Universidad de Managua Al más alto nivel

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad de Managua Al más alto nivel"

Transcripción

1 Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Investigación de Operaciones I MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ingeniería y Ciencias Económicas y Administrativas. Año académico: II Cuatrimestre 2015

2 PROBLEMA 1 En una fábrica de bombillos se producen dos tipos de ellas, los de tipo normal valen 450 córdobas y los halógenos 600 córdobas. La producción está limitada por el hecho de que no pueden fabricarse al día más de 400 normales y 300 halógenas ni más de 500 en total. Si se vende en toda la producción, cuántas de cada clase convendrá producir para obtener la máxima facturación? SOLUCIÒN: 1. DEFINICIÒN DEL PROBLEMA: - Objetivo: maximizar facturación - Restricciones: Se producen dos tipos de bombillos: Normal y Halógenos. - No se pueden fabricar al día más de 400 normales - No se puede fabricar al día más de 300 halógenos - No se puede fabricar al día más de 500 entre ambos tipos. - Los Normales se venden a C$450 y los halógenos a C$ Para lograr el objetivo requerimos saber. Cuántos bombillos de cada tipo debemos fabricar al dìa? - Sea X: número de bombillos tipo normal; Y: número de bombillos de tipo halógenos.

3 1. DEFINICIÒN DEL PROBLEMA: - Expresamos los datos en forma de una tabla: PROBLEMA 1 X(normales) Y(halógenos) Restricción Cantidad/d Cantidad/d Cantidad/d Precio/u C$450 C$ FORMULACIÓN DEL MODELO MATEMÁTICO DEL PROBLEMA. MAX Z = 450X + 600Y SUJETO A: X 400 Producción de tipo normales por día Y 300 Producción de tipo halógenos por día X + Y 500 Producción ambos tipos por día X 0 Criterio de no negatividad Y 0 Criterio de no negatividad

4 PROBLEMA 1 3. OBTENER UNA SOLUCIÓN A PARTIR DEL MODELO. Para construir el modelo solo requerimos de las restricciones, ellas nos darán la región factible o región convexa donde se encuentran los vértices que nos permitirán encontrar la solución óptima. X+Y 500 Y 300 (200,300) (400,100) X 400

5 PROBLEMA 1 3. OBTENER UNA SOLUCIÓN A PARTIR DEL MODELO. Hemos construido La región factible, puede ver que es una región finita, cerrada, cuyos vértices se detallan a continuación: Vértices Valor Z Máx (0,0) Z=450*0+600*0=0 (400,0) Z=450* *0=180,000 (400,100) Z=450* *100=240,000 (200,300) Z=450* *300=270,000 C$270,000 (0,300) Z=450*0+600*300=180,000 Por lo tanto, hemos encontrado que en uno de los vértices, se encuentra la solución óptima: Esto es en el vértice (200,300) es decir se requiere producir diario 200 bombillos normales y 300 bombillos halógenos para obtener un total de C$ 270,000 en facturación, la cual es la máxima.

6 PROBLEMA 1 4. PRUEBA DEL MODELO. Para la prueba del modelo requerimos verificar que la solución obtenida como óptima realmente cumple con todas las restricciones del modelo. Sustituimos los valores de X=200 y Y=300 en el modelo MAX Z = 450* *300 =270,000 SUJETO A: (SE CUMPLE) (SE CUMPLE) (SE CUMPLE) (SE CUMPLE) (SE CUMPLE) Puede ver que el modelo se cumple para todas las restricciones. Por tanto se verifica que la solución obtenida es la óptima.

7 PROBLEMA 2 Un hipermercado necesita como mínimo 16 cajas de langostino, 5 cajas de nécoras y 20 de percebes. Dos mayoristas, A y B, se ofrecen al hipermercado para satisfacer sus necesidades, pero sólo venden dicho marisco en contenedores completos. El mayorista A envía en cada contenedor 8 cajas de langostinos, 1 de nécoras y 2 de percebes. Por su parte, B envía en cada contenedor 2, 1 y 7 cajas respectivamente. Cada contenedor que suministra A cuesta 210,000 córdobas, mientras que los del mayorista B cuestan 300,000 córdobas cada uno. Cuántos contenedores debe pedir el hipermercado a cada mayorista para satisfacer sus necesidades mínimas con el menor coste posible? SOLUCIÒN: 1. DEFINICIÒN DEL PROBLEMA: - Objetivo: minimizar costos. - Necesidades mínimas del hipermercado:16 cajas de langostino, 5 cajas de nécoras y 20 cajas de percebes. - Envío del mayorista A: 8 cajas de langostino, 1 de nécora y 2 de percebes por contenedor. - Envío del mayorista B: 2 cajas de langostino, 1 de nécora y 7 de percebes por contenedor.

8 PROBLEMA 2 1. DEFINICIÒN DEL PROBLEMA: - Cada contenedor del proveedor A cuesta C$210,000, cada contenedor del proveedor B cuesta C$300,000. Qué cantidad de contenedores debe solicitar de A y de B para suplir sus necesidades al mínimo costo? Llamaremos X: al número de contenedores del proveedor A; Y: número de contenedores del proveedor B. Expresamos los datos en forma de una tabla Conceptos X(Prov. A) Y(Prov. B) Restricción(cajas) Langostinos Nécoras(cangrejo) Percebes(esponja) Costo/contenedor C$210,000 C$300,000

9 2. FORMULACIÓN DEL MODELO MATEMÁTICO DEL PROBLEMA. Ahora procedemos a formular el modelo matemático: MIN Z = 210,000X + 300,000Y SUJETO A: 8 X + 2Y 16 Necesidades de langostino X + Y 5 Necesidades de nécoras 2X + 7Y 20 Necesidades de percebes X 0 Criterio de no negatividad Y 0 Criterio de no negatividad 3. OBTENER UNA SOLUCIÓN A PARTIR DEL MODELO. Para construir el modelo solo requerimos de las restricciones, ellas nos darán la región factible o región convexa donde se encuentran los vértices que nos permitirán encontrar la solución óptima.

10 8X + 2Y 16 (1,4) X + Y 5 (3,2) 2X + 7Y 20

11 Hemos construido La región factible, puede ver que es una región abierta, cuyos vértices se detallan a continuación: Vértices Valor Z Máx (0,8) Z=210,000*0+300,000*8=2,400,000 (1,4) Z=210,000*1+300,000*4=1,410,000 (3,2) Z=210,000*3+300,000*2=1,230,000 C$1,230,000 (10,0) Z=210,000*20+300,000*0=2,100,000 Por lo tanto, hemos encontrado que en uno de los vértices, se encuentra la solución óptima (MÍNIMO): Esto es en el vértice (3,2) es decir se requiere ADQUIRIR 3 contenedores de A y 2 contenedores de B, para satisfacer las necesidades mínimas del hipermercado, por a un costo total de C$1,230,000.

12 PROBLEMA 2 4. PRUEBA DEL MODELO. Para la prueba del modelo requerimos verificar que la solución obtenida como óptima realmente cumple con todas las restricciones del modelo. Sustituimos los valores de X=3 y Y=2 en el modelo MIN Z = 210,000* ,000*2=1,230,000 SUJETO A: 8*3 + 2*2 16 (SE CUMPLE) (SE CUMPLE) 2*3 + 7*2 20 (SE CUMPLE) 3 0 (SE CUMPLE) 2 0 (SE CUMPLE) Puede ver que el modelo se cumple para todas las restricciones. Por tanto se verifica que la solución obtenida es la óptima.

13 PROBLEMA 3 Los 400 estudiantes de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses con 40 plazas y 10 con 50 plazas, pero sólo se cuenta con 9 conductores para ese día. Dada la diferente capacidad y calidad, el alquiler de cada autobús de los grandes cuesta 8,000 córdobas y el de cada uno de los pequeños, 6,000 córdobas Cuántos autobuses de cada clase convendrá alquilar para que el viaje resulte lo más económico posible? SOLUCIÒN: 1. DEFINICIÒN DEL PROBLEMA: - Objetivo: minimizar costos. - Restricciones: - Los alumnos participantes son Se cuentan con dos tipos de buses:p (pequeño) con capacidad de 40 y G (grandes) con capacidad de 50 - Solo están disponibles 9 choferes para ese día. - Los buses P se alquilan a C$6,000 y los G a C$8, Requerimos saber cuantos debemos alquilar de tipo P y cuantos de tipo G, de manera que minimicemos el costo del traslado de los 400 alumnos?

14 PROBLEMA 3 1. DEFINICIÒN DEL PROBLEMA: - Llamaremos X: al número de buses de tipo P; Y: número de buses de tipo G. - Expresamos los datos en forma de una tabla Conceptos X(Bus tipo P) Y(Bus tipo G) Restricción Alumnos = 400 (alumnos) Choferes (choferes) Buses tipo P 1 8 (buses) Buses tipo G 1 10 (buses) Costo/bus C$6,000 C$8,000

15 2. FORMULACIÓN DEL MODELO MATEMÁTICO DEL PROBLEMA. Ahora procedemos a formular el modelo matemático: MIN Z = 6,000X + 8,000Y SUJETO A: 40 X + 50Y = 400 Alumnos a transportar X + Y 9 Choferes disponibles X 8 Buses pequeños disponibles Y 10 Buses grandes disponibles X 0 Criterio de no negatividad Y 0 Criterio de no negatividad 3. OBTENER UNA SOLUCIÓN A PARTIR DEL MODELO. Para construir el modelo solo requerimos de las restricciones, ellas nos darán la región factible o región convexa donde se encuentran los vértices que nos permitirán encontrar la solución óptima.

16 Y 10 X + Y 9 (5,4) 40X + 50Y= 400 X 8

17 Hemos construido La región factible, puede ver que la región factible se da en el segmento de recta 40X + 50Y=400 que va desde (0,8) hasta (5,4). Por lo que solo indicaremos los resultados con variables enteras de los infinitos puntos que hay en ese segmento. Vértices Valor Z Mínimo (0,8) Z=6,000* *8=64,000 (5,4) Z=6,000* *4=62,000 C$62,000 Por lo tanto, hemos encontrado que en uno de los vértices, se encuentra la solución óptima (MÍNIMO): Esto es en el vértice (5,4) es decir se requiere contratar 5 buses pequeños P y 4 buses grandes G, para garantizar el transporte a los 400 estudiantes a un mínimo costo.

18 PROBLEMA 3 4. PRUEBA DEL MODELO. Para la prueba del modelo requerimos verificar que la solución obtenida como óptima realmente cumple con todas las restricciones del modelo. Sustituimos los valores de X=5 y Y=4 en el modelo MIN Z = 6,000*5 + 8,000*4=C$62,000 SUJETO A: 40*5 + 50*4 = 400 (SE CUMPLE) (SE CUMPLE) 5 8 (SE CUMPLE) 4 10 (SE CUMPLE) 5 0 (SE CUMPLE) 4 0 (SE CUMPLE) Puede ver que el modelo se cumple para todas las restricciones. Por tanto se verifica que la solución obtenida es la óptima.

19 Ejemplo 4: La WINDOR GLASS CO. produce artículos de vidrio de alta calidad, entre ellos ventanas y puertas de vidrio. Tiene tres plantas. Los marcos y molduras de aluminio se hacen en la planta 1, los de madera en la planta 2; la 3 produce el vidrio y ensambla los productos. Debido a una reducción de las ganancias, la alta administración ha decidido reorganizar la línea de producción de la compañía. Se descontinuarán varios productos no rentables y se dejará libre una parte de la capacidad de producción para emprender la fabricación de dos productos nuevos que tienen ventas potenciales grandes: Producto 1: una puerta de vidrio de 8 pies con marco de aluminio. Producto 2: una ventana corrediza con marco de madera de 4 X6 pies.

20 El producto 1 requiere de la capacidad de producción en las plantas 1 y 3 y nada en la planta 2. El producto 2 sólo necesita trabajo en las plantas 2 y 3. La división de comercialización ha concluido que la compañía puede vender todos los productos que se puedan fabricar en las plantas. Sin embargo, como ambos productos competirán por la misma capacidad de producción en la planta 3, no está claro qué mezcla de productos sería la más rentable. Por lo tanto, se ha formado un equipo de IO para estudiar este problema. El grupo comenzó a realizar juntas con la alta administración para identificar los objetivos del estudio y desarrollaron la siguiente definición del problema:

21 Determinar que tasas de producción deben tener los dos productos con el fin de maximizar las utilidades totales, sujetas a las restricciones impuestas por las capacidades de producción limitadas disponibles en las tres plantas. (cada producto se fabricará en lotes de 20 unidades, de manera que la tasa de producción está definida con el número de lotes que se producen a la semana). Se permite cualquier combinación de tasas de producción que satisfaga estas restricciones, incluso no fabricar uno de los productos y elaborar todo lo que sea posible del otro.

22 El equipo de IO también identificó los datos que necesitan reunir: Número de horas de producción disponibles por semana en cada planta para estos nuevos productos. (Casi todo el tiempo de estas plantas estás plantas está comprometido con los productos actuales, lo que limita la capacidad para manufacturar nuevos productos.) Número de horas de fabricación que emplea cada lote producido de cada artículo nuevo en cada una de las plantas. La ganancia por lote de cada producto nuevo. (Se escogió la ganancia por lote producido como una medida adecuada una vez que el equipo llegó a la conclusión de que la ganancia incremental de cada lote adicional producido sería, en esencia, constante, sin importar el número total de lotes producidos. Debido a que no se incurre en costos sustanciales para iniciar la producción y comercialización de estos nuevos productos, la ganancia total de cada uno es aproximadamente la ganancia por lote producido multiplicado por el número de lotes.)

23 La obtención de estimaciones razonables de estas cantidades requirió del apoyo de personal clave en varias unidades de la compañía. El personal de la división de manufactura proporcionó los datos de la primera categoría mencionada. El desarrollo de estimaciones para la segunda categoría requirió un análisis de los ingenieros de manufactura involucrados en el diseño de los procesos de producción para los nuevos artículos. Al analizar los datos de costos obtenidos por estos ingenieros, junto con la decisión sobre los precios de la división de mercadotecnia, el departamento de contabilidad calculó las estimaciones para la tercera categoría.

24 La tabla siguiente resume los datos reunidos. Planta Tiempo de producción por lote(horas) Producto 1 2 Tiempo de producción disponible a la semana, horas P P P Ganancias por lote $ 3000 $5000

25 Se trataba de un problema de programación lineal del tipo clásico mezcla de productos y procedemos a la formulación del modelo matemático correspondiente. Para resolver este problema de PL: requerimos definir lo siguiente: Variables de decisión: : número de lotes del producto 1 fabricado por semana : número de lotes del producto 2 fabricado por semana x 1 x 2

26 Función objetivo: Maximizar Restricciones: x 1 4 3x x 1 5 Horas disponibles en la planta 1, para producir lotes del producto 1 z 2 2x x 2x2 x x Horas disponibles en la planta 2, para producir lotes del producto 2 Horas disponibles en la planta 3, para producir lotes del prod 1 y prod 2 Restricciones de no negatividad

27 Modelo matemático del PPL. Max s.a. Z 3x x x x x x1 4 2x 12 2x

28 x 1 4 2x 2 12 x 2x 18 x x 2 12 (0,6) (2,6) x 2 0 2x 2 12 (4,3) x 1 0 (0,0) (4,0)

29 Soluciones factibles Vértices del problema Z 3x x Z óptimo (0,0) 0 (0,6) 30 (2,6) (4,3) 27 (4,0) 12

30 x 1 4 2x 2 12 x 2x 18 x Z=30 Z=36 2x 2 12 x 2 0 2x 2 12 Z=27 Z=0 x 1 0 Z=12

31 Solución óptima (0,6) (2,6) (4,3) (0,0) (4,0)

32 Un problema de máximos de programación lineal Problema 5: Una fábrica de bombones tiene almacenados 500 Kg.. de chocolate, 100 Kg.. de almendras y 85 Kg.. de frutas. Produce dos tipos de cajas: las de tipo A contienen 3 Kg. de chocolote, 1 Kg. de almendras y 1 Kg. de frutas; la de tipo B contiene 2 Kg. de chocolate, 1,5 Kg. de almendras y 1 Kg. de frutas. Los precios de las cajas de tipo A y B son $13 y $13,50, respectivamente. Cuántas cajas de cada tipo debe fabricar para maximizar sus venta? La siguiente tabla resume los datos del problema Designando por X = nº de cajas de tipo A Y = nº de cajas de tipo B Función objetivo z = f (x, y) = 13X Y Con las restricciones: Caja tipo A Caja tip B Chocolate Almendras Frutas Precio en euros Disponibles que hay que maximizar 3X + 2Y 500 (por el chocolate almacenado) X + 1.5Y 100 (por la almendra almacenada) X + Y 85 (por la fruta almacenada) X 0

33 En un primer paso representamos la región factible. En un segundo paso obtenemos los vértices de la región factible. Finalmente evaluamos la función objetivo z = 13x + 13,50y en cada vértice, para obtener el máximo z(p) = = $1105 z(q) = =$ 1120 z(r) = /1.5 = $900 R(0, 100/1,5) Q(55, 30) P(85, 0)

34 Un problema de mínimos de programación lineal Problema 6: Un grupo local posee dos emisoras de radio, una de FM y otra de AM. La emisora de FM emite diariamente 12 horas de música rock, 6 horas de música clásica y 5 horas de información general. La emisora de AM emite diariamente 5 horas de música rock, 8 horas de música clásica y 10 horas de información general. Cada día que emite la emisora de FM le cuesta al grupo C$5000, y cada día que emite la emisora de AM le cuesta al grupo C$4000. Sabiendo que tiene enlatado para emitir 120 horas de música rock, 180 horas de música clásica y 100 horas de información general, cuántos días deberá emitir con ese material cada una de las emisoras para que el coste sea mínimo, teniendo en cuenta que entre las dos emisoras han de emitir al menos una semana? La siguiente tabla resume los datos del problema Designando por x = nº de días de AM y = nº de días de FM Función objetivo z = f (x, y) = 5000x y que hemos de minimizar Con las restricciones: Emisora FM Emisora AM Disponibles Música rock Música clásica Información general Coste en euros x + 5y 120 (por la música rock) 6x + 8y 180 (por la música clásica) 5x + 10y 100 (por la información general) x + y 7 (emitir al menos una semana)

35 En un primer paso representamos la región factible. En un segundo paso obtenemos los vértices de la región factible. Finalmente evaluamos la función objetivo z = 5000x y en cada vértice, para obtener el mínimo. z(p) = = z(q) = = R(0, 10) S(0, 7) Q(7.37, 6.32 z(r) = = z(s) = = z(t) = = T(7, 0) P(10, 0)

36 PROBLEMA 7: PROBLEMA DE PL Un fabricante produce mesas (X) y escritorios (Y). Para cada mesa que produce requiere 2 horas y media de montaje, tres horas de pulido y una hora de embalaje. Asimismo, para cada escritorio se requiere una hora de montaje, tres horas de pulido y dos horas de embalaje. Estas secciones presentan las siguientes limitaciones: la unidad de montaje trabaja, como máximo 20 horas al día; la unidad de pulido como máximo 15 horas al día; la unidad de embalaje como máximo 16 horas al día. El fabricante trabaja con un margen de beneficios de U$25 por mesa producida y U$40 por cada escritorio, Plantear el modelo de programación Matemático en el caso que el fabricante pretenda maximizar beneficios.

37 Ejemplo: La fábrica Gepetto S.L., manufactura muñecos y trenes de madera. Cada muñeco: Produce un beneficio neto de U$3. Requiere 2 horas de trabajo de acabado. Requiere 1 hora de trabajo de carpinteria. Cada tren: Produce un beneficio neto de U$2 Requiere 1 hora de trabajo de acabado. Requiere 1 hora trabajo de carpinteria. Cada semana Gepetto puede disponer de: Todo el material que necesite. Solamente 100 horas de acabado. Solamente 80 horas de carpinteria. También: La demanda de trenes puede ser cualquiera (sin límite). La demanda de muñecos es cuando mucho 40. Gepetto quiere maximizar sus beneficios. Cuántos muñecos y cuántos trenes debe fabricar?

38 Este problema es un ejemplo típico de un problema de programación lineal (PPL). Variables de Decisión x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana Función Objetivo. En cualquier PPL, la decisión a tomar es como maximizar (normalmente el beneficio) o minimizar (el coste) de alguna función de las variables de decisión. Esta función a maximizar o minimizar se llama función objetivo. El objetivo de Gepetto es elegir valores de x e y para maximizar 3x + 2y. Usaremos la variable z para denotar el valor de la función objetivo. La función objetivo de Gepetto es: Max z = 3x + 2y Restricciones Son desigualdades que limitan los posibles valores de las variables de decisión. En este problema las restricciones vienen dadas por la disponibilidad de horas de acabado y carpintería y por la demanda de muñecos. También suele haber restricciones de signo o no negatividad: x 0 y 0

39 Cuando x e y crecen, la función objetivo de Gepetto también crece. Pero no puede crecer indefinidamente porque, para Gepetto, los valores de x e y están limitados por las siguientes tres restricciones: Restricción 1: no más de 100 horas de tiempo de acabado pueden ser usadas. Restricción 2: no más de 80 horas de tiempo de carpinteria pueden ser usadas. Restricción 3: limitación de demanda, no deben fabricarse más de 40 muñecos. Estas tres restricciones pueden expresarse matematicamente por las siguientes desigualdades: Restricción 1: 2 x + y 100 Restricción 2: x + y 80 Restricción 3: x 40 Además, tenemos las restricciones de no negatividad: x 0 e y 0

40 Formulación matemática del PPL Variables de Decisión Muñeco x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana Tren Beneficio 3 2 Acabado Max z = 3x + 2y (función objetivo) 2 x + y 100 (acabado) Carpintería x + y 80 (carpinteria) Demanda 40 x 40 (demanda muñecos) x 0 (restricción de signo) y 0 (restricción de signo)

41 Para el problema de Gepetto, combinando las restricciones de signo x 0 e y 0 con la función objetivo y las restricciones, tenemos el siguiente modelo de optimización: Max z = 3x + 2y (función objetivo) Sujeto a (s.a:) 2 x + y 100 (restricción de acabado) x + y 80 (restricción de carpinteria) x 40 (restricción de demanda de muñecos) x 0 (restricción de signo) y 0 (restricción de signo)

42 La región factible de un PPL es el conjunto de todos los puntos que satisfacen todas las restricciones. Es la región del plano delimitada por el sistema de desigualdades que forman las restricciones. x = 40 e y = 20 está en la región factible porque satisfacen todas las restricciones de Gepetto. Sin embargo, x = 15, y = 70 no está en la región factible porque este punto no satisface la restricción de carpinteria [ > 80]. Restricciones de Gepetto 2x + y 100 (restricción finalizado) x + y 80 (restricción carpintería) x 40 (restricción demanda) x 0 (restricción signo) y 0 (restricción signo)

43 Para un problema de maximización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor máximo. Para un problema de minimización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor mínimo. La mayoría de PPL tienen solamente una solución óptima. Sin embargo, algunos PPL no tienen solución óptima, y otros PPL tienen un número infinito de soluciones. Más adelante veremos que la solución del PPL de Gepetto es x = 20 e y = 60. Esta solución da un valor de la función objetivo de: z = 3x + 2y = = 180 Se puede demostrar que la solución óptima de un PPL está siempre en la frontera de la región factible, en un vértice (si la solución es única) o en un segmento entre dos vértices contiguos (si hay infinitas soluciones) Cuando decimos que x = 20 e y = 60 es la solución óptima, estamos diciendo que en ningún punto en la región factible, la función objetivo tiene un valor (beneficio) superior a 180.

44 Cualquier PPL con sólo dos variables puede resolverse gráficamente. Por ejemplo, para representar gráficamente la primera restricción, 2x + y 100 : Dibujamos la recta 2x + y = 100 Y x + y = 100 Elegimos el semiplano que cumple la desigualdad: el punto (0, 0) la cumple ( ), así que tomamos el semiplano que lo contiene X

45 Puesto que el PPL de Gepetto tiene dos variables, se puede resolver gráficamente. La región factible es el conjunto de todos los puntos que satisfacen las restricciones: 2 x + y 100 (restricción de acabado) x + y 80 (restricción de carpintería) x 40 (restricción de demanda) x 0 (restricción de signo) y 0 (restricción de signo) Vamos a dibujar la región factible que satisface estas restricciones.

46 Y Restricciones 100 2x + y = x + y x + y 80 x x 0 y 0 Teniendo en cuenta las restricciones de signo (x 0, y 0), nos queda: X

47 Y 100 Restricciones 2 x + y 100 x + y 80 x 40 x 0 y x + y = X

48 Y 100 Restricciones 2 x + y 100 x + y 80 x 40 x 0 y x = X

49 La intersección de todos estos semiplanos (restricciones) nos da la región factible Y 100 2x + y = x = Región Factible x + y = X

50 La región factible (al estar limitada por rectas) es un polígono. En esta caso, el polígono ABCDE. Como la solución óptima está en alguno de los vértices (A, B, C, D o E) de la región factible, calculamos esos vértices. Y 100 2x + y = A E D Región Factible C B x = 40 x + y = Restricciones 2 x + y 100 x + y 80 x 40 x 0 y 0 X

51 Los vértices de la región factible son intersecciones de dos rectas. El punto D es la intersección de las rectas 2x + y = 100 x + y = 80 La solución del sistema x = 20, y = 60 nos da el punto D. B es solución de x = 40 y = 0 C es solución de x = 40 2x + y = 100 E es solución de x + y = 80 x = 0 Y A(0, 0) 2x + y = 100 E(0, 80) D Región Factible (20, 60) x = 40 C(40, 20) B(40, 0) x + y = X

52 Max z = 3x + 2y Y Para hallar la solución óptima, dibujamos las rectas en las cuales los puntos tienen el mismo valor de z. La figura muestra estas lineas para z = 0, z = 100, y z = (0, 0) (0, 80) (20, 60) Región Factible (40, 20) (40, 0) z = 0 z = 100 z = 180 X

53 Y Max z = 3x + 2y 100 La última recta de z que interseca (toca) la región factible indica la solución óptima para el PPL. Para el problema de Gepetto, esto ocurre en el punto D (x = 20, y = 60, z = 180) (0, 0) (0, 80) (20, 60) Región Factible (40, 20) (40, 0) z = 0 z = 100 z = 180 X

54 Max z = 3x + 2y También podemos encontrar la solución óptima calculando el valor de z en los vértices de la región factible. Y (0, 80) Vértice z = 3x + 2y (0, 0) z = = 0 (40, 0) z = = 120 (40, 20) z = = 160 (20, 60) z = = 180 (0, 80) z = = 160 La solución óptima es: x = 20 muñecos y = 60 trenes (0, 0) (20, 60) Región Factible (40, 20) (40, 0) X

55 Hemos identificado la región factible para el problema de Gepetto y buscado la solución óptima, la cual era el punto en la región factible con el mayor valor posible de z.

56 Recuerda que: La región factible en cualquier PPL está limitada por segmentos (es un polígono, acotado o no). La región factible de cualquier PPL tiene solamente un número finito de vértices. Cualquier PPL que tenga solución óptima tiene un vértice que es óptimo.

57 PROBLEMA 8:Problema de minimización Dorian Auto; fabrica y vende autos y furgonetas.la empresa quiere emprender una campaña publicitaria en TV y tiene que decidir comprar los tiempos de anuncios en dos tipos de programas: del corazón y fútbol. Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. Un anuncio en el programa de corazón cuesta U$ y un anuncio del fútbol cuesta U$ Dorian Auto quisiera que los anuncios sean vistos por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo.

58 Formulación del problema: Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. Un anuncio en el programa de corazón cuesta U$ y un anuncio del fútbol cuesta U$ Dorian Auto quisiera que los anuncios sean vistos por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la Corazón (x) Fútbol (y) mujeres 6 3 6x + 3y 30 hombres 2 8 2x + 8y 24 Coste U$ x +100y

59 Formulación del problema: Variables de decisión: x = nº de anuncios en programa de corazón y = nº de anuncios en fútbol Min z = 50x + 100y (función objetivo en ) s.a: 6x + 3y 30 2x + 8y 24 (mujeres) (hombres) x, y 0 (no negatividad)

60 Dibujamos la región factible. 14 Y Min z = 50 x + 100y s.a. 6x + 3y 30 2x + 8y 24 x, y x + 3y = x + 8y = X

61 Calculamos los vértices de la región factible: El vértice A es solución del sistema 6x + 3y = 30 x = 0 Por tanto, A(0, 10) El vértice B es solución de 6x + 3y = 30 2x + 8y = 24 Por tanto, B(4, 2) El vértice C es solución de 2x + 8y = 24 y = 0 Por tanto, C(12, 0) Y A B La región factible no está acotada Región Factible C X

62 Resolvemos por el método analítico Evaluamos la función objetivo z en los vértices. Vértice z = 50x + 100y A(0, 10) z = = = = B(4, 2) z = = = = 400 C(12, 0) z = = = = Y A(0, 10) Región Factible El coste mínimo se obtiene en B. Solución: x = 4 anuncios en pr. corazón y = 2 anuncios en futbol Coste z = U$400 (mil ) B(4, 2) C(12, 0) X

63 Resolvemos por el método gráfico Min z = 50 x + 100y Y s.a. 6x + 3y x + 8y 24 x, y 0 El coste mínimo se obtiene en el punto B. Z = 600 Z = A(0, 10) Región Factible 6 Solución: x = 4 anuncios en prog. corazón y = 2 anuncios en futbol Coste z = 400 (mil ) 4 2 B(4, 2) C(12, 0) X

64 Solución única Solución única Sol. óptima en un vértice Sol. óptima en un vértice Región factible Cerrada Región factible Abierta No hay mínimo o máximo No tiene Solución Sol. óptima todo un lado de la región factible Múltiple Soluciones Sol. óptima todo un lado de la región factible Múltiple Soluciones

65 Los ejemplos anteriores, hasta ahora estudiados tienen, cada uno, una única solución óptima. No en todos los PPL ocurre esto. Se pueden dar también las siguientes posibilidades: Algunos PPL tienen un número infinito de soluciones óptimas (alternativas o múltiples soluciones óptimas). Algunos PPL no tienen soluciones factibles (no tienen región factible). Algunos PPL son no acotados: Existen puntos en la región factible con valores de z arbitrariamente grandes (en un problema de maximización). Veamos un ejemplo de cada caso.

66 Número de soluciones de un problema de programación lineal Para un problema de minimización Solución única Solución de arista: infinitas soluciones No hay mínimo

67 Para un problema de maximización Solución única Solución de arista: infinitas soluciones No hay máximo

68 Consideremos el siguiente problema: max z = 3x + 2y Y C 3x + 2y 120 s.a: 3x + 2y 120 x + y 50 x, y 0 Cualquier punto (solución) situado en el segmento AB puede ser una solución óptima de z = Región Factible z = 60 B z = 100 z = x + y 50 A 50 X

69 Consideremos el siguiente problema: max z = 3x 1 + 2x 2 s.a: 3x + 2y 120 x + y 50 x 30 y 30 x, y 0 Y x + y 50 No existe Región Factible x 30 y x + 2y 120 No existe región factible X

70 max z = 2x y s.a: x y 1 2x + y 6 x, y 0 La región factible es no acotada. Se muestran en el gráfico las rectas de nivel para z = 4 y z = 6. Pero podemos desplazar las rectas de nivel hacia la derecha indefinidamente sin abandonar la región factible. Por tanto, el valor de z puede crecer indefinidamente Y Región Factible z = z = 6 5 X

71 Resumen: Función objetivo Optimizar (maximizar o minimizar) z = a x + by sujeta a las siguientes restricciones a 1x + b 1 y d 1 a 2 x + b 2 y d a n x + b n y d n Solución posible: cualquier par de valores (x 1, y 1 ) que cumpla todas la restricciones. Al conjunto de soluciones posibles de un problema lineal se le llama región factible. Solución óptima: un par de valores (x 1, y 1 ), si existe, que hace máxima o mínima la función objetivo Un problema de programación lineal puede: Tener solución única Tener infinitas soluciones No tener solución

72 PROBLEMAS PROPUESTOS 1. Una fábrica de carrocerías de automóviles y camiones tiene dos Talleres. En el Taller A, para hacer la carrocería de un camión, se invierten 7 días-operario, para fabricar la de un carro se precisan 2 días-operario. En el Taller B se invierten tres días-operario tanto en carrocerías de camión como de carro. Por limitaciones de mano de obra y maquinaria, El Taller A dispone de 300 días operario, y el Taller B de 270 días-operario. Si los beneficios que se obtienen por cada camión son de U$6000 y por cada automóvil U$2000, cuántas unidades de cada uno se deben producir para maximizar las ganancias? 2. Una empresa fabrica dos tipos de rótulos, los de clase A en U$200 la unidad y los de clase B en U$150. En la producción diaria se sabe que el número de rótulos de la clase B no supera en 1000 unidades a los de la A; además, entre las dos clases no superan las 3000 unidades y la de la clase B no bajan de 1000 unidades por día. Hallar a producción máxima diaria.

73 FIN INVESTIGACION DE OPERACIONES JRVA- 2015

Universidad de Managua Al más alto nivel

Universidad de Managua Al más alto nivel Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas

Más detalles

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Nro. de fumadores: Peso transportan : Nro. de no fumadores: Peso transportan: 50y. Ecuaciones para tabla Simplex: Función a optimizar

Nro. de fumadores: Peso transportan : Nro. de no fumadores: Peso transportan: 50y. Ecuaciones para tabla Simplex: Función a optimizar 1- UN AUTOBUS CARACAS- MARACAIBO OFRECE PLAZAS PARA FUMADORES AL PRECIO DE BS. 10.000 Y EN NO FUMADRES PRECIO 6000. BS, AL NO FUMADOR SE LE DEJA LLEVAR 50 KG DE PESO Y AL FUMADOR 20 KG. SI EL AUTOBUS TIENE

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo IV Unidad UnidadIV Análisis Dualidad de

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Método Gráfico. Dr. Mauricio Cabrera

Método Gráfico. Dr. Mauricio Cabrera Método Gráfico Dr. Mauricio Cabrera Problema Introductorio La Wyndor Glass Co. Produce artículos de vidrio de alta calidad, incluidas ventanas y puertas de vidrio que incluyen trabajo manual y la mejor

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Inecuaciones en 2 variables Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes:

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Presentación del Programa de Investigación de Operaciones Estudiantes:

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

UNIDAD 4 Programación lineal

UNIDAD 4 Programación lineal UNIDD 4 Programación lineal Pág. 1 de 8 1 Un mayorista de frutos secos tiene almacenados 1 800 kilos de avellanas y 420 kilos de almendras para hacer dos tipos de mezclas, que embala en cajas como se indica

Más detalles

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 1. (S2015) Un heladero artesano elabora dos tipos de helados A y B que vende cada día. Los helados tipo A llevan 1 gramo de nata

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas:

PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas: PROGRAMACIÓN LINEAL INTRODUCCIÓN La Investigación de Operaciones o Investigación Operativa, es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

TEMA 2: PROGRAMACIÓN LINEAL.

TEMA 2: PROGRAMACIÓN LINEAL. TEMA : PROGRAMACIÓN LINEAL.. 1. INTRODUCCIÓN. La Programación Lineal (PL) puede considerarse como uno de los grandes avances científicos habidos durante la primera mitad del siglo XX y sin duda es una

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

Suscripciones Administración Reclamos Formule un modelo de programación lineal.

Suscripciones Administración Reclamos Formule un modelo de programación lineal. EJERCICIOS DE APLICACIÓN 1) Par, Inc. es un pequeño fabricante de equipo y material de golf. El distribuidor de Par cree que existe un mercado tanto para una bolsa de golf de precio moderado, llamada modelo

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos)

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos) EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II UNIDAD: PROGRAMACIÓN LINEAL 1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima:

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y. PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor:

Más detalles

Antecedentes. Ejemplos de Optimización en Procesos Agrícolas. Planificación v/s Operación. Planificación, Operación y Control en el negocio agrícola

Antecedentes. Ejemplos de Optimización en Procesos Agrícolas. Planificación v/s Operación. Planificación, Operación y Control en el negocio agrícola Ejemplos de Optimización en Procesos Agrícolas Pedro Traverso Profesor Asociado Escuela de Administración Pontifica Universidad Católica de Chile Ingeniero Agrónomo PUC MBA, PUC M.Sc. Ingeniería Industrial

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES

Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES Presentación 3 SISTEMAS DE ECUACIONES LINEALES CON DOS VARIABLES Sistemas de Ecuaciones Lineales Muchos problemas en administración y economía envuelven dos o mas ecuaciones en uno o más variables. Decimos

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL

EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (001-M1;Sept-B-1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN

15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN 15 PROBLEMAS TIPO SOBRE FORMULACION CON PROPUESTAS DE SOLUCIÓN Problema 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Solución 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. Una empresa fabrica dos tipos de juguetes de

Más detalles

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas.

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas. Problema 1. Se considera la región factible dada por el siguiente conjunto de restricciones: + 5 + 3 9 0, Representar la región factible que determina el sistema de inecuaciones anterior hallar de forma

Más detalles

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte 9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr

Producto Maquina A Maquina B Acabado Muñecas 2 hr 1 hr 1 hr Soldados 1 hr 1 hr 3 hr Nombre: UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS METODOS CUANTITATIVOS II EXAMEN PARCIAL I /3/7 Sección # Cuenta: Catedrático: Desarrolle en forma clara y ordenada lo que a continuación se le pide:.-

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES

II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones:

PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: PROBLEMA #1 Minimizar la función f(x, y)=2x+8y sometida a las restricciones: Llamando, respectivamente r, s y t a las rectas expresadas en las tres últimas restricciones, la zona de soluciones factibles

Más detalles

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales.

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales. UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones especiales. Investigación de operaciones Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U.

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. Nº: FIRMA: Ejercicios: 1) Que es la I.O.? 2) Realice una síntesis histórica

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles