Guía para el estudio de la segunda Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía para el estudio de la segunda Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo"

Transcripción

1 Guía para el estudio de la segunda Unidad didáctica Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 18 de marzo de 2011

2

3 Índice general Donald Erwin Knuth 5 Recomendaciones para el estudio 7 Ejercicios de la segunda unidad didáctica 9 Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio Ejercicio

4

5 Donald Erwin Knuth Ciencia es aquello que comprendemos lo bastante bien como para explicarlo al computador, todo lo demás es Arte. DONALD E. KNUTH, prólogo de A = B, de PETKOVSEK, WILF y ZEILBERGER) Donald Erwin Knuth, nació en Milwaukee, Wisconsin, (USA) en Estudió en el Case Institute of Technology, donde cambió su orientación hacia la música por las matemáticas. Allí tuvo su primer encuentro con los computadores: un IBM 650, era el año 1956, un año antes de descubrir a las chicas, como él mismo confiesa. Se doctoró en matemáticas en el Instituto tecnológico de California. En 1968 se incorporó a la universidad de Stanford como profesor de Ciencia de los computadores. Como profesor universitario introdujo nuevos cursos en el currículo como Estructura de datos y Matemática concreta. En 1993 fue nombrado profesor emérito de El Arte de programar computadores, en honor a su gran obra. Ha sido pionero en la investigación en compiladores, gramática de atributos y algoritmos pero, sobre todas las cosas, es un hombre que busca lo perfecto. Quedó tan insatisfecho de la primera edición del volumen I de The Art of Computer Programming, que interrumpió su trabajo y dedicó diez años a crear un lenguaje de programación que permitiera publicar textos, en particular textos de matemáticas, con la máxima calidad tipográfica. Así, nació TEX, el lenguaje para publicar textos hermosos. Sus trabajos sobre tipografía digital le han llevado a desarrollar dos lenguajes para la documentación estructurada de programas y un método que denomina programación literaria. Los lenguajes WEB y CWEB facilitan escribir programas que se puedan leer. Se trata de combinar dos lenguajes, uno para la documentación y otro para la programación, creando simultáneamente dos rutinas diferentes, una para los humanos y otra para las máquinas. Desde 1968 ha sido profesor de la Universidad de Stanford, donde ha creado nuevos títulos del curriculum en matemáticas, como su Matemática concreta. Su gran obra es The Art of Computer Programming, de la que lleva publicados tres volúmenes y parte del cuarto y en la que sigue trabajando activamente. Es una referencia indispensable en computación y algoritmos. Para hacerse una idea del enorme trabajo que supone basta leer sus documentadas introducciones históricas. Cuando KNUTH estudia un problema lo hace en todas las direcciones y en todos los sentidos. Ha publicado 17 libros y alrededor de 150 artículos, que incluyen algunos sobre los algoritmos de la matemática babilonia, la Biblia o la historia de la letra S.

6 6 UNED. I. Informática/I. en Tecnologías de la Información, Curso Nota: Todas las referencias al libro, páginas, apartados, ejemplos, etc., lo son a la primera edición de Modelos probabilísticos y Optimización. Ediciones académicas. Madrid En cada ejercicio se señalan los apartados que hay que estudiar previamente.

7 Recomendaciones para el estudio Como si de una fuga musical se tratara, esta unidad didáctica trata exactamente los mismos problemas que la anterior en una clave distinta: la de los puntos elegidos aleatoriamente en el continuo. Si has estudiado a fondo la primera unidad, ahora recibirás tu premio porque todos los conceptos te resultarán familiares y solo tendrás que adaptarlos a las herramientas matemáticas de continuo, cosa que es bastante inmediata y en la que trataremos de ayudarte; si no has dedicado el tiempo debido al estudio de la primera unidad, estás construyendo sobre arena. Esta segunda Unidad sólo añade dos conceptos nuevos y son los de función de densidad y función de distribución; como se relata en el texto, la intuición del concepto de densidad de masa es clave para comprender la idea de densidad de probabilidad; el apartado merece una lectura tranquila y detallada, ya que permite alcanzar una buena comprensión del modo en que se salva la dificultad de extender la noción de probabilidad al continuo de los reales; de nuevo insistimos que invertir tiempo en cimentar ideas básicas es ganar tiempo ya que tarde o temprano recibimos el rendimiento. Estudiar con detalle los ejemplos 2.1 y 2.2 te ayudará. El apartado es crucial, ya que la función de densidad es la herramienta clave de esta clase de modelos; no te preocupes por el cálculo integral, todos los ejemplos y ejercicios que resolvamos tratan funciones muy sencillas o distribuciones cuyos valores están tabulados. El apartado ayuda a pulir la intuición de densidad de probabilidad. Estudia con atención los apartados y y repite los cálculos que están en el texto. De los apartados de la sección 2.2 debes leer el y y estudiar con atención el y 2.2.4; tras el estudio tienes que ser capaz de calcular probabilidades en la distribución normal; estudia con detalle el ejemplo 2.5. Estudia el apartado 2.3 de la siguiente manera, son fundamentales los puntos 2.6 y 2.7, donde se define la función de distribución (2.6) y se enumeran las propiedades características (2.7). Estudia los apartados y como si de dos ejemplos se tratara. Otro resultado esencial es el 2.8 que nos permite saber cuando una función de distribución tiene función de densidad. La función de distribución proporciona la herramienta más elemental para calcular la distribución de una función de una variable aleatoria, el procedimiento general se explica en y el apartado muestra el cálculo de la distribución de una función lineal como aplicación del método anterior. Lo más importante de la sección 2.4 son los conceptos: densidad conjunta, marginal y condicionada, independencia de variables y momentos; todos ellos son una repetición de los estudiados en la primera Unidad, tan sólo puede resultar nueva la herramienta matemática

8 8 UNED. I. Informática/I. en Tecnologías de la Información, Curso en particular cómo poner límites a las integrales iteradas para aplicar el teorema de Fubini, con unos pocos ejemplos lo dominarás pronto. Nuestro consejo es que leas con mucha atención el apartado donde se explica la idea intuitiva que subyace tras ellos y que estudies detenidamente los ejemplos desde del 2.7 al 2.13.

9 Ejercicios de la segunda unidad didáctica Ejercicio 2.1. [2.1.2][2.1.4][2.1.5] Sea f la función definida por f(x) = { 2(1 x) si 0 x 1 0 si x > 1 ó x < 0 comprobar que cumple las condiciones para ser una función de densidad de probabilidad. Si X es una variable aleatoria cuya función densidad es f, calcular 1. P(X > 0.5). 2. P(0.5 < X < 0.75). 3. P(X > 0.75 X > 0.5). 4. E{X} y σ 2 X. Ejercicio 2.2. [2.1.2][2.1.4][2.1.5] Sea X una variable aleatoria con la función de densidad que se muestra en la figura 2.1. Calcular 1. P(X 1.75) 2. P(X < 1.25 X 1.75) 3. E{X}. Ejercicio 2.3. [2.1.5] Consideremos una variable aleatoria, X, con distribución uniforme en el intervalo ( π,π) y sea Z = senx. Calcular E{Z} y σ 2 Z.

10 10 UNED. I. Informática/I. en Tecnologías de la Información, Curso si 1 x 2 f(x) = xln2 0 en otro caso 1 f X (x) Figura 2.1 Ejercicio 2.4. [2.2.4] Consideremos una variable aleatoria Z con distribución N (0, 1); calcular 1. P(Z > 0.6). 2. P(Z > 0.5). 3. P(0.5 < Z 1.5). 4. P( 1 < Z 0.5). 5. P( 0.5 < Z 1.5). Ejercicio 2.5. [2.2.4] 1. Consideremos una variable X que se distribuye según una normal N (2.5,0.5). Para calcular la probabilidad P(2 < X < 3) 2. Si X es una variable aleatoria con distribución normal, N (µ, σ), calcular P(X > µ + σ) Ejercicio 2.6. [2.2.4] 1. Si Z es una variable con distribución normal N (0,1), cuál es el valor z que verifica la condición P(Z > z) = ?

11 Estadística. Segunda unidad didáctica Si Z tiene una distribución normal N (0,1), cuál es el valor z que verifica la condición P(Z z) = ? 3. Si X tiene una distribución normal N (1,2), cuál es el valor a que verifica la condición P( a < X < a) = 0.95? Ejercicio 2.7. [2.3.1][2.3.2] Una variable aleatoria X tiene función de distribución definida por 0 si x < 0 F(x) = x 2 si 0 x < 1 1 si x 1 1. Representar gráficamente F(x). 2. Comprobar que es una función de distribución. 3. Calcular P(0 X 1/4). 4. Tiene función de densidad esta función de distribución? Ejercicio 2.8. [2.3.1][2.3.2] Una variable aleatoria X tiene función de distribución definida por 0 si x < 0 F(x) = x si 0 x < 1/2 3 1 si x 1/2 1. Representar gráficamente F(x). 2. Comprobar que es una función de distribución. 3. Calcular P(0 X 1/4). 4. Tiene función de densidad esta función de distribución? Ejercicio 2.9. [2.4.1][2.4.2][2.4.4] Sea (X,Y) un vector con función de densidad conjunta: { c(x+y) si x+y < 1, x > 0, y > 0 f(x,y) = 0 en otro caso Se pide:

12 12 UNED. I. Informática/I. en Tecnologías de la Información, Curso Calcular la constante c. 2. Hallar las funciones de densidad marginal de X y de Y. 3. Son independientes X e Y? Ejercicio [2.4.1][2.4.3] Sea (X,Y) un vector con función de densidad conjunta: { cx si x > 0, y > 0, x+y < 1 f(x,y) = 0 en otro caso Se pide: 1. Calcular la constante c. 2. Calcular P(X > 0.5). 3. Calcular P(Y > X). 4. Hallar la función de densidad condicionada f(y x). Ejercicio [2.4.2][2.4.3][2.4.5] El valor que toma el vector aleatorio (X,Y) se elige mediante dos sorteos sucesivos. Primero elegimos el valor x de X sorteando un número según la ley de probabilidad uniforme entre 0 y 1 y, luego, elegimos el valor de Y, sorteando un número con función de densidad 1 si x < y < 1 f(y x) = 1 x 0 en otro caso Se pregunta: 1. Hallar la función de densidad conjunta f(x, y). 2. Hallar la función de densidad marginal de Y. 3. Calcular la función de densidad f(x y). Ejercicio [2.4.1][2.4.3][2.4.6][2.4.7] Sea (X,Y) un vector con función de densidad conjunta: { cxy si x > 0, y > 0, x+y < 1 f(x,y) = 0 en otro caso Se pide:

13 Estadística. Segunda unidad didáctica Calcular la constante c. 2. Calcular P(X +Y < 0.5). 3. Calcular σ X,Y.

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas Elementos de Probabilidad y Estadística Segundo de Economía Examen del 6 de junio de 6 DURACIÓN: horas. a) Se realizan lanzamientos de un dado regular. i) Calcular la probabilidad de obtener exactamente

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes

Ingeniería Técnica Industrial, todas especialidades. Ingeniería Técnica Telecomunicaciones, Telemática Problemas de examenes Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería, Estadística Problemas de examenes: Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES 9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES Objetivo Introducir la idea de la distribución conjunta de dos variables discretas. Generalizar las ideas del tema 2. Introducir la distribución normal

Más detalles

Generación de números aleatorios

Generación de números aleatorios Generación de números aleatorios Marcos García González (h[e]rtz) Verano 2004 Documento facilitado por la realización de la asignatura Métodos informáticos de la física de segundo curso en la universidad

Más detalles

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI)

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) ASIGNATURA DE GRADO: ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) Curso 2015/2016 (Código:7190105-) 1.PRESENTACIÓN DE LA ASIGNATURA Esta asignatura es una introducción a la Modelización probabilística, la Inferencia

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

Vectores aleatorios. Estadística I curso 2008 2009

Vectores aleatorios. Estadística I curso 2008 2009 Vectores aleatorios Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 En numerosas ocasiones estudiamos más de una variable asociada a

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 IES Fco Ayala de Granada Sobrantes 010 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 a 1 1 1 3 Sean las matrices

Más detalles

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles.

PROBABILIDAD. 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. OPCION A: 1. a) Operaciones con sucesos. Propiedades. Sucesos compatibles. k t si t [0,2] b) Sea f(t)= 0 en el resto Calcular k para que f sea de densidad, calcular la función de distribución. 2. a) De

Más detalles

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN Tema 5.- ESPACIOS VECTORIALES ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN ESPACIO VECTORIAL Fundamentos Matemáticosde la Ingeniería 1 Aunque históricamente el primer trabajo de Álgebra

Más detalles

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores.

Se pide: 1. Calcular las principales medidas de posición y dispersión para los datos anteriores. 2.2.- Ha sido medida la distancia de frenado (en metros) de una determinada marca de coches, según el tipo de suelo y velocidad a la que circula, los resultados en 64 pruebas aparecen en el listado siguiente:

Más detalles

Tema 5: Vectores aleatorios bidimensionales.

Tema 5: Vectores aleatorios bidimensionales. Estadística 52 Tema 5: Vectores aleatorios bidimensionales. Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos,

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Miguel Ángel Otaduy 26 Abril 2010 Contexto Cálculo de la integral de radiancia reflejada en la ecuación de rendering Cálculo de la integral

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES 8 Unidad didáctica 8. Cálculo de probabilidades CÁLCULO DE PROBABILIDADES CONTENIDOS Experimentos aleatorios Espacio muestral. Sucesos Sucesos compatibles e incompatibles Sucesos contrarios Operaciones

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. Sean A y B dos sucesos y A, B sus complementarios. Si se verifica que p( B) = 2 / 3, p( A B) = 3 / 4 y p( A B) = 1/ 4, hallar: p( A), p( A B), y la probabilidad condicionada

Más detalles

Tema 3 Probabilidades

Tema 3 Probabilidades Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones

Más detalles

Simulación, Método de Montecarlo

Simulación, Método de Montecarlo Simulación, Método de Montecarlo Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2011 Introducción 2 Introducción............................................................

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

DISTRIBUCIÓN BINOMIAL Y DISTRIBUCIÓN NORMAL

DISTRIBUCIÓN BINOMIAL Y DISTRIBUCIÓN NORMAL Capítulo 3 DISTRIBUCIÓN BINOMIAL Y DISTRIBUCIÓN NORMAL 3.1. Introducción Estudiaremos en este tema dos de las distribuciones de probabilidad más importantes y que son imprescindibles a la hora de adentrarnos

Más detalles

Introducción a la Programación

Introducción a la Programación Descripción y Contenido del Curso Introducción a la Programación Capacity Academy Educación en Tecnología de la Información Online, Efectiva y Garantizada Qué aprenderá si toma este Curso? En este curso

Más detalles

Probabilidad y sus aplicaciones en ingeniería informática

Probabilidad y sus aplicaciones en ingeniería informática Probabilidad y sus aplicaciones en ingeniería informática Víctor Hernández Eduardo Ramos Ildefonso Yáñez c Víctor Hernández, Eduardo Ramos, Ildefonso Yánez EDICIONES CDÉMICS Probabilidad y sus aplicaciones

Más detalles

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD

ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD ORIENTACIONES PARA LA PRUEBA DE APTITUD PARA EL ACCESO A LA UNIVERSIDAD MODALIDAD CIENTÍFICO-TÉCNICO 1. NOMBRE DE LA MATERIA: Matemáticas II 2. NOMBRE DEL COORDINADOR: Miguel Delgado Pineda (mdelgado@mat.uned.es,

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1. IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA

NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA NOCIONES BÁSICAS DE ESTADÍSTICA ACTUARIAL VIDA A NTONIO F ERNÁNDEZ M ORALES MÁLAGA, 2006 Nociones Básicas de Estadística Actuarial Vida Antonio Fernández Morales Málaga, 2006 Nociones Básicas de Estadística

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

Ejemplo de cómo resolver un problema

Ejemplo de cómo resolver un problema Ejemplo de cómo resolver un problema Una vez que has comprendido la importancia de contar con una metodología para hacer programas, te mostraré un ejemplo de cómo los debes resolver. Recuerda que esto

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

-100 0.10 0 0.20 50 0.30 100 0.25 150 0.10 200

-100 0.10 0 0.20 50 0.30 100 0.25 150 0.10 200 ESTADISTICA Y PROBABILIDAD Orientadores:. Arch. Taller3_est.doc 1. El siguiente es un ejemplo de experimentos y variables aleatorias asociadas. Identifique en cada caso los valores que la variables aleatoria

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA Capítulo 4 INFERENCIA ESTADÍSTICA 4.1. Introducción Inferir: Sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. La estadística, ciencia o rama de las Matemáticas que se

Más detalles

Planeación de la Recolección de Datos. Planeacion de Recoleccion de Datos

Planeación de la Recolección de Datos. Planeacion de Recoleccion de Datos Planeación de la Recolección de Datos Qué Son los datos? Recolección de Datos Contenido Por Qué Es Importante la Recolección de Datos? Estrategias de Muestreo Estrategias para la Definición de Datos Base

Más detalles

Para que les fuera más cercano y aumentar así su implicación, el tema a tratar fue propuesto por ellos mismos.

Para que les fuera más cercano y aumentar así su implicación, el tema a tratar fue propuesto por ellos mismos. Índice 1. Notas introductorias del profesor.... 2 2. Descripción del proyecto.... 3 2.1. Introducción.... 3 2.2. Objetivos que pretendemos lograr con este trabajo... 3 2.3. El proceso realizado... 4 3.

Más detalles

Carrera: Ingeniería Civil CIE 0524

Carrera: Ingeniería Civil CIE 0524 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Investigación de Operaciones Ingeniería Civil CIE 0524 2 2 6 2.- HISTORIA DEL

Más detalles

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD

RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Facultad de Químicas. RELACIÓN DE EJERCICIOS DE ESTADÍSTICA. PROBLEMAS DE ESTADÍSTICA: PROBABILIDAD Ejercicio 1º.- Se lanzan dos monedas y un dado. Se pide: 1) Describir

Más detalles

Grado en Ingeniería Informática

Grado en Ingeniería Informática Primer Curso Primer semestre ESCUELA SUPERIOR DE INGENIERÍA Chile, 1 11002-CÁDIZ Teléfono: 95 015100 Fax: 95 015101 Más información: www.uca.es/ingenieria Itinerario curricular recomendado ENSEÑANZAS Cálculo

Más detalles

Matemáticas I. Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Matemáticas I. Carrera: IFM - 0423 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Matemáticas I Licenciatura en Informática IFM - 0423 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

TEMA 1: INTRODUCCIÓN

TEMA 1: INTRODUCCIÓN 1 DISEÑO Y DESARROLLO DE COMPILADORES TEMA 1: INTRODUCCIÓN Qué es un Compilador? Un compilador no es más que un traductor, es decir, un programa que nos permite pasar información de un lenguaje a otro.

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Departamento de Matemática Aplicada. Facultad de C.C. Económicas y Empresariales. Universidad de Granada.

Departamento de Matemática Aplicada. Facultad de C.C. Económicas y Empresariales. Universidad de Granada. QUÉ MATEMÁTICAS? Josefa María García Hernández Departamento de Matemática Aplicada. Facultad de C.C. Económicas y Empresariales. Universidad de Granada. Resumen: Los profesores de Matemáticas para la Economía

Más detalles

Comparación entre los contenidos del currículo chileno y español en el área de estadística y probabilidad

Comparación entre los contenidos del currículo chileno y español en el área de estadística y probabilidad Comparación entre los contenidos del currículo chileno y español en el área de estadística y probabilidad Morales Merino, Rodolfo, Ruiz Reyes, Karen Universidad de Granada Resumen En este trabajo presentamos

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

ACLARACIONES SOBRE EL EXAMEN

ACLARACIONES SOBRE EL EXAMEN 1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Análisis de las Competencias Matemáticas en Educación PARVULARIA. Mª del Carmen CHAMORRO Universidad Complutense de Madrid

Análisis de las Competencias Matemáticas en Educación PARVULARIA. Mª del Carmen CHAMORRO Universidad Complutense de Madrid Análisis de las Competencias Matemáticas en Educación PARVULARIA Mª del Carmen CHAMORRO Universidad Complutense de Madrid CARACTERÍSTICAS METODOLÓGICAS GENERALES PROPIAS DEL NIVEL DE EDUCACIÓN PARVULARIA

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4

0 en el resto. P 2 X 4 c) Obtener x tal que P( X x)=0.3. Se pide: a) La variable aleatoria es discreta o x si 0 x 4 .- Sea la función de probabilidad de una variable aleatoria: i 4 5 Probabilidad k P X. Se pide. A) La función de distribución. B) Primer cuartil. C) k si,. Si la función de densidad de una v. a. continua

Más detalles

Práctica 3. Distribuciones de probabilidad

Práctica 3. Distribuciones de probabilidad Práctica 3. Distribuciones de probabilidad Estadística Facultad de Física Objetivos Distribuciones Representaciones gráficas Ejercicios Aplicaciones 1 Introducción En esta práctica utilizaremos una herramienta

Más detalles

SIMULACIÓN MCMC. Dr. Holger Capa Santos

SIMULACIÓN MCMC. Dr. Holger Capa Santos SIMULACIÓN MCMC Dr. Holger Capa Santos Septiembre, 2009 CONTENIDO Integración Montecarlo Problema con la Integración Montecarlo Muestreo de Importancia Algoritmos de Metropolis y Metropolis-Hastings Muestreador

Más detalles

CONTENIDO. 1. Introducción. 2. Reseña histórica del computador. 3. Definición de computador.

CONTENIDO. 1. Introducción. 2. Reseña histórica del computador. 3. Definición de computador. CONTENIDO 1. Introducción. 2. Reseña histórica del computador. 3. Definición de computador. 4. Sistemas numéricos. 4.1 Generalidades. 42 Sistema binario. 4.3 Sistema octal,. 4.4 Sistema decimal. 4.5 Sistema

Más detalles

Las matemáticas para la empresa: un reto pendiente

Las matemáticas para la empresa: un reto pendiente Las matemáticas para la empresa: un reto pendiente Padilla Garrido, N.; Cortés Rodríguez, C.; Serrano Czaia, I.; Vílchez Lobato, M. L. y Herrero Chacón, I. Universidad de Huelva Resumen El fracaso académico

Más detalles

Manual de Herramientas Digitales

Manual de Herramientas Digitales ESCUELA NORMAL PROFESOR CARLOS A. CARRILLO Manual de Herramientas Digitales La Tecnología Informática Aplicada a los Centros Escolares L.I. Cruz Jorge Fernández Arámburo SEGUNDO SEMESTRE DE LEPRI Yaziel

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

Revista digit@l Eduinnova ISSN

Revista digit@l Eduinnova ISSN MATEMÁTICAS EN EDUCACIÓN PRIMARIA AUTORA: Inmaculada Fernández Fernández DNI: 48937600V ESPECIALIDAD: EDUCACIÓN PRIMARIA 1. INTRODUCCIÓN El área de matemáticas se imparte en todos los cursos de Educación

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación EXAMEN RESUELTO DE ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO / FECHA: de Enero de Duración del examen: 3 horas Fecha publicación

Más detalles

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA MaMaEuSch (Management Mathematics for European School) http://www.mathematik.uni-kl.de/~mamaeusch/ Modelos matemáticos orientados a la educación Clases

Más detalles

1.SERIES. Funciones como series de potencias. Series de Mclaurin y de Taylor. Serie Binomial. Aplicaciones 2. CÒNICAS. Circunferencia.

1.SERIES. Funciones como series de potencias. Series de Mclaurin y de Taylor. Serie Binomial. Aplicaciones 2. CÒNICAS. Circunferencia. Facultad Programa Asignatura Problema? Competencia Específica Criterios de Desempeño Saber conocer Saber Ser Saber Hacer Rango de Aplicación e Incertidumbre Evidencias requeridas SABERES ESENCIALES De

Más detalles

Descubrimos el carácter aleatorio de algunas experiencias

Descubrimos el carácter aleatorio de algunas experiencias SEXTO Grado - Unidad3 - Sesión 0 Descubrimos el carácter aleatorio de algunas experiencias En esta sesión, se espera que los niños y las niñas comprendan el carácter aleatorio de algunas experiencias,

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

Carrera: 2-2-6. Participantes

Carrera: 2-2-6. Participantes 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Investigación de Operaciones Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 2-2-6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado

Más detalles

Carrera Plan de Estudios Contacto

Carrera Plan de Estudios Contacto Carrera Plan de Estudios Contacto Si el automóvil marcó la existencia del siglo XX, la computadora marca el tiempo que vivimos. Intégrate a una de las carreras donde los adelantos en materia de informática

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

Métodos Markov Chain Monte Carlo

Métodos Markov Chain Monte Carlo Métodos Markov Chain Monte Carlo David J. Rios Optimización Combinatoria 19 de mayo del 2008 MCMC Introducción Que son Cadenas de Markov? Que es Monte Carlo? Que es Markov Chain Monte Carlo? Algoritmo

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. PROBABILIDAD Y ESTADÍSTICA

Más detalles

Cómo ayudar a sus hijos con lectura y matemáticas en la casa

Cómo ayudar a sus hijos con lectura y matemáticas en la casa Cómo ayudar a sus hijos con lectura y matemáticas en la casa Introducción Romper el hielo Cómo se come un elefante? De un bocado a la vez El poder de la constancia 20 minutos diarios en casa realizando

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

La Era del Nuevo Empresario. Parte 2

La Era del Nuevo Empresario. Parte 2 La Era del Nuevo Empresario Parte 2 1 Índice Un Poco de Historia sobre MLM. Qué son los Ingresos Pasivos? El Cuadrante del Flujo del Dinero. Cómo elegir una empresa de MultiNivel? Como Elegir una empresa

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007 Sección Tecnologías de Internet Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 8, N o 2. 2007 Hacia una propuesta didáctica para la enseñanza de Métodos Numéricos

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC Abel Martín ( * ) Rosana Álvarez García ( ) En dos artículos anteriores ya hemos estudiado la distribución Binomial de parámetros

Más detalles

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS Grupos P y P (Prof. Ledesma) Problemas. Variables aleatorias..- Sea la v.a. X que toma los valores - y con probabilidades, y, respectivamente y

Más detalles

Nombre de la asignatura: METODOS NUMERICOS. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACB- 9311 Clave local:

Nombre de la asignatura: METODOS NUMERICOS. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACB- 9311 Clave local: Nombre de la asignatura: METODOS NUMERICOS Carrera : Ingeniería Mecánica Clave de la asignatura: ACB- 9 Clave local: Horas teoría horas practicas créditos: -0-8.- UBICACIÓN DE LA ASIGNATURA A) RELACIÓN

Más detalles

Estructuras de Datos y Algoritmos. Evaluación de Algoritmos

Estructuras de Datos y Algoritmos. Evaluación de Algoritmos Estructuras de Datos y Algoritmos Evaluación de Algoritmos Año 2014 Introducción Antes de empezar con este tema debemos responder qué es un algoritmo? y para ello consideremos la definición que nos da

Más detalles

Qué pasos has de seguir para aprender a escribir, a editar y a exponer en público textos académicos

Qué pasos has de seguir para aprender a escribir, a editar y a exponer en público textos académicos Estudiantes Qué pasos has de seguir para aprender a escribir, a editar y a exponer en público textos académicos 1. Has de tener en cuenta que Escribir no es tarea fácil Los textos académicos son los que

Más detalles

Enseñanza de la Estadística en los Grados 3º a 9º

Enseñanza de la Estadística en los Grados 3º a 9º Enseñanza de la Estadística en los Grados 3º a 9º Oscar Fernando Gallo Mesa Matemático UNAL. Docente Universidad de Antioquia, osfegame@gmail.com José Wilde Cisneros Especialista Computación Docentes Universidad

Más detalles