculamos el perímetro de los dos rectángulos tendremos: Si ahora calculamos la razón de los perímetros de los dos rectángulos tendremos:, que es igual a la razón de semejanza entre los rectángulos. Por tanto, podemos enunciar: La razón de semejanza entre los perímetros de dos figuras semejantes es igual a la razón de semejanza entre las propias figuras. Ejemplo Los lados de un triángulo miden 8,12 y 16 cm. Calcula los lados de otro triángulo semejante al dado sabiendo que su perímetro es de 108 cm. El perímetro del primer triángulo será: = 36. Como la razón de los perímetros es igual a la razón de semejanza, tendremos r =. Por tanto, los lados están en la misma razón: Autoevaluación

14 Cuánto mide el perímetro de una figura semejante a la dada si la razón de semejanza es? a) 22 b) 25,5 c) 46,5 d) No se puede calcular Área de Matemáticas - Módulo IV

15 Relación entre áreas de dos polígonos semejantes Si calculamos las áreas de los mismos rectángulos tendremos: Si ahora calculamos la razón de las áreas tendremos: es decir, la razón de semejanza elevada al cuadrado. Por tanto, podemos enunciar: La razón de las áreas de dos polígonos semejantes es igual al cuadrado de la razón de semejanza. Ejemplo Los lados de un rectángulo miden 10 cm y 15 cm, y el área de otro rectángulo semejante es de 6 m 2 Calcula los lados de dicho rectángulo. El área del primer rectángulo será 10(15 = 150 cm 2. Y como la razón de las áreas es el cuadrado de la razón de semejanza, tendremos que la razón entre las áreas es: Luego la razón de semejanza es r = por tanto los lados miden: Área de Matemáticas - Módulo IV

16 Relación entre los volúmenes de dos figuras semejantes Los cubos de la figura son semejantes y la razón de semejanza es r =. Si calculamos los volúmenes de dichos cubos, tendremos: Si calculamos la razón entre los volúmenes tendremos:, es decir, la razón de semejanza elevada al cubo. Por tanto, podemos enunciar: La razón entre los volúmenes de dos figuras semejantes es igual al cubo de la razón de semejanza. Ejemplo Una esfera tiene de radio el triple de otra esfera. Qué relación hay entre sus áreas? Y entre sus volúmenes? Si el radio de la primera esfera es 1, el de la segunda será 3, por tanto, la razón de semejanza es. La razón de las áreas es el cuadrado de la razón de semejanza por tanto La razón entre los volúmenes es el cubo de la razón de semejanza por tanto Autoevaluación

17 El volumen de un cono de 4 cm de altura es de 60 cm 3, Cuánto valdrá el volumen de un cono semejante si su altura es de 10 m? a) 150 m 3 b) 375 m 3 c) 38,4 m 3 d) 937,5 m 3 Área de Matemáticas - Módulo IV Los tres lados de un triángulo se pueden identificar de la siguiente forma: El lado mayor de este triángulo rectángulo se llama hipotenusa. Y los otros dos, catetos Se quiere poner un cable que vaya desde la azotea de mi piso a la azotea del piso de enfrente. Sabemos que el otro piso mide seis metros más que el mío y que están separados por ocho metros. Cuánto cable necesito? La respuesta es fácil. Como podemos observar el dibujo nos muestra un triángulo rectángulo. Para resolver problemas con este tipo de está el Teorema de Pitágoras. El cable que necesito será la hipotenusa y la distancia y la diferencia entre pisos serán los catetos. El teorema nos dice que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

18 Si sustituimos lo que ya conocemos en esta fórmula y realizamos las operaciones obtenemos que el cable que necesitamos es 10 metros. Veamos de dónde sale esta fórmula tan útil para los triángulos rectángulos. Como podemos ver en esta imagen, en un triángulo la suma de las áreas de los cuadrados construidos en los catetos es igual al área del cuadrado construido sobre la hipotenusa. Por tanto si los catetos miden: ; y la hipotenusa mide. Se comprueba experimentalmente que De esta fórmula podemos despejar uno de los catetos, si es lo que buscamos quedando de la siguiente manera: Ejemplos En un triángulo rectángulo, los catetos miden 6 y 8 cm.

19 Cuánto mide la hipotenusa? Hipotenusa = cm. En un triángulo rectángulo, un cateto mide 10 cm y la hipotenusa 16 cm. Cuánto mide el otro cateto? Cateto 1 = Autoevaluación Calcula cuánto vale la apotema de un hexágono de 10 cm de lado. a) 11,18 b) 8,66 c) 125 d) 75 Los catetos de un triángulo rectángulo miden 16 y 12 cm respectivamente. Cuánto mide la hipotenusa? a) 9 b) 15 c) 20 d) 11,58

20 Área de Matemáticas - Módulo IV Consideramos el siguiente triángulo rectángulo. Llamamos: «h» a la altura correspondiente a la hipotenusa. «m» la proyección del cateto AB sobre la hipotenusa. «n» a la proyección del cateto AC sobre la hipotenusa. Vemos que en la figura aparecen tres triángulos rectángulos ABC, ACH y AHB que son semejantes ya que sus ángulos 1 son iguales y sus ángulos 2 también son iguales. Consideremos los triángulos semejantes ACH y AHB. Sus lados homólogos son proporcionales:

21 Teorema de la altura: En todo triángulo rectángulo la altura correspondiente a la hipotenusa es media proporcional entre los dos segmentos en que la divide. Área de Matemáticas - Módulo IV Consideramos los triángulos semejantes ABC y ADC, sus lados homólogos son proporcionales por tanto, O bien si consideramos los triángulos ABC y ADB, sus lados homólogos son proporcionales por tanto, Teorema del cateto: En todo triángulo rectángulo cada cateto es media proporcional entre la hipotenusa y su proyección sobre la hipotenusa. Ejemplos: En un triángulo rectángulo la hipotenusa mide 16 cm y la altura correspondiente a la hipotenusa mide 3 cm. Calcula los catetos:

22 Fijándonos en el dibujo tenemos: m = 16 - n Aplicando el teorema de la altura tenemos: por tanto, Resultando que m = 15,41 y n = 0,59, o viceversa. Y para calcular los catetos aplicamos el teorema del cateto: Autoevaluación En un triángulo rectángulo un cateto mide 5 cm y la altura relativa a la hipotenusa mide 3 cm. Calcula la hipotenusa y el otro cateto. a) hipotenusa = 6,25 ; cateto = 3,75 b) hipotenusa = 10 ; cateto = 6 c) hipotenusa = 4 ; cateto = 2 d) hipotenusa = 3,25 ; cateto = 4,25 En el triángulo rectángulo de la figura calcula la altura relativa a la hipotenusa

23 a) 13,83 m b) 15 m c) 24,19 m d) 39 m Área de Matemáticas - Módulo IV

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

Criterios de semejanza de triángulos. Criterios de semejanza de triángulos rectángulos. Criterios de semejanza de polígonos.

Criterios de semejanza de triángulos. Criterios de semejanza de triángulos rectángulos. Criterios de semejanza de polígonos. Semejanza INTRODUCCIÓN El primer objetivo de esta unidad es repasar el teorema de Tales usarlo para dividir un segmento en partes iguales. Como aplicación de dicho teorema, tratamos los criterios de semejanza

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Matemática 3 Colegio N 11 B. Juárez

Matemática 3 Colegio N 11 B. Juárez Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo

Más detalles

1 Ayudándote de la trama cuadrada de lado 1cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales.

1 Ayudándote de la trama cuadrada de lado 1cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales. Ayudándote de la trama cuadrada de lado cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales. Comprueba que las dos figuras siguientes son semejantes: 3 Los lados

Más detalles

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa.

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa. TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA TEOREMA DE PITÁGORAS Un triángulo rectángulo es aquel que tiene un ángulo recto. A los lados que forman el ángulo recto se les llama catetos y al lado mayor, hipotenusa.

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

SEMEJANZA Y PROPORCIONALIDAD

SEMEJANZA Y PROPORCIONALIDAD SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

a) Forma de Escalera:

a) Forma de Escalera: Chía, Febrero 8 de 2016 Buenos días Señores Estudiantes de los grados 902,903,y 904 a continuación encontrarán el trabajo que deben realizar de forma escrita en el cuaderno y debe ser entregado el día

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

Tutorial MT-b14. Matemática Tutorial Nivel Básico. Geometría de proporción

Tutorial MT-b14. Matemática Tutorial Nivel Básico. Geometría de proporción 134567890134567890 M ate m ática Tutorial MT-b14 Matemática 006 Tutorial Nivel ásico Geometría de proporción Matemática 006 Tutorial Geometría de proporción 1. Teorema de Thales: Thales de Mileto, (64-547

Más detalles

La Geometría del triángulo TEMA 4

La Geometría del triángulo TEMA 4 La Geometría del triángulo TEMA 4 Teoremas de Triángulos Rectángulos Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a estudiar los teoremas o resultados

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso GUIA DE TRAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual.

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

MATEMÁTICAS 2º ESO SEMEJANZA Y TEOREMA DE THALES

MATEMÁTICAS 2º ESO SEMEJANZA Y TEOREMA DE THALES MATEMÁTICAS º ESO SEMEJANZA Y TEOREMA DE THALES S1 SEMEJANZA DE FIGURAS. RAZÓN DE SEMEJANZA O ESCALA. Dos figuras son semejantes si tienen la misma forma, aunque quizá distinto tamaño. La razón de semejanza

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

La Geometría del triángulo TEMA 5

La Geometría del triángulo TEMA 5 La Geometría del triángulo TEMA 5 Teoremas de Triángulos No Rectángulos Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a estudiar resultados que pueden

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 139

6Soluciones a los ejercicios y problemas PÁGINA 139 ÁGIN 9 ág. RTI Figuras semejantes uáles de estas figuras son semejantes? uál es la razón de semejanza? F F F F es semejante a F. La razón de semejanza es. a) Son semejantes los triángulos interior y eterior?

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

EXAMEN DE TEOREMA DE PITÁGORAS Y SEMEJANZA

EXAMEN DE TEOREMA DE PITÁGORAS Y SEMEJANZA EXAMEN DE TEOREMA DE PITÁGORAS Y SEMEJANZA Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

COLEGIO TIRSO DE MOLINA DEPARTAMENTO DE DIBUJO TÉCNICO CURSO 2010-11 DIBUJO TÉCNICO II

COLEGIO TIRSO DE MOLINA DEPARTAMENTO DE DIBUJO TÉCNICO CURSO 2010-11 DIBUJO TÉCNICO II DIBUJO TÉCNICO II TEMA 2: PROPORCIONALIDAD Y SEMEJANZA Media proporcional Teoremas del Cateto y la Altura Figuras equivalentes Figuras semejantes y sus diferencias con las homotéticas Razón de semejanza

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de

Más detalles

IE DIVERSIFICADO CHIA TRABAJO GEOMETRIA

IE DIVERSIFICADO CHIA TRABAJO GEOMETRIA IE DIVERSIFICADO CHIA TRABAJO GEOMETRIA Los siguientes ejercicios son sacados de internet, de los libros de Santillana, y los deben realizar en el cuaderno con el dibujo respectivo. Un observador, cuya

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

4, halla sen x y tg x. 5

4, halla sen x y tg x. 5 TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva

Más detalles

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala. Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO

Más detalles

Matemáticas 3º E.S.O. 2013/14

Matemáticas 3º E.S.O. 2013/14 Matemáticas º E.S.O. 01/14 TEM 6: Cuerpos geométricos Repaso eamen 1.- Estoy construyendo una piscina de 5 metros de largo, 15 metros de ancho y metros de alto. Quiero cubrir las paredes y el fondo con

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel A. Elaborado por: Christopher Trejos Castillo GEOMETRÍA

Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel A. Elaborado por: Christopher Trejos Castillo GEOMETRÍA Olimpiada Costarricense de Matemáticas II Eliminatoria 011 Curso preparatorio Nivel A Elaborado por: Christopher Trejos Castillo GEOMETRÍA La notación que utilizaremos en este trabajo es la siguiente:

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento

Más detalles

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN CENTRO UNIVERSITARIO REGIONAL DE LA CEIBA COMITÉ NACIONAL DE OLIMPIADAS MATEMÁTICAS DE HONDURAS ACADEMIA TALENTOS MATEMÁTICOS DE ATLÁNTIDA TEOREMAS, POSTULADOS

Más detalles

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura.

El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura. El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura. Teorema del cateto: El cateto de un triángulo rectángulo es media proporcional entre

Más detalles

Figuras planas, propiedades métricas

Figuras planas, propiedades métricas Figuras planas, propiedades métricas Contenidos 1. Ángulos en la circunferencia Ángulo central y ángulo inscrito 2. Semejanza Figuras semejantes Semejanza de triángulos, criterios 3. Triángulos rectángulos

Más detalles

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar

Más detalles

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias.

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias. 5.- FIGURAS PLANAS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben describir figuras geométricas usando el vocabulario apropiado; usar instrumentos de dibujo (regla, compás, escuadra,

Más detalles

TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS

TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS Introducción.- Anteriormente, a partir de la congruencia de triángulos, hemos estudiado las condiciones que han de verificarse para que dos

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos

Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante

Más detalles

. M odulo 7 Geometr ıa Gu ıa de Ejercicios

. M odulo 7 Geometr ıa Gu ıa de Ejercicios . Módulo 7 Geometría Guía de Ejercicios Índice Unidad I. Conceptos y elementos de geometría. Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 09 Unidad II. Áreas y perímetros de figuras planas.

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

Repaso de Geometría. Ahora formulamos el teorema:

Repaso de Geometría. Ahora formulamos el teorema: Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .co

open green road Guía Matemática tutora: Jacky Moreno .co Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,

Más detalles

Semejanza. Teorema de Tales

Semejanza. Teorema de Tales Semejanza. Teorema de Tales Dos polígonos son semejantes si los ángulos correspondientes son iguales y los lados correspondientes son proporcionales. ABCDE A'B' C'D'E' si: Â = Â', Bˆ = Bˆ ', Ĉ = Ĉ', Dˆ

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

Areas y perímetros de triángulos.

Areas y perímetros de triángulos. Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo

Más detalles

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos

a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos TEMA 6.- GEOMETRÍA Y SEMEJANZA 1.- ÁNGULOS Y TRIÁNGULOS. Ángulo recto Ángulo llano Ángulo agudo Ángulo obtuso (mide 90º) (mide 180º) (mide menos de 90º) (mide más de 90º) Tipos de ángulos Ángulos complementarios

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS

TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS En un triángulo rectángulo, los lados menores son los que forman el ángulo

Más detalles

Construcciones con regla y compás

Construcciones con regla y compás Universidad de Buenos Aires - CONICET Semana de la Matemática - 2009 Algunos ejemplos Vamos a hacer algunos dibujos usando un papel, un lápiz, un compás y una regla sin medidas marcadas. Algunos ejemplos

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 75 PRACTICA Operaciones con polinomios Efectúa las operaciones y simplifica las siguientes epresiones: ( ) ( ) ( ) ( ) ( ) 6( ) 4( 4) ( ) ( 5) ( ) ( ) ( ) 9 ( 4 ) 9 4 4 4 5 8 ( ) ( ) 6( ) 6

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

Geometría

Geometría Geometría Geometría www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2012 Contenido 1. Geometría 2 1.1. Definiciones....................................... 2 1.2. Postulados........................................

Más detalles