Unidad Didáctica 4 Trabajo y Energía

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad Didáctica 4 Trabajo y Energía"

Transcripción

1 Unidad Didáctica 4 Trabajo y Energía

2 1.- Trabajo. El trabajo, W, que produce una fuerza constante que actúa sobre un cuerpo que se desplaza en línea recta (con la misma dirección y sentido y que la fuerza), es una magnitud escalar, igual al producto escalar de dicha fuerza, F r, por el desplazamiento que produce, Δ r. La unidad de trabajo en el S.I. es el Julio, J. r r r r W = F Δ = F Δ cosθ Donde θ es el ángulo que forman entre sí, el vector fuerza y el vector desplazamiento. Como el trabajo depende del desplazamiento, puede tomar valores distintos si se utilizan sistemas de referencia distintos. Si la fuerza es variable a lo largo de la trayectoria: W = F r d r Criterio de signos del trabajo: El trabajo es un escalar así que su signo (positivo o negativo) no indica un sentido, como pasa con los vectores. El signo del trabajo depende del ángulo que forman la fuerza con el desplazamiento, θ. Si 0º θ < 90º ( F r tiene el mismo sentido que el desplazamiento), el trabajo es positivo, favorece el movimiento y se habla de un trabajo motor Si 90º < θ 180º ( F r tiene sentido contrario al desplazamiento), el trabajo es negativo, se opone al movimiento y se habla de trabajo resistente. Si θ = 90º, F r ni favorece el movimiento, ni se opone a él. Se dice que el trabajo es nulo. Si un sistema recibe trabajo y aumenta su energía se considera que el trabajo es positivo. Si el sistema realiza el trabajo, perdiendo energía se considera negativo. Es un criterio egoísta Trabajo total recibido por un cuerpo. Si sobre un cuerpo actúa más de una fuerza que contribuye a su desplazamiento, para obtener el trabajo total se pueden seguir dos caminos: Sumar vectorialmente todas las fuerzas para obtener la fuerza resultante y después calcular el trabajo total: n r r W total = F Δ i= 1 Calcular el trabajo parcial realizado por cada fuerza y después sumarlos para obtener el trabajo total: r r r r r r W total = Δ + F Δ + + Δ = W 1 + W +. + W n F 1 El trabajo de la fuerza resultante es igual al trabajo total obtenido como suma de los trabajos parciales realizados por cada una de las fuerza. Unidad Didáctica 6: Trabajo y Energía pag. 1 F n i

3 .- Energía. Energía, E, es la capacidad que tiene un sistema para producir transformaciones mediante la realización de un trabajo. Unidad en el S.I.: el Julio, J. Se puede decir que el trabajo que realiza un sistema es igual a la variación de energía que sufre: W = E final - E inicial = ΔE Una consecuencia de esta definición es que no se puede conocer el valor absoluto de la energía que tiene un cuerpo, pero si sus variaciones por medio del trabajo que es capaz de realizar. En el leguaje corriente se habla de distintos tipos de energía (luminosa, eléctrica, térmica, química, nuclear,.) pero en el fondo todos los tipos de energía se reducen a tres: Energía cinética, que es la que poseen los cuerpos debido su velocidad. Energía potencial (de la que existen unas pocas clases), que es la que poseen los cuerpos debido a su situación en el espacio (en particular a su posición respecto a otros cuerpos que pueden ejercer fuerzas sobre ellos). Energía interna, que es debida a la composición y al estado del cuerpo. 3.- Principio de conservación de la energía. Los cuerpos poseen energía. Esa energía puede transformarse de un tipo en otro y puede transferirse de unos cuerpos a otros. Sin embargo, la energía total del universo (y de cualquier sistema que permanezca aislado y no intercambie energía con su entorno) permanece constante: no se conoce ningún proceso que cree o destruya energía. Este principio se conoce como principio de conservación de la energía, y es uno de los pilares fundamentales de la Física. En cualquier sistema aislado, la energía ni se crea ni se destruye, únicamente se transforma. Existen dos formas en las que los cuerpos pueden intercambiar energía: Mediante la aplicación de una fuerza que realiza un trabajo. El trabajo realizado por una fuerza nos indica la energía que el cuerpo, que aplica la fuerza, da (si el trabajo es positivo) o quita (si el trabajo es negativo) al cuerpo que recibe la fuerza. Como la cantidad de energía total permanece constante, si un cuerpo realiza un trabajo positivo sobre otro, le transfiere una cierta cantidad de energía, igual a la energía que él pierde. Colocando en contacto dos cuerpos que se encuentran a diferente temperatura. En ese caso pasa energía del cuerpo más caliente al más frío hasta que las temperaturas de ambos se igualan. Se trata de un flujo de energía térmica y se da el nombre de calor a la energía intercambiada por los dos cuerpos. Esto lo resume el primer principio de la Termodinámica: ΔE = W + Q La energía no se crea ni se destruye pero sí se degrada. Con esto se quiere decir que existen unas formas de energía de las que se puede obtener trabajo más fácilmente que de otras y, desde ese punto de vista, poseen más calidad. La energía de menor calidad es la energía térmica. Unidad Didáctica 6: Trabajo y Energía pag.

4 4.- Energía Cinética. Energía cinética, E c : es la energía que poseen los cuerpos en movimiento debido a su velocidad. Su fórmula: 1 E c = m v La energía cinética es un escalar que es siempre positivo y su valor, depende del módulo de su velocidad, pero no de la dirección o sentido de esta. La energía cinética de un cuerpo depende del sistema de referencia desde el que se estudia (porque su velocidad depende de ese sistema de referencia) Teorema de la energía cinética o de las fuerzas vivas: el trabajo total realizado por todas las fuerzas externas aplicadas sobre un cuerpo es igual a su variación de energía cinética. W total = ΔE c Es decir, si la velocidad de un cuerpo no cambia, el trabajo total realizado sobre él es nulo. 5.- Energía potencial mecánica. Energía potencial, E p, es la energía que posee un cuerpo debido a la posición que ocupa dentro de un campo de fuerzas. La energía potencial permanece latente, pero se puede detectar cuando se convierte en otras formas de energía o realiza trabajo. Hay dos tipos de energía potencial mecánica: Energía potencial gravitatoria. Energía potencial gravitatoria es la energía que posee un cuerpo que se encuentra bajo la acción de la gravedad. Depende de su altura sobre la superficie de la Tierra Energía potencial elástica. E p = m. g. h Energía potencial elástica es la energía que adquiere un cuerpo sometido a la acción de una fuerza elástica o recuperadora. Por ejemplo, un muelle que se encuentra comprimido o estirado. E p = 1 k Δx K es la constante de elasticidad del muelle, que se mide en N/m. Cuanto mayor sea K, más difícil es deformar el muelle. Δx es el alargamiento o la compresión del muelle desde su posición de equilibrio (su longitud normal). Unidad Didáctica 6: Trabajo y Energía pag. 3

5 6.- Fuerzas conservativas. Una fuerza es conservativa si el trabajo, W A B, que realiza sobre un cuerpo, cuando este pasa de un punto A, a otro B, es el mismo para cualquiera de las trayectorias que siga y solo depende de las posiciones de partida y llegada. Es decir, W A B B es independiente de la trayectoria. Esta definición es equivalente a esta otra: una fuerza es conservativa si el trabajo que realiza sobre un cuerpo, que describe una trayectoria cerrada (posición inicial igual a posición final), es siempre 0. Son fuerzas conservativas, la fuerza gravitatoria y la fuerza elástica ejercida por un muelle. Cuando se realiza un trabajo para vencer una fuerza conservativa, por ejemplo, al elevar un cuerpo a una determinada altura, esa energía que se le da al cuerpo permanece de alguna manera almacenada en él, no se pierde, se conserva (de ahí el nombre de conservativas) en forma de energía potencial: W (A B) = -ΔE p (A B) Y se puede recuperar (casi siempre en forma de energía cinética) si dejamos que las fuerzas conservativas actúen libremente sobre él. El concepto de energía potencial de un cuerpo está ligado siempre a una fuerza conservativa. Para cada fuerza conservativa tendremos un determinado tipo de energía potencial que se podrá calcular con una determinada fórmula. Así tendremos: energía potencial gravitatoria, elástica, eléctrica, etc. Las fuerzas que no son conservativas se denominan también disipativas. El ejemplo típico es la fuerza de rozamiento. Si gastamos energía en arrastrar un objeto venciendo su rozamiento con el suelo, esa energía gastada ya no se puede recuperar, se ha disipado (generalmente en forma de energía térmica). Estas fuerzas no dan origen a energía potencial. 7.- Energía mecánica. Principio de conservación. La energía mecánica de un cuerpo es suma de sus energías cinéticas y potenciales: E m = E p + E c Principio de conservación de la energía mecánica: cuando todas las fuerzas que actúan sobre un cuerpo son conservativas, la suma de energía potencial y cinética de un cuerpo permanece constante. E m = E p + E c = cte. En el caso de que actúen fuerzas no conservativas, la energía mecánica no se conservará. De acuerdo con el teorema de la energía cinética: W total = ΔE c Si sobre el cuerpo actúan fuerzas conservativas y fuerzas no conservativas, el trabajo total realizado sobre él será igual a la suma del trabajo realizado por las fuerzas conservativas (W con ) más el realizado por las fuerzas no conservativas (W nocon ): W total = W con + W nocon = ΔEc Unidad Didáctica 6: Trabajo y Energía pag. 4

6 Dado que el trabajo de las fuerzas conservativas es igual: W con = -ΔEp: -ΔEp + W nocon = ΔEc Por tanto: W nocon = ΔEc +ΔEp = Δ(E c + E p ) = ΔE m Es decir, el trabajo realizado por las fuerzas no conservativas es igual a la variación de la energía mecánica del cuerpo: W nocon = ΔE m W nocon = 0 ΔE m = 0 (E m = cte) Observa que, para que la energía mecánica permanezca constante, el trabajo total de las fuerzas no conservativas debe ser cero y esto puede ocurrir porque no haya fuerzas no conservativas, porque haya pero ninguna de ellas realice trabajo o porque la suma de todos sus trabajos sea cero. El principio de conservación de la energía mecánica, se puede ahora, enunciar así: Si sobre un cuerpo no actúan fuerzas no conservativas, o estas no realizan trabajo, la energía mecánica del cuerpo se mantendrá constante. Un caso muy frecuente en el que no se conserva la energía mecánica se produce cuando actúan fuerzas de rozamiento sobre el cuerpo. En estos casos suele perderse energía mecánica que se transforma en energía térmica La generalización de Einstein. Einstein postuló que la materia se puede transformar en energía, y viceversa, siguiendo la conocida ecuación, E = m c Desde entonces, el principio de conservación de la energía se debe formular: la energía de un sistema puede variar, pero la suma de la masa y la energía permanece constante. En las situaciones que estudiaremos, la variación de masa es inapreciable y el principio de conservación tradicional sigue siendo aplicable. Unidad Didáctica 6: Trabajo y Energía pag. 5

7 Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W 1 + W +. + W n F 1 F n Energía cinética Energía potencial gravitatoria Energía potencia elástica Energía mecánica Principio de conservación de la energía mecánica Relación entre el trabajo y la energía Energía 1 E c = m v E p = m. g. h 1 E p = k Δr E m = E p + E c E m = E p + E c = cte. W total = W con + W nocon = ΔE c W conservativo = -ΔE p W noconservativo = ΔE m Ley de Einstein E = m c De kilovatio a vatio De caballo de vapor a watio De kilowatio hora a julios Cambio unidades l kw = W 1 CV = 736 W 1 kw h = J Unidad Didáctica 6: Trabajo y Energía pag. 6

8 Problemas de trabajo 1.- Calcula el trabajo que debe hacer el motor de un coche para recorrer 1 km con velocidad constante a pesar del rozamiento. (Supón que el coche tiene una masa de kg y que el coeficiente de rozamiento con el suelo es μ = 0'3.).- Calcula el trabajo que realizan los frenos de un tren de cien toneladas si lo detienen completamente en doscientos metros. Imagina que el coeficiente de rozamiento vale 0'1. Y si tiene doscientas toneladas? Y si frena en 300 m? Cómo explicas que el trabajo sea mayor? 3.- Una fuerza de 5 N ha actuado sobre un cuerpo desplazándolo 3 m. Calcula el trabajo realizado en los siguientes casos: a) La fuerza tiene la misma dirección y sentido que el desplazamiento. b) La fuerza forma un ángulo de 30º con el desplazamiento. c) La fuerza forma un ángulo de 180º con el desplazamiento. 4- Un cuerpo se encuentra en reposo en un plano horizontal en el que el coeficiente de rozamiento es μ = 0'1. Un niño decide empujarlo con una fuerza de 7 N en la dirección del plano. Si la masa del cuerpo es de 5 kg y el niño aplica la fuerza durante 8 s, calcula el trabajo realizado por el niño. 5.- Antonio arrastra su trineo, de 80 kg de masa, con M.R.U. por un plano horizontal en el que el coeficiente de rozamiento es 0'1. Para ello tira de él mediante una cuerda que forma un ángulo de 30 con la horizontal. Con qué fuerza está tirando? Qué trabajo ha realizado después de recorrer 100 m? 6.- Un bloque de 50 kg se desliza hacia abajo por un plano inclinado 0º. Si el coeficiente de rozamiento es 0'15, calcula el trabajo que realiza cada una de las fuerzas que actúan sobre el cuerpo cuando éste desliza 0 cm. Comprueba que la suma de todos los trabajos coincide con el trabajo de la fuerza resultante. 7.- Qué trabajo recibe en total un cuerpo de 50 kg cuando se desliza 1 m por un plano inclinado 30º. Coeficiente de rozamiento = 0' Una fuerza de 490 N tira de un bloque, inicialmente en reposo que pesa 0 kg, situado en un plano inclinado 30º sobre la horizontal. La fuerza actúa hacia arriba y paralelamente al plano, y de esta forma el cuerpo recorre 10 m. Se sabe que el coeficiente de rozamiento es 0'. Calcular: a) el trabajo realizado por la fuerza y su distribución, b) la velocidad adquirida por el cuerpo al final del recorrido c) Trabajo de la fuerza de rozamiento. 9.- Un cuerpo de kg se mueve a lo largo de una trayectoria cuyos puntos vienen determinados por las ecuaciones paramétricas: x= 3t, y = 3t 3, z = -t expresadas en metros. Deducir: a) la ecuación de la velocidad y su módulo, b) el momento lineal del cuerpo, c) el trabajo realizado por la fuerza que actúa sobre ese cuerpo entre los instantes t =1 y t = s. Unidad Didáctica 6: Trabajo y Energía pag. 7

9 Problemas de energía 1.- Un carrito de 1 kg de masa, que se desplaza en línea recta a una velocidad constante de m/s. Le aplicamos una fuerza y la velocidad aumenta a 4 m/s en un espacio de 5 m. Se supone que no hay rozamiento. a) Calcula el trabajo realizado. b) Calcula el valor de la fuerza aplicada..- La figura representa una atracción de feria en que una vagoneta hace varias veces el camino de ida y vuelta entre los puntos 1 y 4. a) Calcula la velocidad de la vagoneta, de.000 kg de masa, al pasar por los puntos y 3 del recorrido. Supón que no hay rozamiento y aplica el principio de conservación de la energía. b) Hasta qué altura llegará en 4? Al regresar, qué velocidad tendrá en los puntos y 3? Hasta qué altura llegará en 1? c) Pero el dueño ha comprobado que en cada viaje el rozamiento consume julios, consigue alcanzar el punto 4? d) Qué altura alcanzará al regresar de nuevo a 1? Qué trabajo debe realizar el motor para llevarla basta la posición 1? (Para averiguar esto último no es necesario ningún cálculo.) 3.- Una bala de 80 g avanza horizontalmente a 400 m/s hacia una pancha de corcho de 5 cm de espesor. Tras atravesar la plancha conserva una velocidad de 40 m/s. Cuánto vale la fuerza que la plancha opone al paso de la bala? 4.- Un bloque de madera está unido a un muelle horizontal. Se dispara horizontalmente una bala de 80 g a 350 m/s contra el bloque, de forma que la bala queda clavada en éste. Si la constante del muelle es k = 70 N/mm, cuánto se comprimirá el muelle como máximo? 5.- Un cuerpo de 4 kg entra a 5 m/s en un plano horizontal con coeficiente de rozamiento μ= 0'1. A partir de ese momento actúan sobre el cuerpo una fuerza horizontal que realiza un trabajo de 80 J, y la fuerza de rozamiento, que realiza un trabajo de 50 J. Calcula: a) La velocidad final del cuerpo. b) El espacio recorrido. 6.- Un cuerpo de 10 kg de masa llega a la base de un plano inclinado a una velocidad de 15 m/s. La inclinación del plano es de 30º y no existe rozamiento entre el cuerpo y el plano. a) Calcula la distancia que recorrerá el cuerpo por el plano antes de detenerse. b) Qué velocidad tiene el cuerpo en el momento en que la energía cinética y la potencial adquirida en el ascenso del cuerpo son iguales? 7.- Un cuerpo de 10 kg se sitúa en lo alto de un plano inclinado 30º sobre la horizontal. La longitud del plano es de 10 m y el coeficiente de rozamiento es de 0'. a) Con qué velocidad llega el cuerpo al final del plano?, b) Cuánto valdrá la energía potencial del cuerpo al estar situado en lo alto del plano? c) Cuánto vale el trabajo realizado por la fuerza de rozamiento? 8.- Un fusil dispara proyectiles de masa 1g con una velocidad de salida de 400 m/s. La fuerza variable con la que los gases procedentes de la explosión de la carga de proyección actúan sobre la base del proyectil viene dada por: F = x, donde F viene dada en N y x en metros. Deducir la longitud del cañón del fusil. Unidad Didáctica 6: Trabajo y Energía pag. 8

10 Preguntas de Selectividad 1.- (Junio 006) Razone si son verdaderas o falsas las siguientes afirmaciones: a) Según la ley de la gravitación la fuerza que ejerce la Tierra sobre un cuerpo es directamente proporcional a la masa de éste. Sin embargo, dos cuerpos de diferente masa que se sueltan desde la misma altura llegan al suelo simultáneamente. b) El trabajo realizado por una fuerza conservativa en el desplazamiento de una partícula entre dos puntos es menor si la trayectoria seguida es el segmento que une dichos puntos..- Junio (006) Un bloque de kg está situado en el extremo de un muelle, de constante elástica 500 N m -1, comprimido 0 cm. Al liberar el muelle el bloque se desplaza por un plano horizontal y, tras recorrer una distancia de 1 m, asciende por un plano inclinado 30º con la horizontal. Calcule la distancia recorrida por el bloque sobre el plano inclinado. a) Supuesto nulo el rozamiento. b) Si el coeficiente de rozamiento entre el cuerpo y los planos es 0'1. g = 10 m s (Junio 007) conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación de energía potencial entre dos puntos? 4.- (Junio 008) a) Conservación de la energía mecánica. b) Un cuerpo desliza hacia arriba por un plano inclinado que forma un ángulo α con la horizontal. Razone qué trabajo realiza la fuerza peso del cuerpo, al desplazarse éste una distancia d por el plano. 5.- (Junio 009) En un instante t 1, la energía cinética de una partícula es 30 J y su energía potencial 1 J. En un instante posterior, t, la energía cinética de la partícula es de 18 J. a) Si únicamente actúan fuerzas conservativas sobre la partícula, cuál es su energía potencial en el instante t? b) Si la energía potencial en el instante t fuese 6 J, actuarían fuerzas no conservativas sobre la partícula? Razone las respuestas. 6.- (Junio 010) Por un plano inclinado que forma 30º con la horizontal, se lanza hacia arriba un bloque con 10 kg de masa con una velocidad inicial de 5 m s -1. Tras su ascenso por el plano inclinado, el bloque desciende y regresa al punto de partida con una cierta velocidad. El coeficiente de rozamiento entre plano y bloque es 0'1. a) Dibuje en dos esquemas distintos las fuerzas que actúan sobre el bloque durante el ascenso y durante el descenso e indique sus respectivos valores. Razone si se verifica el principio de conservación de la energía en este proceso. b) Calcule el trabajo de la fuerza de rozamiento en el ascenso y en el descenso del bloque comente el signo del resultad. g = 10 m s (Junio 011) a) Conservación de la energía mecánica. b) Se lanza hacia arriba por un plano inclinado un bloque una velocidad v 0. Razone como varían su energía cinética, potencial y mecánica cuando el cuerpo sube y después baja hasta la posición de partida. Considere los casos: 1) que no haya rozamiento. ) que lo haya. Unidad Didáctica 6: Trabajo y Energía pag. 9

11 8.- (Junio 01) Un cuerpo de 5 kg, inicialmente en reposo, se desliza por un plano inclinado de superficie rugosa que forma un ángulo de 30º con la horizontal, desde una altura de 0'4 m. Al llegar a la base del plano inclinado, el cuerpo continúa deslizándose por una superficie horizontal rugosa del mismo material que el plano inclinado. El coeficiente de rozamiento dinámico entre el cuerpo y las superficies es de 0'3. a) Dibuje en un esquema las fuerzas que actúan sobre el cuerpo en su descenso por el plano inclinado y durante su movimiento a lo largo de la superficie horizontal. A qué distancia de la base del plano se detiene el cuerpo? b) Calcule el trabajo que realizan todas las fuerzas que actúan sobre el cuerpo durante su descenso por el plano inclinado. g = 10 m s (Junio 013) Un bloque de 5 kg se desliza con una velocidad constante por una superficie horizontal rugosa al aplicarle una fuerza de 0 N en una dirección que forma un ángulo de 60º sobre la horizontal. a) Dibuje en un esquema todas las fuerzas que actúan sobre el bloque, indique el valor de cada una de ellas y calcule el coeficiente de rozamiento del bloque con la superficie. b) Determine el trabajo total de las fuerzas que actúan sobre el bloque cuando se desplaza m y comente el resultado obtenido. Unidad Didáctica 6: Trabajo y Energía pag. 10

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS 1.- a.- Un hombre rema en un bote contra corriente, de manera que se encuentra en reposo respecto a la orilla. Realiza trabajo? b.- Se realiza trabajo cuando se

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA Fuerzas conservativas El trabajo realizado por las fuerzas conservativas solo depende de la posición inicial y final del cuerpo

Más detalles

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS:

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: TRABAJO Y ENERGÍA ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: Energía Cinética: es la energía que tienen los cuerpos en virtud de su movimiento. Energía Potencial:

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia

Más detalles

6 Energía, trabajo y potencia

6 Energía, trabajo y potencia 6 Energía, trabajo y potencia ACTIVIDADES Actividades DELdel INTERIOR interior DE LAde UNIDAD la unidad. Se arrastra una mesa de 0 kg por el suelo a lo largo de 5 m. Qué trabajo realiza el peso? El trabajo

Más detalles

Energía: Cuestiones Curso 2010/11

Energía: Cuestiones Curso 2010/11 Física 1º Bachillerato Energía: Cuestiones Curso 2010/11 01SA 1. a) Qué trabajo se realiza al sostener un cuerpo durante un tiempo t? b) Qué trabajo realiza la fuerza peso de un cuerpo si éste se desplaza

Más detalles

Módulo 1: Mecánica Energía

Módulo 1: Mecánica Energía Módulo 1: Mecánica Energía Por qué ayuda la energía? El movimiento, en general, es difícil de calcular Y si usamos fuerzas, aceleración, etc. se complica porque son todo vectores (tienen módulo y dirección)

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él?

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él? LA ENERGÍA E l concepto de energía es uno de los más importantes del mundo de la ciencia. En nuestra vida diaria, el termino energía tiene que ver con el costo del combustible para transporte y calefacción,

Más detalles

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h? UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

Trabajo de una Fuerza

Trabajo de una Fuerza rabajo y Energía.- Introducción.- rabajo de una uerza 3.- Energía cinética de una partícula. eorema del trabajo y la energía 4.- Potencia 5.- Energía potencial 6.- uerzas conservativas 7.- Conservación

Más detalles

TEMA 2. Dinámica, Trabajo, Energía y Presión

TEMA 2. Dinámica, Trabajo, Energía y Presión TEMA 2. Dinámica, Trabajo, Energía y Presión 1. Objeto de la dinámica Dinámica es la parte de la mecánica que estudia el movimiento atendiendo a las causas que lo producen. Estas causas son las fuerzas.

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

TEMA 4. TRABAJO Y ENERGÍA. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 4. TRABAJO Y ENERGÍA. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEM 4. TRJO Y ENERGÍ. FUERZS CONSERVTIVS Y NO CONSERVTIVS 1. La energía y sus formas. 2. Energía cinética. 3. Energía potencial gravitatoria. 4. Energía mecánica. 5. Definición de trabajo. 6. Definición

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

E1.3: Energía mecánica

E1.3: Energía mecánica I.E.S. ARQUITECTO PEDRO GUMIEL Física y Química BA1 E1.3: Energía mecánica 1. Se deja caer verticalmente una piedra de kg desde 50 m de altura. Calcula: a) Su energía mecánica en el punto inicial. En el

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

E c = 1/2mv 2. E p = mgh. E pe = kx 2 /2. E m = E c + E p 1. QUÉ ES LA ENERGÍA?

E c = 1/2mv 2. E p = mgh. E pe = kx 2 /2. E m = E c + E p 1. QUÉ ES LA ENERGÍA? 1. QUÉ ES LA ENERGÍA? La energía es una propiedad de los cuerpos que se relaciona con su capacidad para producir cambios en ellos mismos o en otros cuerpos. En el S.I. de unidades se mide en Julios (J)

Más detalles

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA A) Trabajo de fuerzas constantes y trayectoria rectilínea. Cuando sobre una partícula actúa una fuerza constante, y esta partícula describe una trayectoria rectilínea, definimos trabajo realizado por la

Más detalles

m 20 m/s s Por tanto, su energía cinética vale:

m 20 m/s s Por tanto, su energía cinética vale: Pág. 1 18 Un calefactor tiene una potencia de 1,5 kw. Calcula, en calorías y en julios, la energía que suministra en 3 horas. Teniendo en cuenta que E = P t, resulta: E 1,5 kw 3 h 4,5 kwh 4,5 kwh 3 600

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

Guía 5. Leyes de Conservación

Guía 5. Leyes de Conservación I. Energía mecánica Guía 5. Leyes de Conservación 1) Un bloque de 44.5 Kg resbala desde el punto más alto de un plano inclinado de 1,5 m de largo y 0,9 m de altura. Un hombre lo sostiene con un hilo paralelamente

Más detalles

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO

SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO SOLUCIONES EJERCICIOS DE ENERGÍA 1º BACHILLERATO 1º. Un cuerpo de 3 kg se desliza por un plano inclinado 45º con respecto a la horizontal desde una altura de 5m. El coeficiente de rozamiento entre el cuerpo

Más detalles

Física para Ciencias: Trabajo y Energía

Física para Ciencias: Trabajo y Energía Física para Ciencias: Trabajo y Energía Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Trabajo (W) En la Física la palabra trabajo se le da un significado muy específico: El trabajo (W) efectuado

Más detalles

Pág. 1 de 7 TRABAJO Y ENERGÍA

Pág. 1 de 7 TRABAJO Y ENERGÍA Pág. 1 de 7 FQ1BE1223 Nauzet lanza un disco de hockey a 8 m/s por una pista de hielo en la que no existe rozamiento. El disco recorre 20 m antes de llegar a Alejandro. Cuál es el trabajo que realiza el

Más detalles

d) Un trabajo negativo indica que la fuerza que lo realiza se opone al desplazamiento Unidad 6. Energía, trabajo y potencia

d) Un trabajo negativo indica que la fuerza que lo realiza se opone al desplazamiento Unidad 6. Energía, trabajo y potencia ACTIVIDADES Actividades DEL del FINAL final DE LA de UNIDAD la unidad. Explica por qué no se puede conocer el valor absoluto de la energía de un cuerpo. Porque la energía no puede medirse directamente;

Más detalles

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg.

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. Ejercicios de física: cinemática y dinámica 1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. 2º Calcular la masa de un cuerpo que aumenta

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

AÑO Relación de Cuestiones de Selectividad: Campo Gravitatorio AÑO 2009

AÑO Relación de Cuestiones de Selectividad: Campo Gravitatorio AÑO 2009 Relación de Cuestiones de Selectividad: Campo Gravitatorio 2001-2009 AÑO 2009 1).a) Explique el principio de conservación de la energía mecánica y en qué condiciones se cumple. b) Un automóvil desciende

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Seminario de Física. 2º Bachillerato LOGSE. Unidad 0: Repaso de Física 1º Bachillerato

Seminario de Física. 2º Bachillerato LOGSE. Unidad 0: Repaso de Física 1º Bachillerato A) Composición de Movimientos : Movimiento parabólico 1.- Un cañón se ajusta con un ángulo de tiro de 60º y dispara una bala con una velocidad de 300 m/s: a) A qué altura llegará la bala? S: 3443,9 m b)

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

W = F. x. Cos Ө TRABAJO ( W ) W = F. x INSTITUCION EDUCATIVA COLEGIO INTEGRADO FE Y ALEGRIA CONCEPTOS BASICOS. Equivalencia entre Julios y ergios

W = F. x. Cos Ө TRABAJO ( W ) W = F. x INSTITUCION EDUCATIVA COLEGIO INTEGRADO FE Y ALEGRIA CONCEPTOS BASICOS. Equivalencia entre Julios y ergios INSTITUCION EDUCATIVA COLEGIO INTEGRADO FE Y ALEGRIA MUNICIPIO LOS PATIOS GUIA DE TRABAJO No. 1 Nombre: Código: Grado: Tema: Trabajo Potencia y Energía Competencia: Comprender los conceptos y las fórmulas

Más detalles

Capítulo 4. Trabajo y Energía

Capítulo 4. Trabajo y Energía Capítulo 4. Trabajo y Energía 4.1. Energía, trabajo y potencia. 4.. Fuerzas conservativas. Energía potencial. 4.3. Energía cinética. 4.4. Energía mecánica. Teorema de conservación de la energía. 4.5. Fuerzas

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 1 / 144 2 Una fuerza realiza 30000 J de trabajo

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Def.: Trabajo es la transferencia de energía que se produce cuando una fuerza produce un desplazamiento. El trabajo es una magnitud escalar.

Def.: Trabajo es la transferencia de energía que se produce cuando una fuerza produce un desplazamiento. El trabajo es una magnitud escalar. Tema 5 5.1 Trabajo mecánico En la vida cotidiana, se tiende a medir el trabajo realizado por el esfuerzo muscular que supone o por el cansancio que produce. Sin embargo, este criterio no se puede aplicar

Más detalles

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

Física para Ciencias: Fuerzas Conservativas y Potencia

Física para Ciencias: Fuerzas Conservativas y Potencia Física para Ciencias: Fuerzas Conservativas y Potencia Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Teorema del Trabajo (W) y la Energía Cinética (K) Un cambio en la energía de un objeto se mide

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

LA ENERGÍA. Transferencia de energía: calor y trabajo

LA ENERGÍA. Transferencia de energía: calor y trabajo LA ENERGÍA Transferencia de energía: calor y trabajo La energía es una propiedad de un sistema por la cual éste puede modificar su situación o estado, así como actuar sobre otro sistema, transformándolo

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

Dinámica de la partícula: Energía y Leyes de Conservación

Dinámica de la partícula: Energía y Leyes de Conservación Dinámica de la partícula: Energía y Leyes de Conservación Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad

Más detalles

TECNOLOGÍA INDUSTRIAL 1º. PROBLEMAS TEMA1: LA ENERGÍA EL MOTOR DEL MUNDO

TECNOLOGÍA INDUSTRIAL 1º. PROBLEMAS TEMA1: LA ENERGÍA EL MOTOR DEL MUNDO TECNOLOGÍA INDUSTRIAL 1º. PROBLEMAS TEMA1: LA ENERGÍA EL MOTOR DEL MUNDO Tema1-1. Un cuerpo de masa 5 kg, inicialmente en reposo, está situado en un plano horizontal sin rozamientos y se le aplica una

Más detalles

Trabajo y Energía 30º. Viento

Trabajo y Energía 30º. Viento Física y Química TEM 7 º de achillerato Trabajo y Energía.- Un barco y su tripulación se desplazan de una isla hasta otra que dista Km en línea recta. Sabiendo que la fuerza del viento sobre las velas

Más detalles

Universidad Nacional de Ingeniería U N I

Universidad Nacional de Ingeniería U N I Universidad Nacional de Ingeniería U N I Carrera: Técnico Superior en Computación Asignatura: Física Tema: Ejercicios Prácticos de Energía, Trabajo y Potencia. Integrantes: Claudia Regina Herrera Sáenz.

Más detalles

FS-11 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía III

FS-11 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía III FS-11 Ciencias Plan Común Física 2009 Trabajo y energía III Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.

Más detalles

Slide 2 / 144. Slide 1 / 144. Slide 3 / 144. Slide 4 / 144. Slide 5 / 144. Slide 6 / 144

Slide 2 / 144. Slide 1 / 144. Slide 3 / 144. Slide 4 / 144. Slide 5 / 144. Slide 6 / 144 Slide 1 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 2 / 144 2 Una fuerza realiza 30000

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

MÉTODOS DEL TRABAJO Y LA ENERGÍA, Y DEL IMPULSO Y LA CANTIDAD DE MOVIMIENTO

MÉTODOS DEL TRABAJO Y LA ENERGÍA, Y DEL IMPULSO Y LA CANTIDAD DE MOVIMIENTO Serie de ejercicios de Cinemática y Dinámica MÉTODOS DEL TRJO Y L ENERGÍ, Y DEL IMPULSO Y L CNTIDD DE MOVIMIENTO 1. Calcular el trabajo que realiza cada una de las fuerzas externas que actúa sobre el cuerpo

Más detalles

Unidad VII: Trabajo y Energía

Unidad VII: Trabajo y Energía 1. Se muestra un bloque de masa igual a 30 Kg ubicado en un plano de 30º, se desea levantarlo hasta la altura de 2,5 m, ejerciéndole una fuerza de 600 N, si el coeficiente de fricción cinética es de 0,1.

Más detalles

DINAMICA. 1. a) Para las siguientes situaciones, identifica y dibuja las fuerzas que actúan sobre los objetos móviles:

DINAMICA. 1. a) Para las siguientes situaciones, identifica y dibuja las fuerzas que actúan sobre los objetos móviles: Dinámica y Energía DINAMICA LEYES FUNDAMENTALES DE LA DINÁMICA 1. a) Para las siguientes situaciones, identifica y dibuja las fuerzas que actúan sobre los objetos móviles: b) Indica si son verdaderas o

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

F= 2 N. La punta de la flecha define el sentido.

F= 2 N. La punta de la flecha define el sentido. DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.

Más detalles

Soluciones unidad 5. Trabajo y Energía 4º ESO 1

Soluciones unidad 5. Trabajo y Energía 4º ESO 1 Soluciones unidad 5. Trabajo y Energía 4º ESO 1 SOLUCIONES UNIDAD 5. TRABAJO Y ENERGÍA QUÉ SABES DE ESTO? 1. Describe las diferentes transformaciones de la energía que se realizan cuando una niña se sube

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

PRE-INFORME L6. Daniela Andrea Duarte Mejía May 13, 2016

PRE-INFORME L6. Daniela Andrea Duarte Mejía May 13, 2016 PRE-INFORME L6 Daniela Andrea Duarte Mejía May 13, 2016 1 Introducción Se llama energía mecánica o energía mecánica total, la energía del movimiento mecánico y de la interacción. La energía mecánica W

Más detalles

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4

Más detalles

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 4: Trabajo y Energía Programa analítico Definición de trabajo mecánico. Trabajo de una fuerza. Unidad

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA TECNOLOGÍA INDUSTRIAL ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA 4. TRANSFORMACIONES ENERGÉTICAS 5. FUENTES DE ENERGÍA 6. IMPORTANCIA DE LA ENERGÍA

Más detalles

Bloque II: Principios de máquinas

Bloque II: Principios de máquinas Bloque II: Principios de máquinas 1. Conceptos Fundamentales A. Trabajo En términos de la física y suponiendo un movimiento rectilíneo de un objeto al que se le aplica una fuerza F, se define como el producto

Más detalles

METODOS DE ENERGIA Problema #1 Problema #2 PROBLEMA #3

METODOS DE ENERGIA Problema #1 Problema #2 PROBLEMA #3 METODOS DE ENERGIA Problema #1 El mecanismo mostrado se utiliza para probar la resistencia de un bloque al impacto, lanzándolo desde un extremo al otro. El resorte de la izquierda se comprime hasta que

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO 5. DINÁMICA FORMULARIO 5.1) Una grúa de puente, cuyo peso es P = 2x10 4 N, tiene un tramo de L = 26 m. El cable, al que se cuelga la carga se encuentra a una distancia l = 10 m de uno de los rieles. Determinar

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

ACTIVIDADES RECAPITULACIÓN 2: TRABAJO Y ENERGÍA

ACTIVIDADES RECAPITULACIÓN 2: TRABAJO Y ENERGÍA ACTIVIDADES RECAPITULACIÓN : TRABAJO Y ENERGÍA A-1. A-. A-3. a) Porque la energía transferida al cuerpo se debe invertir en aumentar la energía potencial gravitatoria y en aumentar la energía cinética,

Más detalles

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B Física y Química 4º ESO Dinámica /11/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 Ptos] Tipo A Tipo B 1. Se lanza horizontalmente un objeto de 400 g con una velocidad de 14,0 m/s sobre una

Más detalles

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS?

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS? EQUIVALENCIAS 1 kgf = 9.8 N 1 kp = 1 kgf 1 kp = 9.8 N 1 dina = 1x10-5 N 1 lbf = 4.44 N 1 pdl = 0.1382 N Kgf = kilogramos fuerza kp = kilopondio N = Newton dina = dina lbf = libra fuerza pdl = poundal CONVERSIONES:

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

TRABAJO POTENCIA - ENERGÍA

TRABAJO POTENCIA - ENERGÍA PROGRM DE VERNO DE NIVELCIÓN CDÉMIC 15 TRJO POTENCI - ENERGÍ 1. Un sujeto jala un bloque con una fuerza de 7 N., como se muestra, y lo desplaza 6 m. Qué trabajo realizó el sujeto? (m = 1 kg) a) 1 J b)

Más detalles

PROBLEMAS DE TRABAJO Y ENERGÍA

PROBLEMAS DE TRABAJO Y ENERGÍA PROBLEMAS DE TRABAJO Y ENERGÍA 1. Un cuerpo se desplaza 5 m al actuar sobre él una fuerza de 50 N. Calcula el trabajo realizado en los siguientes casos: a) Fuerza y desplazamiento tienen la misma dirección

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

6.- Indica las fuerzas que actúan sobre un cuerpo situado en las proximidades de la superficie

6.- Indica las fuerzas que actúan sobre un cuerpo situado en las proximidades de la superficie Cuestiones de Mecánica Olimpiada de Física 2004 Universidad de Murcia 1 1.- De las siguientes frases relativas a un cuerpo en movimiento uniforme, cuál no puede ser cierta?: (a) su velocidad puede ser

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA CUESTIONES PLANOS INCLINADOS, RESORTES, ETC 1. (98-R) Analice las siguientes proposiciones, razonando si son verdaderas o falsas: a) El trabajo realizado por una fuerza sobre un

Más detalles

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en

Más detalles

Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS. (1 er Q.:prob impares, 2 ndo Q.:prob pares)

Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS. (1 er Q.:prob impares, 2 ndo Q.:prob pares) Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Una placa circular homogénea de radio r tiene un orificio circular cortado en ella de radio r/2

Más detalles

PRIMER EXAMEN PARCIAL FÍSICA I MODELO 1

PRIMER EXAMEN PARCIAL FÍSICA I MODELO 1 PRIMER EXAMEN PARCIAL FÍSICA I MODELO 1 1.- Las velocidades de tres partículas, 1, y 3, en función del tiempo son mostradas en la figura. La razón entre las aceleraciones mayor y menor es: a) 8 b) 1 0

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles