% PRODUCTOS NO CONFORMES 10% 5%

Tamaño: px
Comenzar la demostración a partir de la página:

Download "% PRODUCTOS NO CONFORMES 10% 5%"

Transcripción

1 Departamento de Ingeniería Mecánica Tecnología Mecánica I Unidad 13: Control de Calidad Ing. Sergio Laguzzi 1

2 TEMARIO - Definición de Calidad. Costos de la no Calidad. Estrategia de detección (Planes de Muestreo). Estrategia de prevención (CEP). - Definición de proceso. Características y parámetros. Diagramas de Ishikawa (5M) y Pareto. Comportamientos de los procesos. Causas de variación comunes y especiales, como se originan y como se corrigen. - Breve introducción a la distribución normal o de Gauss. Construcción de histogramas. Características de una distribución: media, desviación estándar, forma. - Control estadístico de los procesos (CEP), rol de las cartas de control. Breve explicación de la utilización de la carta X R. 2 Concepto de capacidad de los Procesos.

3 CALIDAD: OBJETIVOS DE LA CLASE Introducir a los alumnos en el concepto moderno de la Calidad. Definir gestionar la calidad, fabricar la calidad. Estrategias. Papel de la estadística. Principales herramientas de la calidad. Ejemplos prácticos. 3

4 CALIDAD: DEFINICIONES Qué significa CALIDAD? Qué es CONTROL DE LA CALIDAD? Qué es GESTION DE LA CALIDAD? 4

5 CALIDAD Y COMPETITIVIDAD % PRODUCTOS NO CONFORMES 10% 5% COSTO TOTAL COSTO DE PRODUCTOS CONFORMES COSTO DE PRODUCTOS NO CONFORMES 10 5 COSTO UNITARIO 1,11 1,05 CUANDO EL % DE NO CONFORMES PASA DEL 10 AL 5% # LA PRODUCTIVIDAD AUMENTA EN...5,5 % # EL COSTO UNITARIO DISMINUYE EN...5,5 % # LA CAPACID. DE PRODUCCION AUMENTA EN...5,5 % COMPETITIVIDAD COMPETITIVIDAD FALSO CALIDAD VERDADERO CALIDAD CUANDO LA CALIDAD MEJORA, LA COMPETITIVIDAD MEJORA 5

6 Qué estrategia elegir? Detección ó prevención? CICLO CONCEBIDO POR LA DETECCION CICLO CONCEBIDO POR LA PREVENCION PRODUCCION PRODUCCION INSPECCION INSPECCION RETRABAJO DESCARTE ZONA DE MAS EXPEDICION PARA LA MISMA CAPACIDAD *MAS SUPERFICIE *MAS EQUIPAMIENTO *MAS PERSONAL *MAS STOCK (GIRO) *MAS RETRASO EXPEDICION Para la misma concepción el ciclo de la izquierda GASTA MAS que el ciclo de la derecha, para la misma capacidad de producción. El ciclo de la izquierda no puede ser tan competitivo como el de la derecha 6

7 Costos de la detección y de la corrección según el ciclo de fabricación 1000 _ COSTO POR DEFECTOS 100 _ 10 _ 1 _ CONTROL CONTROL CONTROL CONTROL DE SOBRE EL SOBRE EL EN RECEPCION SUBCONJUNTO PRODUCTO TERMINADO CLIENTES ELIMINAR LOS DEFECTOS LO ANTES POSIBLE 7

8 DEFINICION DE UN PROCESO ENTRADA PROCESOS SALIDA # HOMBRES MATERIALES # ORGANIZACIÓN # PROCEDIMIENTOS # EQUIPAMIENTO # MATERIALES PRODUCTO TERMINADO # MEDIO AMBIENTE MEDIBLE VALOR AGREGADO MEDIBLE UN PROCESO ES UN CONJUNTO DE PARAMETROS QUE CONCURREN A FABRICAR UN PRODUCTO. PARA FABRICAR UN PRODUCTO QUE RESPONDA A LAS EXIGENCIAS DEMANDADAS, EL PROCESO TIENE NECESIDAD DE ENTRADAS (MATERIA PRIMA, ENERGIA, ETC.). LAS ENTRADAS SE SUMAN A LOS PARAMETROS DEL PROCESO PARA OBTENER PRODUCTOS TERMINADOS. 8

9 PARAMETROS Y CARACTERISTICAS 9

10 EL PAPEL DE LA ESTADISTICA EXISTEN DOS ENFOQUES MUY DISTINTOS SOBRE LA ESTADISTICA 1- Muchas personas suponen que esta rama de las matemáticas se ocupa de la gran masa de observaciones o datos, de ordenarlas y presentarlas en la forma más conveniente. Esta función existe y se llama ESTADISTICA DESCRIPTIVA. 2- Por otra parte, el papel principal de la estadística será el de inferir conclusiones válidas partiendo desde un número limitado de observaciones (muestra), las cuales se consideran representativas de una población muy grande o infinita de datos existentes o potenciales, llamados universo.en la práctica existen dos tipos de tareas: a) Existe un universo conocido y nuestra pregunta es si la muestra puede ser parte de ese universo o, b) Estimar el universo más probable del cual puede haber salido la muestra. Qué significa universo conocido?. Tratándose de un conjunto muy grande de valores, es imposible conocerlos a todos. Lo más que podemos pretender es conocer sus parámetros o sea unos valores carácterísticos que resumen ciertos aspectos del universo en un solo número representativo o si no, conocer a priori o por motivos matemáticos ciertas leyes que estan en el origen de los datos individuales del universo. Esta tarea, o sea inferir los parámetros del universo en base a nuestras limitadas y en general pequeñas muestras se llama ESTADISTICA INFERENCIAL Para que nuestros estudios tengan veracidad es importante que todas las formas de muestras se basen en un proceso ALEATORIO, o sea que todos los individuos tengan la misma probabilidad de ser extraidos. 10

11 EL PAPEL DE LA ESTADISTICA 11

12 DISTRIBUCIONES VARIABLES 1.- CONTINUAS Ejemplo: las sucesivas medidas en un diámetro, en una temperatura, o en un tiempo. En este caso se utiliza un tipo de distribución Normal o de Gauss. 2.- DISCRETAS Ejemplo: (bueno, malo) ; (pasa, no pasa). En este caso se utiliza un tipo de distribución que es la binomial. 3.- DE OTRO TIPO Ejemplo: un porcentaje de defectos o defectos en una determinada unidad de superficie. En este caso se utiliza un tipo de distribución que es la de Poisson. 12

13 CARACTERISTICAS DE UNA DISTRIBUCION PARÁMETROS Y ESTADISTICOS Son los valores característicos que sintetizan los datos de un universo (ó población) que se llaman parámetros y generalmente se representan por letras griegas, o los de una muestra, llamándose estadísticos, usándose letras latinas. Los principales cuatro son: a) Tendencia central c) Simetría b) Dispersión d) Forma Con excepción de la tendencia central, los parámetros mencionados suelen definirse en función de los segundo, tercer o cuarto momento de la distribución de frecuencias siendo X el promedio de la distribución y Xi los distintos valores individuales: π2 =Σ( x - xi) 2 n π3 3 = Σ( ( x - xi) 3 n π4 4 = Σ( ( x - xi) 4 n El primer momento no se usa porque siempre es 0 13

14 CARACTERISTICAS DE UNA DISTRIBUCION LOCALIZACION S1 = S2 X 1 X 2 DISPERSION S1 > S2 X S2 S1 X 1 X 2 FORMA S1 = S2 14

15 CARACTERISTICAS DE UNA DISTRIBUCION Los parámetros que más nos interesarán serán la Tendencia Central y la Dispersión. Para el universo decimos que la media o tendencia central se representa con la letra griega µ y para las muestras utilizamos x. Si el número de muestras es importante decimos que la media de las medias de cada una de las muestras aproxima a µ = x. Para el universo decimos que la dispersión se representa con la letra griega σ y para las muestras utilizamos s. Si el número de muestras es importante decimos que la media de las dispersiones de cada una de las muestras aproxima a σ = s. La Dispersión: Una de las medidas de la variabilidad de un conjunto de datos es el llamado intervalo que también se lo denomina Rango ( R ) (extensión). R= X máx. - X mín. que está íntimamente relacionado con la dispersión de los valores de la muestra. Pero el rango no nos dice nada de los valores intermedios que no se tienen en cuenta para nada. 15

16 CARACTERISTICAS DE UNA DISTRIBUCION Una medida mucho más importante de la dispersión es la DESVIACIÓN NORMAL (s) ó su cuadrado, LA VARIANCIA (s2) Hay dos definiciones: π 2 = s2 =Σ( xi - x) 2 n s 2 =Σ( xi - x) 2 n -1 Tendiendo n al infinito las dos definiciones dan el mismo resultado. Si conociéramos µ la media del universo la fórmula sería en todos los casos: s 2 =Σ(xi - µ) 2 n y en este caso s 2 sería un buen estimador deσ 2 σ 2 =Σ(xi - µ) 2 n (Variancia del Universo) Lamentablemente tratándose de muestras µ no se conoce por lo tanto utilizaremos x. 16

17 DISTRIBUCION NORMAL GAUSSIANA - 3 σ + 3 σ 17

18 LOS DOS TIPOS DE VARIACIONES Los dos límites de los dos tipos de variaciones Dispersión = 6 σ Variaciones Variaciones Variaciones NO ALEATORIAS CONTROLABLES LA ESTADISTICA NO SE APLICA ALEATORIAS INCONTROLABLES DISTRIBUCION NORMAL SE APLICA LA ESTADISTICA NO ALEATORIAS CONTROLABLES LA ESTADISTICA NO SE APLICA 18

19 LOS DOS LIMITES DE CONTROL 19

20 LAS DOS CAUSAS DE VARIACION 20

21 LAS DOS RESPONSABILIDADES 21

22 ROL PREVENTIVO DE LA CARTA DE CONTROL La carta de control es un instrumento del manejo del proceso en tiempo real. No es necesario esperar que los puntos salgan de los límites. Es necesario vigilar también los puntos en el interior de los límites y detectar toda disposición anormal de los puntos. Las causas especiales pueden aún existir cuando todos los puntos estén en el interior de los límites. Este es el rol preventivo de la carta de control 22

23 LOS DOS ERRORES A EVITAR 1.- Si no hay evidencias de una distribución anormal para los puntos en el interior de los limites, entonces: Pocas probabilidades de que existan CAUSAS ESPECIALES. Solo existen CAUSAS COMUNES. NO INTERVENIR: el proceso no puede hacerlo mejor, su concepción no se lo permite. 2.- Si hay puntos al exterior de un límite de control, entonces: Fuertes probabilidades de que existan CAUSAS ESPECIALES. INTERVENIR: falla el proceso. LOS DOS ERRORES A EVITAR 1 INTERVENIR EN EL CASO 1. 2 NO INTERVENIR EN EL CASO 2. 23

24 DEFINICION DE LA ESTABILIDAD 24

25 Capacidad del proceso vs. especificación del producto La principal razón para cuantificar la capacidad de un proceso es la de calcular la habilidad del proceso para mantener dentro de las especificaciones del producto. Para procesos que están bajo control estadístico, una comparación de la variación de 6σ con los límites de especificaciones permite un fácil cálculo del porcentaje de defectuosos mediante la tolerancia estadística convencional. El índice de capacidad del proceso es la formula utilizada para calcular la habilidad del proceso de cumplir con las especificaciones y se expresa de la siguiente manera: ICP = LSE LIE/6σ Donde: ICP: Índice de Capacidad del Proceso LSE: Limite superior Especificado LIE: Limite inferior Especificado σ: Desviación estándar de los datos individuales Donde: σ = R/d2 R = Promedio de los rangos de la carta de control. d2 = Constante de calculo. 25

26 CAPACIDAD DE LOS PROCESOS 26

27 Capacidad del proceso vs. especificación del producto El ICP puede asumir varios valores, que los analistas clasifican entre valor 1 y valor 4 según sea la habilidad del proceso para cumplir con las especificaciones: ICP Clase de proceso Decisión ICP> Más que adecuado, incluso puede exigirse más en términos de su capacidad. 1<ICP< Adecuado para lo que fue diseñado. control estrecho si se acerca al valor de 1 Requiere 0.67<ICP<1 3 No es adecuado para cumplir con el diseño inicial. ICP< No es adecuado para cumplir con el diseño inicial. 27

28 CAPACIDAD DEL PROCESO (CPK) Otra medida para la cuantificación del índice de capacidad de proceso es el Cpk, que esta definido come el menor valor encontrado entre el Cpu y el Cpl, que se define como: Donde: Cpu: Capacidad de proceso teniendo en cuenta únicamente la especificación superior del proceso. LIE: Limite de especificación inferior de la variable LSE: Limite de especificación superior de la variable X: Valor promedio encontrado de los datos σ: Desviación estándar del proceso Cpu y Cpl solo evalúan la mitad de la distribución de los datos teniendo en cuenta solo 3σ. Es útil cuando la especificación de la variable, solo se expresa como un máximo o como un mínimo, para indicar al analista en que sector de la especificación (superior o inferior) se presenta mas riesgo de incumplimiento de los valores establecidos. Los valores de Cpk, son ampliamente utilizados como indicadores de la calidad de un proceso o producto. El valor de Cpk = 1.33 se ha establecido como un parámetro deseado porque la obtención de este valor en un proceso o producto significa que por cada mediciones 3 de ellas existe la probabilidad estadística que se encuentre fuera de los limites de especificación. 28

29 ANALISIS DE LA CAPACIDAD DEL PROCESO Se utiliza con dos objetivos principales, implicando ambos las especificaciones del producto: Como ayuda a la predicción: Es este proceso capaz de cumplir permanentemente con las especificaciones del producto? Como ayuda al análisis: Por qué este proceso no cumple con las especificaciones establecidas? Promedio Aceptable Desviación estándar aceptable. Cpk > 1 Promedio aun aceptable Desviación estándar aceptable. Cpk = 1 Promedio muy alto Desviación estándar potencialmente aceptable Cpk = Cpu < 1 Promedio aceptable Desviación estándar muy grande Cpu y Cp1 < 1 Promedio muy alto Desviación estándar muy grande Cpk = Cpu < 1 a. b. c. d. e. FrecuenciasFrecuenciasFrecuencias Frecuencias Frecuencias Especificacio nes Especificacio nes Especificacio nes Especificacio nes Medidas Especificacio nes Medidas Medidas Medidas Medidas 29

30 ANALISIS DE LA CAPACIDAD DEL PROCESO Inicio Definir variables de proceso a medir Definir plan de mediciones Realizar las mediciones de acuerdo al plan establecido Esquema general para implementación de un programa de control estadístico o para el mejoramiento de los procesos con base en esta herramienta Evaluar el comportamiento con gráficos de control Proceso en control No Identificar causas asignables de variación Eliminar causas asignables de variación estadístico? Si Decisión gerencial Evaluar la capacidad del proceso No ICP>1? Si ICP>1.33? Si No Verificar centrado del proceso Programas de mejoramiento del proceso Decisión gerencial 30

31 COMO COMENZAR UN CEP AMFE (PRODUCTO) SINONIMOS: CEDAC FMECA USO DE LAS 7 HERRRAMIENTAS DE LA CALIDAD Diagramas de Causa-Efecto Planillas de Inspección Gráficos de Control Diagramas de Flujo Histogramas Gráficos de Pareto Diagramas de Dispersión Hoja de control 31

32 DIAGRAMA DE ISHIKAWA (ESPINA DE PESCADO) 32

33 DIAGRAMA DE PARETO: Wilfredo Pareto ( ) 33

34 HISTOGRAMA Un histograma es un gráfico o diagrama que muestra el número de veces que se repiten cada uno de los resultados cuando se realizan mediciones sucesivas. Esto permite ver alrededor de que valor se agrupan las mediciones (tendencia central) y cual es la dispersión. Lo primero que hace el médico es agrupar los datos en intervalos contando cuantos resultados de mediciones de peso hay dentro de cada intervalo (ésta es la frecuencia). Por ejemplo: Cuántos pacientes pesan entre 60 y 65 kilos? Cuántos pacientes pesan entre 65 y 70 kilos? Intervalos < >110 1 Nº Pacientes (Frecuencia) 34

35 HISTOGRAMA Ahora se pueden representar las frecuencias en un gráfico como el siguiente. Por ejemplo, la tabla nos dice que hay 48 pacientes que pesan entre 65 y 70 kilogramos. Por lo tanto, levantamos una columna de altura proporcional a 48 en el gráfico. Y agregando el resto de las frecuencias nos queda el histograma siguiente: Qué utilidad nos presta el histograma? Permite visualizar rápidamente información que estaba oculta en la tabla original de datos. Por ejemplo, nos permite apreciar que el peso de los pacientes se agrupa alrededor de los kilos. Esta es la Tendencia Central de las mediciones. Además podemos observar que los pesos de todos los pacientes están en un rango desde 55 a 100 kilogramos. Esta es la Dispersión de las mediciones. También podemos observar que hay muy pocos pacientes por encima de 90 kilogramos o por debajo de 60 kilogramos. 35

36 PLANILLAS DE CONTROL Sirven como registro del control de los procesos 1.- A partir de los datos relevados y sobre los cuales se obtuvieron productos que satisfagan los requerimiento, se establece un control sobre los parámetros de un proceso. Muchas máquinas modernas dentro de sus controles registran parámetros de proceso y los grafican, y es posible rastrear en el tiempo si alguna partida se vio afectada por algún tipo de cambio en el proceso. 36

37 QUE HACER EN NUESTRO PRACTICO En un breve análisis (AMFE producto), vamos a determinar cuales son las características más importantes de nuestro producto y sobre las cuales vamos a definir un plan de control. Por ejemplo se determina una medida crítica sobre la que se efectuará una medición periódica. Como herramienta de control se utilizará una carta de control XR. Si la característica a controlar es un atributo se utilizará otro tipo de carta de control P. 37

38 CARTA DE CONTROL XR 38

39 CARTA DE CONTROL P 39

40 PREGUNTAS QUE SIGNIFICA CALIDAD? QUE ES GESTION DE LA CALIDAD? PARAMETROS? CARACTERISTICAS? PAPEL DE LA ESTADISTICA? QUE SIGNIFICA PROCESO ESTABLE? QUE SIGNIFICA PROCESO CAPAZ? QUE DIFERENCIA HAY ENTRE LOS LIMITES PROCESO Y LA TOLERANCIA ESPECIFICADA? DE 40 UN

41 GRACIAS POR VUESTRA ATENCION Ing. Sergio Laguzzi 41

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

Técnicas para Mejorar la Calidad del Proceso y el Producto en las Industrias de Productos Madera: Una introducción al Control Estadístico del Proceso

Técnicas para Mejorar la Calidad del Proceso y el Producto en las Industrias de Productos Madera: Una introducción al Control Estadístico del Proceso Técnicas para Mejorar la Calidad del Proceso y el Producto en las Industrias de Productos Madera: Una introducción al Control Estadístico del Proceso Scott Leavengood Oregon State University Extension

Más detalles

Manual de SPC (Statistical Process Control) Índice: SPC, Qué es? Herramientas estadísticas STATISTICAL PROCESS CONTROL. 1. Que es SPC?

Manual de SPC (Statistical Process Control) Índice: SPC, Qué es? Herramientas estadísticas STATISTICAL PROCESS CONTROL. 1. Que es SPC? Manual de SPC (Statistical Process Control) Índice: SPC, Qué es? Herramientas estadísticas STATISTICAL PROCESS CONTROL 1. Que es SPC? SPC (Statistical Process Control) por sus cifras en ingles, es la aplicación

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Control Estadístico de Procesos www.bvbusiness-school.com CONTROL ESTADÍSTICO DE PROCESOS El es un conjunto de técnicas estadísticas destinadas a hacer un seguimiento, en tiempo real, de la calidad que

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

Estadís1ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 7. Control estadís1co de la calidad

Estadís1ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 7. Control estadís1co de la calidad Estadís1ca Tema 7. Control estadís1co de la calidad María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema

Más detalles

7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD

7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD Agencia de Cooperación Internacional del Japón Universidad de Santiago de Chile Facultad de Ingeniería Departamento de Ingeniería Industrial 7 HERRAMIENTAS PARA EL CONTROL DE LA CALIDAD Elaboración: Kiyohiro

Más detalles

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables" no es aplicable.

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables no es aplicable. GRAFICOS DE CONTROL POR ATRIBUTOS 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas para el control de procesos, los Gráficos

Más detalles

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS

CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS CURSO HERRAMIENTAS ESTADISTICAS PARA IMPLEMENTACION DE SIX SIGMA EN EMPRESAS DE PRODUCCION, LOGISTICA Y SERVICIOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-4492-6252 Fax:

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. GRÁAFICOS DE CONTROL POR VARIABLES 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas más potentes para el control de procesos,

Más detalles

PLATAFORMA GESTIÓN INTEGRAL DE PRODUCCIÓN GESTIÓN DE OPERACIONES

PLATAFORMA GESTIÓN INTEGRAL DE PRODUCCIÓN GESTIÓN DE OPERACIONES PLATAFORMA GESTIÓN INTEGRAL DE PRODUCCIÓN GESTIÓN DE OPERACIONES CONTROL DE CALIDAD CONTROL ESTADÍSTICO DE PROCESO Avanzar hacia la excelencia operacional es clave para la mejora de la competitividad de

Más detalles

CARTAS DE CONTROL. FeGoSa

CARTAS DE CONTROL. FeGoSa Las empresas en general, ante la apertura comercial han venido reaccionando ante los cambios y situaciones adversas, reaccionan por ejemplo ante: Disminución de ventas Cancelación de pedidos Deterioro

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.

Más detalles

Master en Gestión de la Calidad

Master en Gestión de la Calidad Master en Gestión de la Calidad E U R O P E A N Q U A L I T Y 18. Estudios de Capacidad 1 / 1 Estudios de Capacidad: Lo que vamos a estudiar en este apartado se emplea tanto en la planificación de los

Más detalles

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL

Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL 1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

Manual de Preparación para la Certificación Bajo la Norma ISO 9001:2000, Orientado a Empresas del Sector Servicios en El Salvador

Manual de Preparación para la Certificación Bajo la Norma ISO 9001:2000, Orientado a Empresas del Sector Servicios en El Salvador CAPITULO V GLOSARIO DE TERMINOS Acción Correctiva Acción tomada para eliminar las causas de una no conformidad detectada u otra situación indeseable existente o defecto, para evitar su repetición. Acción

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Tema 4 Aseguramiento de la calidad, los procesos y su mejora

Tema 4 Aseguramiento de la calidad, los procesos y su mejora Tema 4 Aseguramiento de la calidad, los procesos y su mejora 4.1.- Surgimiento y consolidación del aseguramiento de la calidad 4.2.- Características básicas y definición del aseguramiento de la calidad

Más detalles

QUÉ ES LA CALIDAD? CALIDAD ES LA TOTAL SATISFACCION DEL CLIENTE. CLIENTE ES TODO AQUEL QUE COMPRA LOS PRODUCTOS O USA LOS SERVICIOS.

QUÉ ES LA CALIDAD? CALIDAD ES LA TOTAL SATISFACCION DEL CLIENTE. CLIENTE ES TODO AQUEL QUE COMPRA LOS PRODUCTOS O USA LOS SERVICIOS. Q QUÉ ES LA CALIDAD? INTRODUCCIÓN CALIDAD ES LA TOTAL SATISFACCION DEL CLIENTE. CLIENTE ES TODO AQUEL QUE COMPRA LOS PRODUCTOS O USA LOS SERVICIOS. SATISFACCION ES LA PERCEPCION DEL CUMPLIMIENTO DE LOS

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

Control de calidad del Hormigón

Control de calidad del Hormigón Control de calidad del Hormigón Calidad Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

HERRAMIENTAS DE LA CALIDAD

HERRAMIENTAS DE LA CALIDAD HERRAMIENTAS DE LA CALIDAD Ayudan en la medición, análisis e implementación de mejoramientos. Para mejorar Las principales herramientas de la calidad se agrupan en dos categorías: las siete herramientas

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control por Variables www.bvbusiness-school.com GÁFICOS DE CONTOL PO VAIABLES Los gráficos de control por variables se utilizan para aquellas características de calidad que permiten ser medidas

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Lic. Elda Monterroso UNLu Características de calidad Variables Características que se pueden medir (peso, longitud, temperatura, etc.) Pueden ser números enteros o fracciones

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

COOPERATIVA DE PROFESORES DE LA UNIVERSIDAD NACIONAL DE COLOMBIA

COOPERATIVA DE PROFESORES DE LA UNIVERSIDAD NACIONAL DE COLOMBIA UNIVERSIDAD NACIONAL INSTRUCTIVO PARA LA APLICACION DE TECNICAS ESTADISTICAS Y HERRAMIENTAS PARA EL ANALISIS DE DATOS COO.C I 01 VERSION 1 ELABORADO POR REVISADO POR APROBADO POR COORDINADOR DE LA CALIDAD

Más detalles

Estudio comparativo de los currículos de probabilidad y estadística español y americano

Estudio comparativo de los currículos de probabilidad y estadística español y americano Estudio comparativo de los currículos de probabilidad y estadística español y americano Jaldo Ruiz, Pilar Universidad de Granada Resumen Adquiere las mismas capacidades en Probabilidad y Estadística un

Más detalles

CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC

CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC 1. INTRODUCCIÓN. Mientras el Dr. Walter Shewhart de los Laboratorios Bell estudiaba datos de procesos en la década

Más detalles

Grado en Ingeniería. Estadística. Tema 3

Grado en Ingeniería. Estadística. Tema 3 Grado en Ingeniería Asignatura: Estadística Tema 3. Control Estadístico de Procesos (SPC) Control Estadístico de Procesos (SPC) Introducción Variabilidad de un proceso de fabricación Causas asignables

Más detalles

HERRAMIENTAS BASICAS PARA LA MEJORA DE LA CALIDAD Y SU EVALUACION:

HERRAMIENTAS BASICAS PARA LA MEJORA DE LA CALIDAD Y SU EVALUACION: 21 HERRAMIENTAS BASICAS PARA LA MEJORA DE LA CALIDAD Y SU EVALUACION: ÍNDICE: 21.1 Introducción 21.2 Concepto general de mejora continúa 21.2.1 Actuaciones claves para la programación de la mejora continua

Más detalles

GUÍA DE APRENDIZAJE. Módulo II Seis Sigma. Aprendizaje sin fronteras uvirtual@pep.pemex.com

GUÍA DE APRENDIZAJE. Módulo II Seis Sigma. Aprendizaje sin fronteras uvirtual@pep.pemex.com GUÍA DE APRENDIZAJE Módulo II Seis Sigma ÍNDICE 1. Visión General Seis Sigma 2 2. Objetivos 2 3. La Iniciativa 3 4. Cambiando el Proceso de Toma de Decisiones 3 5. La Metodología 5 6. La Medición 12 7.

Más detalles

Control de calidad del. Ciudad de La Rioja Mayo 2013

Control de calidad del. Ciudad de La Rioja Mayo 2013 Control de calidad del Hormigón Ciudad de La Rioja Mayo 2013 Control de calidad Desde que se comenzó con la producción de bienes, se han hecho intentos en controlar el proceso de manera de mejorar la calidad

Más detalles

' ' ' ' & ' ' " & &! & & * & + & ' ' &! &

' ' ' ' & ' '  & &! & & * & + & ' ' &! & !! # $ $ % % ' ' ' ' ' ' ( ( ) ) ' '! * + ' '! ',, %, -. / 0 + 0 +, +,! # $ # $ % %! #$ % ' ', ' ! ) ). ) ). ( ). ). ( ). ). ' ( ) ' * ) ' + ) ', ) ' ' ) - ) ) ) ' ( ) ' * ) ' + ) ', ) ' ' ) - ) ) ) $%$

Más detalles

Otras medidas descriptivas usuales

Otras medidas descriptivas usuales Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

17 de Agosto de 2013 HERRAMIENTAS DE CALIDAD TOTAL

17 de Agosto de 2013 HERRAMIENTAS DE CALIDAD TOTAL HERRAMIENTAS DE CALIDAD TOTAL 1 Daniel Dingler Paredes. Licenciatura en Administración. Calidad Total. Descripción de Herramientas de calidad total. Calidad Total significa Mejora continua. Ofrecer el

Más detalles

PROCEDIMIENTO: ACCIONES CORRECTIVAS Y PREVENTIVAS TABLA DE CONTENIDO

PROCEDIMIENTO: ACCIONES CORRECTIVAS Y PREVENTIVAS TABLA DE CONTENIDO PROCEDIMIENTO: ACCIONES CORRECTIVAS Y PREVENTIVAS CÓDIGO: PGDC-PR-03 VERSIÓN: 3 FECHA: 11 DE DIC DE 2014 PÁGINAS: 1 de 10 TABLA DE CONTENIDO 1. OBJETIVO 2. ALCANCE 3. DEFINICIONES 4. RESPONSABLE 5. RESPONSABILIDADES

Más detalles

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas

INDICE Prefacio 1 Introducción 2 Organizaciones de los datos para que transmitan un significado: tablas y graficas INDICE Prefacio 1 Introducción 1-1 Preámbulo 1-2 Reseña histórica 1-3 Subdivisiones de la estadística 1-4 Estrategia, suposiciones y enfoque 2 Organizaciones de los datos para que transmitan un significado:

Más detalles

Diseños de Investigación 40 conceptos que debes conocer

Diseños de Investigación 40 conceptos que debes conocer Diseños de Investigación 40 conceptos que debes conocer 1. El método científico: Se puede realizar desde dos enfoques distintos, hipotético deductivo y analítico inductivo. Con frecuencia los dos ocurren

Más detalles

Diseñar e Implantar el Control estadístico de de Calidad en un proceso para alcanzar la mejora continua.

Diseñar e Implantar el Control estadístico de de Calidad en un proceso para alcanzar la mejora continua. Nombre de la asignatura: Control Estadístico de Calidad Créditos: 4-1-5 Aportación al perfil Conocer Aplicar las herramientas estadísticas básicas del control de calidad para la toma de decisiones. Analizar

Más detalles

LA MEDIDA Y SUS ERRORES

LA MEDIDA Y SUS ERRORES LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger

Más detalles

MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS

MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS 1 ÍNDICE DEFINIR. 3 MEDIR.... 4 ANALIZAR..... 5 MEJORAR. 6 CONTROLAR... 7 GLOSARIO... 8 MAPA CONCEPTUAL. 10 2 DEFINIR: Iniciación del proyecto.

Más detalles

Herramientas de la Calidad Total

Herramientas de la Calidad Total Manual del Participante Herramientas de la Calidad Total TECNICO NIVEL OPERATIVO SEN@TI VIRTUAL HERRAMIENTAS DE LA CALIDAD TOTAL MANUAL DEL PARTICIPANTE TERCERA EDICIÓN JULIO 2015 Todos los derechos reservados.

Más detalles

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS 1) INTRODUCCIÓN Tanto la administración de calidad como la administración Seis Sigma utilizan una gran colección de herramientas estadísticas.

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

MÓDULO V EVALUANDO EL RIESGO: ANÁLISIS DE MODO FALLA Y SUS EFECTOS

MÓDULO V EVALUANDO EL RIESGO: ANÁLISIS DE MODO FALLA Y SUS EFECTOS MÓDULO V EVALUANDO EL RIESGO: ANÁLISIS DE MODO FALLA Y SUS EFECTOS ÍNDICE OBJETIVOS 3 DEFINICIÓN FMEA... 3 HISTORIA 4 ROL DEL PROCESO.. 4 PROPÓSITO DEL FMEA DE PROCESOS 4 FMEA: ENTRADAS Y SALIDAS.. 5 ANÁLISIS

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control

Más detalles

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes

Más detalles

El Rol de la Estadística en el Control de la Calidad

El Rol de la Estadística en el Control de la Calidad El Rol de la Estadística en el Control de la Calidad Jaime Mosquera Restrepo Profesor Escuela de Estadística. Universidad del Valle jaime.mosquera@correounivalle.edu.co Que es calidad? Como se evalúa la

Más detalles

CERTIFICACIÓN INTERNACIONAL SEIS SIGMA: GREEN BELT Educación Empresarial y Desarrollo Profesional

CERTIFICACIÓN INTERNACIONAL SEIS SIGMA: GREEN BELT Educación Empresarial y Desarrollo Profesional ESCUELA DE EMPRESAS Universidad San Francisco de Quito CERTIFICACIÓN INTERNACIONAL SEIS SIGMA: GREEN BELT Educación Empresarial y Desarrollo Profesional Antecedentes: La Escuela de Empresas es el centro

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Observamos datos provenientes de una o varias muestras de la población bajo estudio. El objetivo es obtener conclusiones sobre toda la población a partir de la muestra observada.

Más detalles

GUÍA DE APRENDIZAJE UNIVERSIDAD VIRTUAL. Herramientas de los Sistemas de la Gestión de Calidad. Aprendizaje sin fronteras uvirtual@pep.pemex.

GUÍA DE APRENDIZAJE UNIVERSIDAD VIRTUAL. Herramientas de los Sistemas de la Gestión de Calidad. Aprendizaje sin fronteras uvirtual@pep.pemex. GUÍA DE APRENDIZAJE UNIVERSIDAD VIRTUAL Herramientas de los Sistemas de la Gestión de Calidad ÍNDICE 1. Introducción a las herramientas básica... 3 1.1 Origen de las herramientas básicas...... 3 1.2 Las

Más detalles

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I)

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I) VARIABLES Variable: característica de cada sujeto (cada caso) de una base de datos. Se denomina variable precisamente porque varía de sujeto a sujeto. Cada sujeto tiene un valor para cada variable. El

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

[Guía del Participante]

[Guía del Participante] HERRAMIENTAS DE LA CALIDAD TOTAL [Guía del Participante] Unidad 1 Técnico Nivel Operativo Guía del Participante PRIMERA EDICIÓN Mayo 2014 Todos los derechos reservados. Esta publicación no puede ser reproducida

Más detalles

Las 7 Herramientas Fundamentales de la Calidad

Las 7 Herramientas Fundamentales de la Calidad Las 7 Herramientas Fundamentales de la Calidad Se utilizarán los métodos estadísticos elementales, dado que está dirigido a todos los funcionarios, desde la alta dirección hasta los operarios de base (Ej:

Más detalles

ESCUELA DE EMPRESAS Universidad San Francisco de Quito. CERTIFICADO INTERNACIONAL SEIS SIGMA: GREEN BELT Educación Empresarial

ESCUELA DE EMPRESAS Universidad San Francisco de Quito. CERTIFICADO INTERNACIONAL SEIS SIGMA: GREEN BELT Educación Empresarial ESCUELA DE EMPRESAS Universidad San Francisco de Quito CERTIFICADO INTERNACIONAL SEIS SIGMA: GREEN BELT Educación Empresarial Antecedentes: Basados en la filosofía de Artes Liberales, la Escuela de Empresas

Más detalles

CONTROL ESTADÍSTICO DE PROCESOS Y PLANES DE MUESTREO

CONTROL ESTADÍSTICO DE PROCESOS Y PLANES DE MUESTREO CONTROL ESTADÍSTICO DE PROCESOS Y PLANES DE MUESTREO DIRECCIÓN DE LA PRODUCCIÓN Por: LUIS ARENCIBIA SÁNCHEZ www.laformacion.com - www.libroelectronico.net 1 Índice. 1. Control estadístico de procesos.

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

Introducción a la Ingeniería Industrial: Control de calidad. Prof: Francisco Morales L.

Introducción a la Ingeniería Industrial: Control de calidad. Prof: Francisco Morales L. Introducción a la Ingeniería Industrial: Control de calidad 00 000 00 0 000 000 0 Prof: Francisco Morales L. Control de Calidad Evolución histórica del Control de Calidad. Conceptos y definición de Calidad

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Estadística para el control de procesos 2. Competencias a la que

Más detalles

Técnicas de Planeación y Control

Técnicas de Planeación y Control Técnicas de Planeación y Control 1 Sesión No. 12 Nombre: Mejora continua de procesos Contextualización Se habla mucho de la supervivencia en las empresas en un entorno, además de altamente competitivo,

Más detalles

CAPÍTULO II METODOLOGÍA SEIS SIGMA. Este capítulo describe las técnicas a aplicar para el desarrollo de este

CAPÍTULO II METODOLOGÍA SEIS SIGMA. Este capítulo describe las técnicas a aplicar para el desarrollo de este CAPÍTULO II METODOLOGÍA SEIS SIGMA 2.1. Introducción Este capítulo describe las técnicas a aplicar para el desarrollo de este estudio. Seis Sigma es una metodología de calidad que utiliza herramientas

Más detalles

Lean SEIS SIGMA Área Temática: Logística

Lean SEIS SIGMA Área Temática: Logística Proyecto fin de Master Hito 3 Ejercicio Nº 1 Lean SEIS SIGMA Área Temática: Logística www.formatoedu.com 1 Enunciado Lean Seis Sigma es una metodología eficaz para reducir sistemáticamente todas las deficiencias

Más detalles

Control de calidad: Cartas de control por variables.

Control de calidad: Cartas de control por variables. CONGRESO REGIONAL de ciencia y tecnología NOA 2002 Secretaría de Ciencia y Tecnología Universidad Nacional de Catamarca PRODUCCIONES CIENTÍFICAS.. Control de calidad: Cartas de control por variables. Autores:

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGIAS RENOVABLES EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CALIDAD Y ESTADISTICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGIAS RENOVABLES EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CALIDAD Y ESTADISTICA TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGIAS RENOVABLES EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CALIDAD Y ESTADISTICA 1. Competencias Formular proyectos de energías renovables mediante diagnósticos energéticos

Más detalles

Práctica 6 Control estadístico de la calidad

Práctica 6 Control estadístico de la calidad Práctica 6 Control estadístico de la calidad Contenido 1 Introducción y objetivos 1 2 Datos para las cartas de control 2 3 Control de fabricación por variables: cartas X y cartas R 4 4 Control de fabricación

Más detalles

CONTROL ESTADÍSTICO DE PROCESOS: GRÁFICOS DE CONTROL

CONTROL ESTADÍSTICO DE PROCESOS: GRÁFICOS DE CONTROL CONTROL ESTADÍSTICO DE PROCESOS: GRÁFICOS DE CONTROL Andrés Carrión García René Maluenda Molla MMI CONTROL ESTADÍSTICO DE PROCESOS. GRÁFICOS DE CONTROL CONTENIDOS 1. Calidad y características de calidad....

Más detalles

17.- PARABRISAS RESOLUCIÓN

17.- PARABRISAS RESOLUCIÓN 17.- PARABRISAS La sección de control de calidad de una fábrica de parabrisas elige, aleatoriamente, una muestra de 100 parabrisas producidos por una determinada máquina y registra la longitud de los parabrisas

Más detalles

AMEF Análisis de Modo y Efecto de Falla

AMEF Análisis de Modo y Efecto de Falla AMEF Análisis de Modo y Efecto de Falla Un compromiso a largo plazo que complementa el desarrollo del producto y Nace en la Aeronáutica Busca determinar el modo y efecto de falla Potencial AMEF DE DISEÑO

Más detalles

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 REQUISITO LICENCIATURA EN ENFERMERÌA PROFESOR 1. Justificación. Se requiere

Más detalles

DIAGRAMAS DE CONTROL TEORÍA GENERAL

DIAGRAMAS DE CONTROL TEORÍA GENERAL 1. DESARROLLO HISTÓRICO DIAGRAMAS DE CONTROL TEORÍA GENERAL 20 s Shewhart Primeros avances en el control estadístico de calidad. Segunda Guerra Mundial Se emplearon con mayor fuerza No se utilizaron Deming

Más detalles

GRÁFICAS DE CONTROL PARA VARIABLES

GRÁFICAS DE CONTROL PARA VARIABLES GRÁFICAS DE CONTROL PARA VARIABLES 155 CAPÍTULO 2 GRÁFICAS DE CONTROL PARA VARIABLES 156 GRÁFICAS DE CONTROL PARA VARIABLES 2.1 Conceptos generales y principios del Control Estadístico del Proceso (CEP)

Más detalles

Estrategia de Negocios que revoluciona y transforma a las empresas hacia Clase Mundial.

Estrategia de Negocios que revoluciona y transforma a las empresas hacia Clase Mundial. & 6 Sigma Diplomado y Certificación Black Belt TECNOLOGIA JAPONESA DE CLASE MUNDIAL QUE SI FUNCIONA! MANUFACTURA Y SERVICIOS Estrategia de Negocios que revoluciona y transforma a las empresas hacia Clase

Más detalles

METODOLOGÍA SIX-SIGMA: CALIDAD INDUSTRIAL. La elaboración de los productos en el área industrial involucra principalmente tres etapas:

METODOLOGÍA SIX-SIGMA: CALIDAD INDUSTRIAL. La elaboración de los productos en el área industrial involucra principalmente tres etapas: METODOLOGÍA SIX-SIGMA: CALIDAD INDUSTRIAL. Ing. Gustavo López 1 1 Investigador del Instituto de Ingeniería-UABC; glopez@iing.mxl.uabc.mx La elaboración de los productos en el área industrial involucra

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Procedimiento de calibración de comparadores neumáticos ETAMIC

Procedimiento de calibración de comparadores neumáticos ETAMIC Procedimiento de calibración de comparadores neumáticos ETAMIC Jorge Alonso * Vigo, 1999 (original) 06/2005 v2.1.0 Índice 1. Introducción 1 2. Generalidades 1 2.1. Campo de aplicación.......... 1 2.2.

Más detalles

MANUAL OPCIONES FUTUROS

MANUAL OPCIONES FUTUROS MANUAL DE OPCIONES Y FUTUROS Segunda Edición 4 LA VOLATILIDAD 4.1. Qué es la volatilidad? 4.2. Información y volatilidad 4.3. La volatilidad como medida de probabilidad 4.4. Tipos de volatilidad 4.5. Sensibilidades

Más detalles

Aplicaciones de Estadística Descriptiva

Aplicaciones de Estadística Descriptiva Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos

Más detalles

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS Contenido: CARTAS DE CONTROL Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS TEST DE MEDIANAS CEL: 72488950 1 Antes de querer utilizar cualquier

Más detalles

La medición como pilar básico de la calidad total

La medición como pilar básico de la calidad total Seminarios del Instituto de Matemática tica Aplicada a la Ciencia y la Ingeniería Universidad de Castilla La Mancha (Viernes 14 de Noviembre de 2008) La medición como pilar básico de la calidad total Roberto

Más detalles

ESPECIALIZACIÓN EN ESTADÍSTICA

ESPECIALIZACIÓN EN ESTADÍSTICA MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. CONTROL DE CALIDAD

Más detalles

1. INTRODUCCIÓN 2. JUSTIFICACIÓN

1. INTRODUCCIÓN 2. JUSTIFICACIÓN Revista Ingeniería Industrial - Año 5, Nº 1 - Segundo Semestre 2006 1. INTRODUCCIÓN El contenido de humedad de la madera es uno de los parámetro más importante a considerar para los distintos propósitos

Más detalles

Las Normas ISO 9000. Puede ser un producto material, un producto informático, servicio, información, etc.

Las Normas ISO 9000. Puede ser un producto material, un producto informático, servicio, información, etc. Las Normas ISO 9000 La serie de Normas ISO 9000 son un conjunto de enunciados, los cuales especifican que elementos deben integrar el Sistema de Gestión de la Calidad de una Organización y como deben funcionar

Más detalles

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS Profesor del del curso: curso: Ing. Ing. Celso Celso Gonzales INTRODUCCION OBJETIVOS Comprender qué es y porqué se estudia la

Más detalles

Cómo funciona el Diagrama de Control

Cómo funciona el Diagrama de Control Cómo funciona el Diagrama de Control Capítulo 4 Control Estadístico de Calidad Modelo del sistema de control de proceso ( con retroalimentación ) VOZ DEL PROCESO METODOS ESTADÍSTICOS Personal Equipo Materiales

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

Planeación de la Recolección de Datos. Planeacion de Recoleccion de Datos

Planeación de la Recolección de Datos. Planeacion de Recoleccion de Datos Planeación de la Recolección de Datos Qué Son los datos? Recolección de Datos Contenido Por Qué Es Importante la Recolección de Datos? Estrategias de Muestreo Estrategias para la Definición de Datos Base

Más detalles

1. PRESENTACIÓN 2 2. CONTROL ESTADISTICO DE PROCESOS 6 3. INSTALACIÓN Y ARRANQUE 27 4. REGISTRO DE DATOS 37 5. CONFIGURACIÓN 47 6.

1. PRESENTACIÓN 2 2. CONTROL ESTADISTICO DE PROCESOS 6 3. INSTALACIÓN Y ARRANQUE 27 4. REGISTRO DE DATOS 37 5. CONFIGURACIÓN 47 6. CONTENIDO: 1. PRESENTACIÓN 2 2. CONTROL ESTADISTICO DE PROCESOS 6 3. INSTALACIÓN Y ARRANQUE 27 4. REGISTRO DE DATOS 37 5. CONFIGURACIÓN 47 6. GRÁFICOS 69 7. REPORTES 88 8. MENÚ VARIOS 95 9. MÓDULOS DE

Más detalles

Capítulo 3: Metrología y Calidad. TEMA 5: Control de calidad

Capítulo 3: Metrología y Calidad. TEMA 5: Control de calidad Capítulo 3: Metrología y Calidad TEMA 5: Control de calidad Índice 1. Calidad Introducción Definición de Control de calidad 2. Control y mejora de la calidad Qué es un Plan de control de Calidad Medida

Más detalles

5.- ANÁLISIS DE RIESGO

5.- ANÁLISIS DE RIESGO 5.- ANÁLISIS DE RIESGO El módulo de Análisis de Riesgo se caracteriza por desarrollar una herramienta formativa para la gestión, que permite al usuario identificar, analizar y cuantificar el riesgo de

Más detalles

Calidad en el Montaje y Proceso

Calidad en el Montaje y Proceso IES Rey Pelayo Programación 2014-15 Calidad en el Montaje y Proceso Instalación y Mantenimiento Electromecánico y Conducción de Líneas Formación Profesional de Grado Medio Índice Índice... 1 Introducción...

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales 1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS

Más detalles

I. Estadística Descriptiva de una variable

I. Estadística Descriptiva de una variable I. Estadística Descriptiva de una variable Objetivo: Organizar un conjunto de datos para extraer el máximo posible de información Herramientas: A. Estadísticos: Media, Varianza, moda, etc B. Representaciones

Más detalles