EL COLOR. El color es una interpretación subjetiva, psicofisiológica del espectro electromagnético visible.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL COLOR. El color es una interpretación subjetiva, psicofisiológica del espectro electromagnético visible."

Transcripción

1 TEMA IV EL COLOR Generalidades El color es una interpretación subjetiva, psicofisiológica del espectro electromagnético visible. Las sensaciones luminosas o imágenes que se producen en nuestra retina, al enviarlas al celebro, son interpretadas como un conjunto de sensaciones monocromáticas que constituyen el color de la luz. El sentido de la vista no analiza individualmente cada radiación o sensación cromática. A cada radiación le corresponde una denominación de color, según la clasificación del espectro de frecuencias. Es importante indicar que distinguimos a los objetos por el color asignado según sus propiedades ópticas, pero en ellos ni se produce ni tienen color. Lo que si tienen es propiedades ópticas de reflejar, refractar y absorber los colores de la luz que reciben, es decir; el conjunto de sensaciones monocromáticas aditivas que nuestro celebro interpreta como color de un objeto depende de la composición espectral de la luz con que se ilumina y de las propiedades ópticas que posea el objeto para reflejarla, refractarla o absorberla. Fue Newton el primero en descubrir la descomposición de la luz blanca en el conjunto de colores que forma el arco iris. Al hacer pasar un haz de luz blanca a través de un prisma obtuvo el efecto de la descomposición de la luz en sus siete colores básicos según su longitud de onda.

2 El problema del color es algo esencial para cualquier iluminador, especialmente aquellos que se dedican a iluminaciones comerciales. No es posible determinar que lo que una persona observa como sensación de color determinado, es observado con la misma intensidad sensual por otra persona. Es decir si yo digo que este limón es amarillo y otro observador está de acuerdo, no tengo ninguna forma de saber si él siente el mismo amarillo que yo. Podemos decir que luz y color son inseparables ya que de hecho son la misma cosa. El color es una frecuencia y longitud de onda en el espectro electromagnético que causa una sensación particular en el cerebro humano a través del ojo. De esta forma la luz es toda la sensación del espectro visible y el color corresponde a una frecuencia concreta de éste. Así el negro es la ausencia de luz y el blanco es una mezcla equilibrada de todos los colores Clasificación de los colores según el diagrama cromático C.I.E. La evaluación subjetiva de las superficies de los objetos, tal y como son percibidas por el ojo, se interpretan en función de los atributos o cualidades del color. Éstas son: a) Claridad o esplendor: Radiación luminosa que recibimos según la iluminancia que posee el objeto. El objeto es más claro cuanto más se aleja su color del negro en la escala de grises. Hace referencia a la intensidad. b) Tono o matiz: Nombre común del color (rojo, amarillo, verde, etc.). Hace referencia a la longitud de onda, por lo tanto cuando nos referimos al color azul verdoso nos referimos a la franja de radiación comprendida entre 480 y 490 nm y dependerá de la precisión que requiera el trabajo para que se defina con la general 480/490 o la específica de 483,6 nm. c) Pureza o saturación: La proporción en que un color está mezclado con el blanco, es decir la saturación depende de la cantidad de blanco, denominándose saturado un color que no contenga blanco. Con pintura blanca y un pigmento saturado podemos hacer gradaciones de un mismo color. Hace referencia a la pureza espectral.

3 Para evitar la evaluación subjetiva del color existe el diagrama cromático en forma de triángulo, aprobada por la C.I.E., que se emplea para tratar cuantitativamente las fuentes de luz, las superficies coloreadas, las pinturas, los filtros luminosos, etc. Todos los colores están ordenados según tres coordenadas cromáticas, x, y, z, cuya suma es siempre la unidad (x + y +z = 1) y cuando cada una de ellas vale 0,333 corresponde al color blanco, Estas tres coordenadas se obtienen a partir de las potencias especificas para cada longitud de onda. Se fundamenta en el hecho de que al mezclar tres radiaciones procedentes de tres fuentes de distinta composición espectral se puede obtener una radiación equivalente a otra de distinto valor. El resultado es el triángulo de la Fig. 2, en el que con dos coordenadas cualesquiera es suficiente para determinar el color de la radiación resultante formada por la mezcla aditiva de tres componentes Temperatura de color (T c ) En el diagrama cromático C.I.E. se dibuja la curva que representa el color que emite el cuerpo negro en función de su temperatura. Se llama curva de temperatura del cuerpo negro. La temperatura de color es una expresión que se utiliza para indicar el color de una fuente de luz por comparación de ésta con el color del cuerpo

4 negro, o sea del radiante perfecto teórico (objeto cuya emisión de luz es debida únicamente a su temperatura). Como cualquier otro cuerpo incandescente, el cuerpo negro cambia de color a medida que aumenta su temperatura, adquiriendo al principio el tono de un rojo sin brillo, para luego alcanzar el rojo claro, el naranja, el amarillo y finalmente el blanco, el blanco azulado y el azul. El color, por ejemplo, de la llama de una vela, es similar al de un cuerpo negro calentado a unos K, y la llama se dice entonces que tiene una temperatura de color de K. Las lámparas incandescentes tienen una temperatura de color comprendida entre los y K, según el tipo, por lo que su punto de color determinado por las correspondientes coordenadas queda situado prácticamente sobre la curva del cuerpo negro. Esta temperatura no tiene relación alguna con la del filamento incandescente. Por lo tanto la temperatura de color no es en realidad una medida de temperatura. Define solo color y solo puede ser aplicada a fuentes de luz que tengan una gran semejanza de color con el cuerpo negro. La equivalencia práctica entre apariencia de color y temperatura de color, se establece convencionalmente según la tabla 1 En la definición, dada por el fabricante de cualquier lámpara, es esencial recabar el dato referente a la temperatura de color, e igualar todas las fuentes que hay que utilizar en una misma atmósfera en base a dichos parámetros. Este es un asunto de gran importancia, a menudo poco cuidado, especialmente por los técnicos a cargo del mantenimiento de instalaciones ya que existen problemas derivados de la falta de atención a la correcta temperatura de color de una fuente: Dos o más lámparas adyacentes deben tener además de la misma potencia y características de funcionamiento, idéntica temperatura de color, pues diferentes tonos dan aspectos horrendos. Los tubos fluorescentes deben ser necesariamente de las mismas características y fabricante.

5 Ciertos tipos de lámparas se agotan progresivamente, no necesariamente con la misma rapidez que otras adyacentes del mismo tipo y edad. Las lámparas de un mismo tipo, en un área concreta deben sustituirse al unísono Índice de rendimiento de color (IRC) El dato de temperatura de color se refiere únicamente al color de la luz, pero no a su composición espectral que resulta decisiva para reproducción de colores. Así, dos fuentes de luz pueden tener un color muy parecido y poseer al mismo tiempo unas propiedades de reproducción cromática muy diferentes. El índice de reproducción cromática (IRC), es la capacidad de una lámpara o de una fuente de emisión de luz de reproducir los colores con fidelidad es decir caracteriza la capacidad de reproducción cromática de los objetos iluminados con una fuente de luz. El IRC ofrece una indicación de la capacidad de la fuente de la luz para reproducir colores normalizados, en comparación con la reproducción proporcionada por una luz patrón de referencia. Este índice tiene una escala de 1 al 100 siendo el máximo posible un nivel de reproducción cromática de la lámpara o fuente de 100 que generalmente corresponde a la luz blanca con espectro continuo y completo. Por lo tanto la temperatura de color de una lámpara está estrechamente ligada al IRC y se debe tener en cuenta sobre todo en aquellas iluminaciones que conlleven imitaciones de color o donde la correcta percepción del color sea esencial como industrias gráficas, químicas, textiles etc. La luz natural blanca ideal es la que se acerca a los ºK color de la luz del sol en su cenit. La luz cálida desviada hacia el amarillo-rojo tiene una temperatura de color baja ºK en tanto que la luz fría 8.000/ ºK tiende hacia el azul-violeta.

6 Grupos de rendimiento de color de las lámparas: En la tabla siguiente se presentan grupos de rendimiento en color de las lámparas con sus aplicaciones recomendadas Efectos psíquicos de los colores y su armonía Está comprobado que el color del medio ambiente produce en los observadores reacciones psíquicas o emocionales aunque no se pueden establecer reglas fijas para la elección del color apropiado con el fin de conseguir un efecto determinado. De acuerdo con la experiencia se puede indicar que una de las primeras sensaciones que una determinada iluminación produce es la de calor o frío de aquí que se hable de colores cálidos o colores fríos. Los colores cálidos son los que en el espectro visible van desde el rojo al amarillo verdoso y los fríos desde el verde al azul. Un color será más calido o más frío según sea su tendencia hacia el rojo o hacia el azul respectivamente. Los colores cálidos suelen ser dinámicos, excitantes y producen una sensación de proximidad, además de animar y dar sensación de ligereza, mientras que los colores fríos calman y descansan, produciendo una sensación de lejanía, deprimen y producen sensación de pesadez.

7 Cuando se combinan dos o más colores y producen un efecto agradable, se dice que armonizan. La armonía de colores se produce, mediante la elección de una combinación de colores que es agradable y hasta placentera para el observador en una situación determinada.

8 TEMA V MAGNITUDES LUMINOSAS En la técnica de la iluminación intervienen dos elementos básicos: la fuente productora de luz y el objeto que se va a iluminar. En este capítulo vamos a ver las magnitudes y unidades de medida fundamentales, empleadas para valorar y comparar las cualidades y los efectos de las fuentes de luz. Flujo Luminoso (Potencia Luminosa) La energía transformada por los manantiales luminosos no se puede aprovechar totalmente para la producción de luz. Por ejemplo, una lámpara incandescente consume una determinada energía que transforma en energía radiante, de la cual sólo una pequeña parte (alrededor del 10%) es percibida por el ojo humano en forma de luz, mientras que el resto se pierde en calor. El flujo luminoso que produce una fuente de luz es la cantidad total de luz emitida o radiada, en un segundo, en todas las direcciones, siendo el significado del flujo luminoso el de la potencia luminosa propia de una lámpara. De una forma más precisa, se llama flujo luminoso de una fuente a la energía radiada que recibe el ojo medio humano según su curva de sensibilidad y que transforma en luz durante un segundo. El flujo luminoso se representa por la letra griega Φ (Fi mayúscula) y su unidad es el Lumen (lm). El lumen es el flujo luminoso de la radiación monocromática que se caracteriza por una frecuencia de valor Hz. y por un flujo de energía radiante de 1/683 W. Un watio de energía radiante de longitud de onda de 555 nm que en el aire equivale a 683 lm aproximadamente. Medida del flujo luminoso La medida del flujo luminoso se realiza en el laboratorio por medio de un fotoelemento ajustado según la curva de sensibilidad fotópica del ojo a las radiaciones monocromáticas, incorporado a una esfera hueca a la que se le da el nombre de Esfera de Ulbricht, y en cuyo interior se coloca la fuente a medir. Los fabricantes dan el flujo de las lámparas en lúmenes para la potencia nominal.

9 Rendimiento luminoso (Eficacia Luminosa) El rendimiento luminoso de una fuente de luz, indica el flujo que emite la misma por cada unidad de potencia eléctrica consumida para su obtención. Se representa por la letra griega ε, siendo su unidad el lumen/watio (lm/w). La fórmula que expresa la eficacia luminosa es: Φ ε = P (lm/w). Si se lograse fabricar una lámpara que transformara sin pérdidas toda la potencia eléctrica consumida en luz a una longitud de onda de 555 nm, esta lámpara tendría el mayor rendimiento posible, cuyo valor sería 683 lm/w. Cantidad de Luz (Energía Luminosa) De forma análoga a la energía eléctrica que se determina por la potencia eléctrica en la unidad de tiempo, la cantidad de luz o energía luminosa se determina por la potencia luminosa o flujo luminoso emitido en la unidad de tiempo.

10 La cantidad de luz se representa por la letra Q, y su unidad es el lumen por hora (lm. h) La fórmula que expresa la cantidad de luz es: Q = Φ. t (lm. h) Intensidad Luminosa Esta magnitud se entiende únicamente referida a una determinada dirección y contenida en un ángulo sólido w. Al igual que a una magnitud de superficie corresponde un ángulo plano que se mide en radianes, a una magnitud de volumen le corresponde un ángulo sólido o estéreo que se mide en estereoradianes. El radián se define como el ángulo plano que corresponde a un arco de circunferencia de longitud igual al radio. El estereoradián se define como el ángulo sólido que corresponde a un casquete esférico cuya superficie es igual al cuadrado del radio de la esfera.

11 La intensidad luminosa de una fuente de luz es igual al flujo emitido en una dirección por unidad de ángulo sólido en esa dirección. Su símbolo es I, su unidad es la candela (cd) y la fórmula que la expresa: Φ I = (lm/sr) ω La candela se define como la intensidad luminosa de una fuente puntual que emite un flujo luminoso de un lumen en un ángulo sólido de un estereoradián (sr). Según el S.I., también se define candela como la intensidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia Hz y cuya intensidad energética en dicha dirección es 1/683 watios por estereoradián. Iluminancia (Nivel de Iluminación) La iluminancia o nivel de iluminación de una superficie es la relación entre el flujo luminoso que recibe la superficie y su área. Se simboliza por la letra E, y su unidad es el lux (lx). La fórmula que expresa la luminancia es:

12 Φ E = (lx = lm/m 2 ) S Se deduce de la fórmula que cuanto mayor sea el flujo luminoso incidente sobre una superficie, mayor será su iluminancia, y que, para un mismo flujo luminoso incidente, la iluminancia será tanto mayor en la medida en que se disminuya la superficie. Según el S.l., el lux se define como la iluminancia de una superficie que recibe un flujo luminoso de un lumen, repartido sobre un metro cuadrado de superficie. Medida del Nivel de Iluminación La medida del nivel de iluminación se realiza por medio de un aparato especial denominado luxómetro, que consiste en una célula fotoeléctrica que, al incidir la luz sobre su superficie, genera una débil corriente eléctrica que aumenta en función de la luz incidente. Dicha corriente se mide con un miliamperímetro, de forma analógica o digital, calibrado directamente en lux.

13 Luminancia Se llama luminancia al efecto de luminosidad que produce una superficie en la retina del ojo, tanto si procede de una fuente primaria que produce luz, como si procede de una fuente secundaria o superficie que refleja luz. La luminancia mide brillo de las fuentes luminosas primarias y de las fuentes que constituyen los objetos iluminados. Este término ha sustituido a los conceptos de brillo y densidad de iluminación, aunque como concepto nos interesa recordar que el ojo no ve colores sino brillo, como atributo del color. La percepción de la luz es realmente la percepción de diferencias de luminancias. Se puede decir, por lo tanto, que el ojo ve diferencias de luminancias y no de iluminación (a igual iluminación, diferentes objetos tienen luminancia distinta porque tienen distinto poder de reflexión). La luminancia de una superficie iluminada es el cociente entre la intensidad luminosa de una fuente de luz, en una dirección, y la superficie de la fuente proyectada según dicha dirección. El área proyectada es la vista por el observador en la dirección de observación. Se calcula multiplicando la superficie real iluminada por el coseno del ángulo que forma su normal con la dirección de la intensidad luminosa. Se representa por la letra L, siendo su unidad la candela/metro cuadrado llamada nit (nt), con un submúltiplo, la candela centímetro cuadrado o stilb, empleada para fuentes con elevadas luminancias. 1 cd 1 cd 1 nt = stilb = m 2 1 cm 2

14 La fórmula que la expresa es la siguiente: I L = S. cos β Donde: S.cos β = Superficie aparente. La luminancia es independiente de la distancia de observación. Medida de la Luminancia La medida de la luminancia se realiza por medio de un aparato especial llamado luminancímetro o nitómetro. Se basa en dos sistemas ópticos, uno de dirección y otro de medición.

15 El de dirección se orienta de forma que la imagen coincida con el punto a medir, la luz que llega una vez orientado se ve convertida en corriente eléctrica y recogida en lectura análoga o digital, siendo los valores medidos en cd/m 2 Otras magnitudes luminosas de interés Coeficiente de utilización Relación entre el flujo luminoso recibido por un cuerpo y el flujo emitido por una fuente luminosa. Unidad % Símbolo η Φ Relación η = Φ e Reflectancia Relación entre el flujo reflejado por un cuerpo (con o sin difusión) y el flujo recibido. Unidad % Símbolo ρ Φ r Relación ρ = Φ Absortancia Relación entre el flujo luminoso absorbido por un cuerpo y el flujo recibido. Unidad % Símbolo α Φ a Relación α = Φ Transmitancia Relación entre el flujo luminoso transmitido por un cuerpo y el flujo recibido

16 Unidad % Símbolo ٢ Φ t Relación ٢ = Φ Factor de uniformidad media Relación entre la iluminación mínima y la media, de una instalación de alumbrado. Unidad % Símbolo U m E min Relación U m = E med Factor de mantenimiento Coeficiente que indica el grado de conservación de una instalación. Unidad % Símbolo F m Relación F m = F pl. F dl. F t. F e. F c F pl = factor posición lámpara F dl = factor depreciación lámpara F t = factor temperatura F e = factor equipo de encendido F c = factor conservación de la instalación Representación gráfica de magnitudes luminosas El conjunto de la intensidad luminosa de una fuente de luz en todas las direcciones constituye lo que se conoce como distribución luminosa. Las fuentes de luz utilizadas en la práctica tienen una superficie luminosa más o menos grande, cuya intensidad de radiación se ve afectada por la propia construcción de la fuente, presentando valores diversos en las distintas direcciones. Con aparatos especiales (como el Goniofotómetro) se puede determinar la intensidad luminosa de una fuente de luz en todas las direcciones del espacio con relación a un eje vertical. Si representamos por medio de vectores (I) la intensidad luminosa de una fuente de luz en las infinitas direcciones del espacio, engendramos un volumen que representa el valor del flujo total emitido por la fuente.

17 El sólido que obtenemos recibe el nombre de sólido fotométrico. En la figura 7 se puede apreciar el sólido fotométrico de una lámpara incandescente. Si hacemos pasar un plano por el eje de simetría de la fuente luminosa, por ejemplo, un plano meridional, obtenemos una sección limitada por una curva que se denomina curva fotométrica o curva de distribución luminosa (Fig.8)

18 Mediante la curva fotométrica de una fuente de luz se puede determinar con exactitud la intensidad luminosa en cualquier dirección, dato necesario para algunos cálculos de iluminación. Cuando alojamos una lámpara en un reflector, se distorsiona su flujo proporcionando un volumen cuya forma es distinta, ya que depende de las características propias del reflector. Por consiguiente, las curvas de distribución según los distintos planos son diferentes. En las dos siguientes figuras podemos ver dos ejemplos en los que se han representado las curvas de distribución de los reflectores. El de la Fig. 10 es

19 simétrico, y tiene idénticas curvas para cualquiera de los planos meridionales, por lo que una sola curva es suficiente para su identificación fotométrica. El ejemplo de la Fig, 11 es asimétrico y cada plano tiene una curva diferente, por lo que es necesario conocer todos los planos.

20 Otro método de representar la distribución del flujo luminoso es el diagrama de curvas isocandelas (Fig. 12) el cual consiste en imaginar la luminaria en el centro de una esfera en cuya superficie exterior se unen por una línea los puntos de igual intensidad (curvas isocandelas). Generalmente las luminarias tienen como mínimo un plano de simetría, por lo que se desarrolla solamente una semiesfera. El flujo emitido por una fuente luminosa proporciona una iluminación (iluminancia) en una superficie, cuyos valores se miden en lux. Si proyectamos estos valores sobre un mismo plano y unimos por medio de una línea los de igual valor, entonces daremos lugar a las curvas isolux (Fig.13).

21 Por último tenemos las luminancias, que dependen del flujo luminoso reflejado por una superficie en la dirección del observador. Los valores se miden en candelas por metro cuadrado (cd/m2) y su representación nos viene dada por las curvas isoluminancias (Fig. 14)

22

23 TEMA VI PRINCIPIOS FUNDAMENTALES Ley de la inversa del cuadrado de la distancia Desde los experimentos primitivos se ha comprobado que las iluminancias producidas por las fuentes de luz, disminuyen inversamente con el cuadrado de la distancia desde el plano a iluminar a la fuente. Se expresa por la fórmula siguiente: I E = d 2 (lx) Donde E es el nivel de iluminación en lux (lx), I es la intensidad de la fuente en candelas (cd), y d es la distancia de la fuente de luz al plano receptor perpendicular. De esta forma podemos establecer la relación de iluminancias E 1 y E 2 que hay entre dos planos separados una distancia d y D de la fuente de luz respectivamente: E 1. d 2 = E 2. D 2 E 1 D = E 2 d 2 Esta ley se cumple cuando se trata de una fuente puntual de superficies perpendiculares a la dirección del flujo luminoso. Sin embargo, se puede suponer que la ley es lo suficientemente exacta cuando la distancia a la que se toma la medición es, por lo menos, cinco veces la máxima dimensión de la luminaria (la distancia es grande con relación al tamaño de la zona fuente de luz).

24 Ley del coseno En el caso anterior la superficie estaba situada perpendicularmente a la dirección de los rayos luminosos, pero cuando forma con ésta un determinado ángulo α, la fórmula de la ley de la inversa del cuadrado de la distancia, hay que multiplicarla por el coseno del ángulo correspondiente cuya expresión constituye la llamada ley del coseno, que se expresa como: I E = cos α (lx) d 2 La iluminancia en un punto cualquiera de una superficie es proporcional al coseno del ángulo de incidencia de los rayos luminosos en el punto iluminado. En la Fig. 2 se representan dos fuentes de luz F y F con igual intensidad (l) y a la misma distancia (d) del punto P. A la fuente F con un ángulo de incidencia a igual a cero, corresponde un cos 0 = 1, y produce una iluminación en el punto P de valor:

25 I I I E p = cos 0 = = E p = (lx) d 2 d 2 d 2 De la misma forma el F con un ángulo a = 60º al que corresponde un cos a = 0,5, producirá en el mismo punto una iluminación de valor: I I 1 I E p = cos 60º = ,5 = E p = (lx) d 2 d 2 2 d 2 Por lo tanto, E p = 0,5. E p, es decir para obtener la misma iluminación en el punto P, la intensidad luminosa de la fuente F debe ser el doble de la que tiene la fuente F. En la práctica, generalmente no se conoce la distancia d del foco al punto considerado, sino su altura h a la horizontal del punto. Empleando una sencilla relación trigonométrica y sustituyendo ésta en la ecuación inicial, obtenemos una nueva relación en la cual interviene la altura h: h h cos α =----- por lo tanto d = d cos α I I I E p = cos α = cos α = cos 2 α. cos α; d 2 (h/cos α) 2 h 2

26 I Ep = cos 3 α (lx) h 2 Ley de Lambert Existen superficies emisoras o difusas que al observarlas desde distintos ángulos se tiene la misma sensación de claridad. A estas superficies se las denomina emisores o difusores perfectos. Si L o es la luminancia según la normal y L α la luminancia según el ángulo de observación α, se verifica que L α = L o para cualquier ángulo α I o Como L o = y L α = , S S. cos α I α se cumple la ecuación: I α = I o. cos α Esta relación se conoce como Ley de Lambert y sólo cumplen los emisores o difusores perfectos.

MAGNITUDES LUMINOSAS. Capítulo 5.

MAGNITUDES LUMINOSAS. Capítulo 5. Capítulo 5. MAGNITUDES LUMINOSAS 5.. Flujo luminoso (Potencia luminosa).......................... 47 5.2. Cantidad de luz (Energía luminosa).......................... 48 5.3. Intensidad luminosa......................................

Más detalles

Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación.

Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación. LUMINOTECNIA Conceptos Básicos Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación. Iniciemos su estudio examinando las variaciones electromagnéticas

Más detalles

5.1. Magnitudes radiométricas

5.1. Magnitudes radiométricas 5. Radiometría y fotometría 5.1. Magnitudes radiométricas y fotométricas tricas 1 5. Radiometría y fotometría. 2 Magnitudes radiométricas y fotométricas tricas Radiometría rama de la Física dedicada a

Más detalles

LEYES DE LA ILUMINACIÓN

LEYES DE LA ILUMINACIÓN ILUMINACIÓN LEYES DE LA ILUMINACIÓN 1 DEFINICIONES - RESUMEN Flujo luminoso (Φ) es la cantidad de energía radiada por una fuente y que es capaz de generar sensación visual.- Lumen (lm) Eficiencia lumínica

Más detalles

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.

Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda. La luz es una forma de energía la cual llega a nuestros ojos y nos permite ver, es un pequeño conjunto de radiaciones electromagnéticas de longitudes de onda comprendidas entre los 380 nm y los 770 nm.(nm

Más detalles

Conceptos básicos asociados al alumbrado de exteriores

Conceptos básicos asociados al alumbrado de exteriores Conceptos básicos asociados al alumbrado de exteriores Hector Beltran San Segundo f2e Castelló, 3 de juny de 2014 Contenido: Introducción al alumbrado exterior Parámetros básicos en alumbrado Tipos de

Más detalles

Luminotecnia. Prof. Luz Stella Moreno Martín

Luminotecnia. Prof. Luz Stella Moreno Martín Luminotecnia Prof. Luz Stella Moreno Martín Tema II Fotometría Luminotecnia Es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación Atenas-Grecia Denver Petersburg

Más detalles

ILUMINACION ARTIFICIAL

ILUMINACION ARTIFICIAL ILUMINACION ARTIFICIAL MATERIALIDAD II Taller DI BERNARDO 1 Luz Artificial La luz es energía radiante capaz de excitar el ojo humano...... Producir una sensacion visual...... Percepción visual. LUZ-VISION-INFORMACIÓN.

Más detalles

B.0. Introducción y unidades de medida

B.0. Introducción y unidades de medida B.0. Introducción y unidades de medida B.0.1. La era de la información. Corresponde al auge de la optoelectrónica. Optoelectrónica: técnica de procesar la información mediante la luz. Necesidad de medios

Más detalles

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012 COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ abril 2012 LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E

Más detalles

CARACTERÍSTICAS DE LAS FUENTES DE LUZ

CARACTERÍSTICAS DE LAS FUENTES DE LUZ CARACTERÍSTICAS DE LAS FUENTES DE LUZ LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies CARACTERISTICAS DE UNA FUENTE DE LUZ INTENSIDAD/DISTRIBUCION

Más detalles

La formación de la visión humana del color

La formación de la visión humana del color COLOR DEFINICIÓN El color es una percepción visual que se genera en el cerebro al interpretar las señales nerviosas que le envían los foto receptores de la retina del ojo y que a su vez interpretan y distinguen

Más detalles

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E incidente

Más detalles

SISTEMAS DE ALUMBRADO

SISTEMAS DE ALUMBRADO Universidad Tecnológica Nacional Facultad Regional Rosario Dpto. de Ingeniería Civil Instalaciones Eléctricas y Acústica TEMA: Y DISEÑO LUMINICO Fecha: Junio 2014 Versión: 3 Ing. Alfredo Castro Ing. Marcos

Más detalles

3- LUZ Y COLOR. CURVA V Y EFECTO PURKINJE (Purkinje Shift) CAPITULO 3 - Página 1 de 7

3- LUZ Y COLOR. CURVA V Y EFECTO PURKINJE (Purkinje Shift) CAPITULO 3 - Página 1 de 7 3- LUZ Y COLOR El color es un factor muy importante en el efecto emocional de cualquier espacio. Sin luz no hay color. Hay dos formas de reconocimiento del color: el color de la luz, que involucra la composición

Más detalles

Electrotecnia General Tema 54 TEMA 54 EJEMPLOS DE CÁLCULOS DE ILUMINACIÓN DE INTERIORES

Electrotecnia General Tema 54 TEMA 54 EJEMPLOS DE CÁLCULOS DE ILUMINACIÓN DE INTERIORES TEMA 54 EJEMPLOS DE CÁLCULOS DE ILUMINACIÓN DE INTERIORES 54.1 ILUMINACIÓN DE UN LOCAL ADMINISTRATIVO Se trata de la iluminación de una oficina cuyo cometido visual se considera normal. 54.1.1 Datos de

Más detalles

MAGNITUDES Y UNIDADES EN RADIOMETRÍA Y FOTOMETRÍA OPTOELECTRÓNICA

MAGNITUDES Y UNIDADES EN RADIOMETRÍA Y FOTOMETRÍA OPTOELECTRÓNICA MAGNITUDES Y UNIDADES EN RADIOMETRÍA Y FOTOMETRÍA OPTOELECTRÓNICA I. MAGNITUDES Y UNIDADES RADIOMÉTRICAS 1. ENERGÍA RADIANTE: Energía emitida, transferida o recibida en forma de radiación. Símbolo: Qe,

Más detalles

COLOR. Pag.1/7. Área: FÍSICO-QUÍMICA Asignatura: FÍSICA. Título. Curso: 4 TO Año: 2012 AÑO

COLOR. Pag.1/7. Área: FÍSICO-QUÍMICA Asignatura: FÍSICA. Título. Curso: 4 TO Año: 2012 AÑO Área: FÍSICO-QUÍMICA Asignatura: FÍSICA Título COLOR Prof: BOHORQUEZ MARTINEZ LARGHI STRUM - TAITZ WALITZKY -IGNACIO D AMORE EZEQUIEL Curso: 4 TO Año: 2012 AÑO Pag.1/7 Dispersión de la luz Ya sabemos que

Más detalles

La luz es una radiación electromagnética que se comporta como onda y como partícula. La luz tiene un amplio espectro, pero el ojo humano solo puede

La luz es una radiación electromagnética que se comporta como onda y como partícula. La luz tiene un amplio espectro, pero el ojo humano solo puede La luz es una radiación electromagnética que se comporta como onda y como partícula. La luz tiene un amplio espectro, pero el ojo humano solo puede ver una pequeña parte, entre los 400 y 700 nm. Órgano

Más detalles

VENTAJAS DE LA ILUMINACIÓN LED

VENTAJAS DE LA ILUMINACIÓN LED VENTAJAS DE LA ILUMINACIÓN LED Qué es un LED? LED viene de las siglas en inglés Lighting Emitting Diode (Diodo emisor de Luz). El LED es un diodo semiconductor que al ser atravesado por una corriente eléctrica

Más detalles

INTRODUCCION A LA INGENIERIA DE ILUMINACION

INTRODUCCION A LA INGENIERIA DE ILUMINACION 1 INTRODUCCION L INGENIERI DE ILUMINCION Introducción La luz es una forma de Energía Radiante Electromagnética y, por consiguiente, posee longitudes de onda y frecuencias inherentes, como todo fenómeno

Más detalles

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

CAPITULO I: La Luz CAPITULO I: LA LUZ 1 CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción

Más detalles

APUNTES: ILUMINACIÓN ESCUELA POLITÉCNICA SUPERIOR DE ALCOY UNIVERSIDAD POLITÉCNICA DE VALENCIA. 3 er Curso, Grado en Ingeniería Eléctrica

APUNTES: ILUMINACIÓN ESCUELA POLITÉCNICA SUPERIOR DE ALCOY UNIVERSIDAD POLITÉCNICA DE VALENCIA. 3 er Curso, Grado en Ingeniería Eléctrica UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA POLITÉCNICA SUPERIOR DE ALCOY DEPARTAMENTO DE INGENIERÍA ELÉCTRICA APUNTES: ILUMINACIÓN 3 er Curso, Grado en Ingeniería Eléctrica Profesor: Pedro Ángel Blasco

Más detalles

CAPI P TU T LO L 1 LUZ UZ VI SION Y ON COLOR COL

CAPI P TU T LO L 1 LUZ UZ VI SION Y ON COLOR COL CAPITULO 1 LUZ, VISION Y COLOR EL PROCESO DE LA VISION En el proceso de la visión se encuentran presentes cuatro elementos fundamentales: la luz, un objeto, un receptor (el ojo) y un decodificador (el

Más detalles

HOJA DE DATOS NOMBRE MAT.. FECHA.. Cal.

HOJA DE DATOS NOMBRE MAT.. FECHA.. Cal. DISEÑO ELECTRICO PARA ARQUITECTOS. CALCULO DE ILUMINACION METODOS DE LOS LUMENES ING. CIPRIAN GARCIA MARQUEZ HOJA DE DATOS NOMBRE MAT.. FECHA.. Cal.. DATOS a) Iluminancia en lux Em Área b) Distancia; planos

Más detalles

Capítulo 2 Unidades y conceptos de iluminación

Capítulo 2 Unidades y conceptos de iluminación Capítulo 2 Unidades y conceptos de iluminación Sin tratar de profundizar en los conceptos y ecuaciones físicas, analizaremos aquellos que son fundamentales para el estudio y análisis de los sistemas de

Más detalles

color Educación Artística 3 año A, B y C (Sec.) 2013 Colegio Tulio García Fernández Prof. Bruno Juliano

color Educación Artística 3 año A, B y C (Sec.) 2013 Colegio Tulio García Fernández Prof. Bruno Juliano color APUNTES PROYECTO DOS Educación Artística 3 año A, B y C (Sec.) 2013 Colegio Tulio García Fernández Prof. Bruno Juliano www.eatulio.wordpress.com QUÉ ES EL COLOR? Donde hay luz, hay color. La percepción

Más detalles

TEMA 3.- CARACTERÍSTICAS FOTOMÉTRICAS DE LOS INSTRUMENTOS ÓPTICOS

TEMA 3.- CARACTERÍSTICAS FOTOMÉTRICAS DE LOS INSTRUMENTOS ÓPTICOS 1/ 1 TEM 3.- CRCTERÍSTICS FOTOMÉTRICS DE LOS INSTRUMENTOS ÓPTICOS Magnitudes fotométricas. Relaciones básicas de la fotometría. Iluminación de la imagen proporcionada por un Instrumento Óptico Objetivo.

Más detalles

TEORÍA DEL COLOR COLORES LUZ Y MEZCLA ADITIVA

TEORÍA DEL COLOR COLORES LUZ Y MEZCLA ADITIVA COLORES LUZ Y MEZCLA ADITIVA Newton (1642-1727) primero y Young (1773-1829) después, establecieron un principio que hoy nadie discute: la luz es color. Para llegar a este convencimiento, Isaac Newton se

Más detalles

(380) violeta (400) añil (440) azul (470) verde (500) amarillo (560) anaranjado ( ) rojo (780)

(380) violeta (400) añil (440) azul (470) verde (500) amarillo (560) anaranjado ( ) rojo (780) SINOPSIS DE TEORÍA Y USO DEL COLOR Esta sinopsis no es autónoma. Se complementa con los ejercicios de color domiciliarios y los comentarios hechos en clase, así como con la visualización de ejemplos de

Más detalles

Este estímulo puede ser producido de diferentes maneras. color luz el color pigmento. Color Luz Color Pigmento absorbe refracta refleja

Este estímulo puede ser producido de diferentes maneras. color luz el color pigmento. Color Luz Color Pigmento absorbe refracta refleja Parámetros del Color Color Luz Un aspecto importante a considerar es que la sensación de color es mayormente un estímulo físico que viene del mundo exterior y que es proyectado en la retina del ojo. el

Más detalles

Unidad Didáctica 3. El Color

Unidad Didáctica 3. El Color Unidad Didáctica 3 El Color 1.- El Color El color de los cuerpos depende de las radiaciones de luz absorbidas por su estructura molecular y las longitudes de onda que el cuerpo refleja. La propiedad cromática

Más detalles

Color como magnitud física?

Color como magnitud física? El color Color como magnitud física? Hay magnitudes físicas que son detectables objetivamente (mediante aparatos) como energía, tiempo, longitud, peso. Sin embargo, cuando las magnitudes físicas se convierten

Más detalles

SISTEMAS DE ILUMINACION LED

SISTEMAS DE ILUMINACION LED SISTEMAS DE ILUMINACION LED VENTAJAS Y DESVENTAJAS Leopoldo Rodríguez Rübke Luz Es una onda electromagnética que sensibiliza la retina de un ser humano. Sensibilidad a la luz Cómo se genera la luz Se produce

Más detalles

CURSO: INSPECCION VISUAL NIVEL II DIRECTO

CURSO: INSPECCION VISUAL NIVEL II DIRECTO CURSO: INSPECCION VISUAL NIVEL II DIRECTO OBJETIVOS: El objetivo del curso de Inspección Visual nivel II DIRECTO es capacitar en forma general al participante en: los principios del método y sus técnicas

Más detalles

Fundamentos de alumbrado

Fundamentos de alumbrado Fundamentos de alumbrado Magnitudes y unidades Philips Lighting Academy Fundamentos de Alumbrado Magnitudes y unidades Professional & Master Oct 2008 v01 Magnitudes y unidades - Agenda Introducción Unidades

Más detalles

L U M I N O T E C N I A: Cálculo según el método del punto por punto

L U M I N O T E C N I A: Cálculo según el método del punto por punto L U M I N O T E C N I A: Cálculo según el método del punto por punto Profesores: Blanca Giménez, Vicente (vblanca@csa.upv.es) Castilla Cabanes, Nuria (ncastilla@csa.upv.es) Cortés López, José Miguel (jocorlo1@csa.upv.es)

Más detalles

CONSTRUCCIONES E INSTALACIONES. TEMA: Iluminación INTEGRANTES: Sarah Yabeta S. Diego E. Roca DOCENTE: Ing. Juan Pablo Amaya

CONSTRUCCIONES E INSTALACIONES. TEMA: Iluminación INTEGRANTES: Sarah Yabeta S. Diego E. Roca DOCENTE: Ing. Juan Pablo Amaya CONSTRUCCIONES E INSTALACIONES TEMA: Iluminación INTEGRANTES: Sarah Yabeta S. Diego E. Roca DOCENTE: Ing. Juan Pablo Amaya CONCEPTO DE ILUMINACION Iluminación, del latín illuminatio, es la acción y efecto

Más detalles

Instrucción Técnica Complementaria EA - 03 Resplandor luminoso nocturno y luz intrusa o molesta

Instrucción Técnica Complementaria EA - 03 Resplandor luminoso nocturno y luz intrusa o molesta Instrucción Técnica Complementaria EA - 03 Resplandor luminoso nocturno y luz intrusa o molesta INDICE 1. RESPLANDOR LUMINOSO NOCTURNO... 2 1.1 LIMITACIONES DE LAS EMISIONES LUMINOSAS... 4 1.2 LÁMPARAS...

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

FLUJO LUMINOSO. Figura 16. Curva de sensibilidad del ojo humano.

FLUJO LUMINOSO. Figura 16. Curva de sensibilidad del ojo humano. FLUJO LUMINOSO La mayoría de las fuentes de luz emiten energía electromagnética distribuida en múltiples longitudes de onda. Se suministra energía eléctrica a una lámpara, la cual emite radiación. Esta

Más detalles

La fotografía se hace a partir de la luz, que refleja el motivo y que impresiona la emulsión de la película o el sensor.

La fotografía se hace a partir de la luz, que refleja el motivo y que impresiona la emulsión de la película o el sensor. La Luz La fotografía se hace a partir de la luz, que refleja el motivo y que impresiona la emulsión de la película o el sensor. La luz puede enfatizar los detalles importantes o eliminarlos por completo.

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

El color de los cuerpos depende de las radiaciones de luz absorbidas por su estructura molecular y las longitudes de onda que el cuerpo refleja.

El color de los cuerpos depende de las radiaciones de luz absorbidas por su estructura molecular y las longitudes de onda que el cuerpo refleja. COLOR El sentimiento del color es tan viejo como la humanidad. El hombre de la época glacial, hace más de 20.000 años ya utilizaba colores minerales para representar su vida y cuanto le rodeaba (bisontes,

Más detalles

L m u i m n i o n t o ec e n c i n a

L m u i m n i o n t o ec e n c i n a LUMINOTECNIA LA LUZ Y LA VISIÓN LUMINOTECNIA La Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación. LUMINOTECNIA La luz natural y artificial

Más detalles

El color es una ilusión

El color es una ilusión EL COLOR El color es una ilusión El color es una sensación producida por el reflejo de la luz en la materia y trasmitida por el ojo al cerebro. Es un producto de la mente, una experiencia subjetiva. La

Más detalles

INTRODUCCION A LAS FUENTES LUMINOSAS

INTRODUCCION A LAS FUENTES LUMINOSAS INTRODUCCION A LAS FUENTES LUMINOSAS RAQUEL PUENTE GARCÍA Dr. Ing. Industrial, Profesor Titular de la ETSAM PARAMETROS FUNDAMENTALES. 1- TEMPERATURA DE COLOR. Dos manantiales luminosos cuyas características

Más detalles

RESPUESTA DE EXAMEN ACONDICIONAMIENTO LUMINICO DICIEMBRE PAGINA 1 DE 6. Nombre: C.I.:

RESPUESTA DE EXAMEN ACONDICIONAMIENTO LUMINICO DICIEMBRE PAGINA 1 DE 6. Nombre: C.I.: RESPUESTA DE EXAMEN ACONDICIONAMIENTO LUMINICO DICIEMBRE 2012 - PAGINA 1 DE 6 ACONDICIONAMIENTO LUMINICO EXAMEN JULIO 2012 Nombre: C.I.: Se solicita: a) Calcule la potencia de las lámparas a Emplear a

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

ILUMINACION Y COLOR ILUMINACION ILUMINACION Y COLOR. Iluminación: Color: Decreto 351/79. Requerimientos Legales. (Capítulo 12 y Anexo IV)

ILUMINACION Y COLOR ILUMINACION ILUMINACION Y COLOR. Iluminación: Color: Decreto 351/79. Requerimientos Legales. (Capítulo 12 y Anexo IV) Y COLOR Y COLOR Decreto 351/79 (Capítulo 12 y Anexo IV) Iluminación: Requerimientos legales. Visión Factores. Proyecto de Instalación. Color: Clasificación - Impresión. Como factor de Seguridad. Requerimientos

Más detalles

CALCULO DE LUMINARIAS METODOS DE LOS LUMENS POR AREAS

CALCULO DE LUMINARIAS METODOS DE LOS LUMENS POR AREAS DISEÑO ELECTRICO CALCULO DE LUMINARIAS METODOS DE LOS LUMENS POR AREAS FACTORES FUNDAMENTALES QUE SE DEBEN TENER EN CUENTA AL REALIZAR EL DISEÑO DE UNA INSTALACIÓN Iluminancias requeridas (niveles de flujo

Más detalles

BARRAS LED IP68 (Waterproof LED Bar)

BARRAS LED IP68 (Waterproof LED Bar) BARRAS LED (Waterproof LED Bar) Novedoso sistema de iluminación que protege y alarga la vida de los LEDs en condiciones extremas. Se diseñó para incrementar el crecimiento de las plantas en los invernaderos,

Más detalles

EL COLOR UNITED COLORS OF BENETTON

EL COLOR UNITED COLORS OF BENETTON EL COLOR UNITED COLORS OF BENETTON El color define la forma y los contornos de los objetos, comunica sentimientos, evoca sensaciones, emociones y estados de ánimo. DEFINICION Tres factores hacen posible

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

LOS OBJETOS. Textos y fotos Fernando Moltini

LOS OBJETOS. Textos y fotos Fernando Moltini LOS OBJETOS Textos y fotos Fernando Moltini Como son percibidos los colores de los objetos. Un cuerpo opaco, es decir no transparente absorbe gran parte de la luz que lo ilumina y refleja una parte más

Más detalles

COLORES PATRONES UTILIZADOS EN SEÑALES Y COLORES DE SEGURIDAD

COLORES PATRONES UTILIZADOS EN SEÑALES Y COLORES DE SEGURIDAD PERUANA 1974 Comisión de Reglamentos Técnicos y Comerciales-INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145 Lima, Perú COLORES PATRONES UTILIZADOS EN SEÑALES Y COLORES DE SEGURIDAD 74-11-28

Más detalles

FORMACIÓN DE IMÁGENES EN ESPEJOS

FORMACIÓN DE IMÁGENES EN ESPEJOS FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.

Más detalles

Techo Paredes Suelo Coeficiente de reflexión Luminaria 4 Luminaria 5 Luminaria 6 Coeficiente de utilización

Techo Paredes Suelo Coeficiente de reflexión Luminaria 4 Luminaria 5 Luminaria 6 Coeficiente de utilización 1. Queremos diseñar una instalación de alumbrado para una oficina con las siguientes dimensiones: 30 m de largo por 12 m de ancho y 3.5 m de alto. La altura del plano de trabajo es de 0.76 m sobre el suelo.

Más detalles

El nanómetro (m) es una unidad de longitud del sistema métrico decimal. 1 nm = 10-9 mts Es decir en un metro hay

El nanómetro (m) es una unidad de longitud del sistema métrico decimal. 1 nm = 10-9 mts Es decir en un metro hay 1. La luz y el color 1.1. La luz Podríamos definir la luz como aquello que percibimos con el sentido de la vista. Se produce luz cuando electrones se mueven. Si algo de esa energía radiada (radiación electromagnética)

Más detalles

Introducción Iluminación Vial y Urbana. Alumbrado ambiental. Alumbrado viario tipologías distribución. Unilateral. Bilateral tresbolillo

Introducción Iluminación Vial y Urbana. Alumbrado ambiental. Alumbrado viario tipologías distribución. Unilateral. Bilateral tresbolillo Introducción Iluminación Vial y Urbana Alumbrado ambiental Alumbrado viario tipologías distribución Unilateral Cuando los puntos de luz se sitúan en un mismo lado de la vía de tráfico. Se utilizará generalmente

Más detalles

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos Práctica 5: Ondas electromagnéticas planas en medios dieléctricos OBJETIVO Esta práctica de laboratorio se divide en dos partes principales. El primer apartado corresponde a la comprobación experimental

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

Página Nº: 2 Laboratorio de calibración/medición supervisado por el Instituto Nacional de Tecnología Industrial

Página Nº: 2 Laboratorio de calibración/medición supervisado por el Instituto Nacional de Tecnología Industrial Página Nº: 2 Metodología empleada La lámpara utilizada para las mediciones de la iluminancia en las grillas correspondientes, fue proporcionada por el laboratorio y envejecida, previamente a su uso, 1

Más detalles

Colores Secundarios: Los colores binarios son los que se obtienen con la combinación de los colores primarios, se llaman también colores compuestos.

Colores Secundarios: Los colores binarios son los que se obtienen con la combinación de los colores primarios, se llaman también colores compuestos. Es una sensación. Esta sensación es captada por nuestros ojos y producidos por la luz. Sin la presencia de la luz es imposible la visión de los colores y cualquier otra cosa; también posemos decir que

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

EFICIENCIA LUMÍNICA 60% Qué es el LED? Dispositivo electrónico semiconductor, que es capapz de emitir luz en cualquier logitud de onda, tanto del espectro visible como no visible. LEDs Diodo emisor

Más detalles

LOS ESPECTROS DE ONDAS

LOS ESPECTROS DE ONDAS LOS ESPECTROS DE ONDAS Introducción Nos detenemos para explicar dos innovaciones, introducidas en la física del siglo XIX, que han tenido una importancia trascendental en el desarrollo de la Cosmología

Más detalles

La iluminación n en la oficina

La iluminación n en la oficina La iluminación en la oficina 1 La iluminación en la oficina Objetivos Conocer las características debe tener el espacio en el que se trabaja. Descubrir cómo afecta a nuestra percepción visual la iluminación

Más detalles

Sistemas de iluminación. Autor: Miguel Ángel Asensio Adaptación: Luis Manuel Martín Martín.

Sistemas de iluminación. Autor: Miguel Ángel Asensio Adaptación: Luis Manuel Martín Martín. Sistemas de iluminación Autor: Miguel Ángel Asensio Adaptación: Luis Manuel Martín Martín. 1 Parámetros de la luz Para poder controlar la iluminación es necesario considerar, al menos, tres parámetros

Más detalles

Luminotecnia. Prof. Luz Stella Moreno Martín

Luminotecnia. Prof. Luz Stella Moreno Martín Luminotecnia Prof. Luz Stella Moreno Martín Métodos para determinar la Iluminación en interiores Método Lumen Método de la Cavidad Zonal Método Punto a Punto Clases de instalaciones eléctricas Método Lumen

Más detalles

MAGNITUDES Y UNIDADES

MAGNITUDES Y UNIDADES MAGNITUDES Y UNIDADES El flujo luminoso (F): Es la cantidad de luz que emite una fuente de luz por unidad de tiempo, se mide en lúmenes (lm). 1W = 683 lm a 555 nm de longitud de onda. d La intensidad luminosa

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Iluminación comercial Paneles LED Tubos LED T8 - T5 Iluminación Industrial Proyectores LED Herméticas LED. El nuevo concepto de.

Iluminación comercial Paneles LED Tubos LED T8 - T5 Iluminación Industrial Proyectores LED Herméticas LED. El nuevo concepto de. Iluminación comercial Paneles LED Tubos LED T8 - T5 Iluminación Industrial Proyectores LED Herméticas LED El nuevo concepto de Ahorro Energético 8 Lista de Precios Iluminación 2016 Lista de Precios Iluminación

Más detalles

Master LEDtube estándar

Master LEDtube estándar Master EDtube estándar es el tubo ED confiable, con la mejor relación calidad-precio del portafolio de iluminación Philips; que incorpora un chip ED frontier y otras tecnologías de avanzada. EDtube ayuda

Más detalles

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional. Índice Introducción Capítulo 1: físicas, unidades y análisis dimensional. Introducción Capítulo 1:. Índice Leyes Físicas y cantidades físicas. Sistemas de unidades Análisis dimensional. La medida física.

Más detalles

Problemas de Óptica I. Óptica física 2º de bachillerato. Física

Problemas de Óptica I. Óptica física 2º de bachillerato. Física Problemas de Óptica I. Óptica física 2º de bachillerato. Física 1. Calcular la energía de un fotón de luz amarilla de longitud de onda igual a 5,8.10 3 A. Solución: 3,43.10-19 J. 2. Una de las frecuencias

Más detalles

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA ÓPTICA FÍSICA Si no considerásemos la luz como una onda electromagnética, nos sería imposible explicar los fenómenos de interferencia, dispersión, difracción y la polarización de la luz. La parte de la

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE ARQUITECTURA Y DISEÑO LICENCIATURA EN DISEÑO GRÁFICO TEORIA Y MANEJO DEL COLOR AUTOR:

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE ARQUITECTURA Y DISEÑO LICENCIATURA EN DISEÑO GRÁFICO TEORIA Y MANEJO DEL COLOR AUTOR: UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE ARQUITECTURA Y DISEÑO LICENCIATURA EN DISEÑO GRÁFICO TEORIA Y MANEJO DEL COLOR AUTOR: M.D. LAURA MA DE LOS ANGELES GONZÁLEZ GARCÍA 3er PERIODO UNIDAD

Más detalles

3. Espacios de color. 3.Espacios de color. El uso del color en el procesamiento de imágenes está principalmente motivado por dos factores:

3. Espacios de color. 3.Espacios de color. El uso del color en el procesamiento de imágenes está principalmente motivado por dos factores: 3. Espacios de color El uso del color en el procesamiento de imágenes está principalmente motivado por dos factores: El color es un poderoso descriptor que, en la mayoría de los casos simplifica la identificación

Más detalles

Conceptos básicos de luminotecnia

Conceptos básicos de luminotecnia Conceptos básicos de luminotecnia Enrique Belenguer Balaguer f2e Valencia, 13 de mayo de 2014 Contenido: Espectro electromagnético y espectro visible Sensibilidad espectral del ojo humano Espectro de emisión

Más detalles

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción? ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo

Más detalles

Liceo Tecnológico Enrique Kirberg. Artes Visuales 7 año Básico. 1ª Unidad: «Naturaleza y Diseño»

Liceo Tecnológico Enrique Kirberg. Artes Visuales 7 año Básico. 1ª Unidad: «Naturaleza y Diseño» Liceo Tecnológico Enrique Kirberg. Artes Visuales 7 año Básico. 1ª Unidad: «Naturaleza y Diseño» En la naturaleza podemos encontrar diversos tipos de: Colores Texturas Formas Estructuras Luces Sombras,

Más detalles

El color. Teoría del Color

El color. Teoría del Color El color Temperatura de Color La Temperatura de Color de una fuente luminosa es una medida numérica de su apariencia cromática. Un objeto calentado a una temperatura elevada emite luz. El color de esa

Más detalles

Se relaciona con la radio, el radar, los rayos X, etc. Todas formas de energía electromagné8ca con similares caracterís8cas:

Se relaciona con la radio, el radar, los rayos X, etc. Todas formas de energía electromagné8ca con similares caracterís8cas: Se relaciona con la radio, el radar, los rayos X, etc. Todas formas de energía electromagné8ca con similares caracterís8cas: - Irradiables por medio de un manan8al o una fuente de energía. - Pueden atravesar

Más detalles

TEMA 1. ELEMENTOS DE LA FORMA, COLOR, SINTAXIS DE LA IMAGEN Y CAMPO VISUAL

TEMA 1. ELEMENTOS DE LA FORMA, COLOR, SINTAXIS DE LA IMAGEN Y CAMPO VISUAL TEMA 1. ELEMENTOS DE LA FORMA, COLOR, SINTAXIS DE LA IMAGEN Y CAMPO VISUAL 1. ELEMENTOS DE LA FORMA Puntos. Es una línea circular, por lo general de dimensiones pequeñas, que es perceptible en una superficie

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

ILUMINACION EN GRANJAS AVICOLAS:FUTURAS TECNOLOGIAS

ILUMINACION EN GRANJAS AVICOLAS:FUTURAS TECNOLOGIAS 3ª Jornada Técnica de avicultura AECA-FIGAN ILUMINACION EN GRANJAS AVICOLAS:FUTURAS TECNOLOGIAS J.Ramón Moreno Chueca Ingeniero Agrónomo UPV.Valencia. Consultor ramonchueca5@hotmail.com CONSIDERACIONES

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles

Por qué hay diferentes colores?

Por qué hay diferentes colores? Qué son los LEDs? Los LEDs son dispositivos semiconductores de estado sólido que pueden convertir la energía eléctrica directamente en luz al aplicarle una pequeña corriente. El hecho de ser sólidos los

Más detalles

Iluminación de interiores

Iluminación de interiores Luminotecnia ENTREGA 1 Iluminación de interiores Elaborado por Ing. Jorge A. Caminos, Director Grupo de Estudio Sobre Energía (G.E.S.E.), UTN - Facultad Regional Santa Fe.. Para cualquier proyecto de iluminación

Más detalles

Índice 1. Introducción 2. Elementos: 2.1 Punto. 2.2 Línea. 2.3 Plano. 2.4 Textura. 2.5 Luz 2.6 Color.

Índice 1. Introducción 2. Elementos: 2.1 Punto. 2.2 Línea. 2.3 Plano. 2.4 Textura. 2.5 Luz 2.6 Color. Elementos del lenguaje gráfico-plástico Índice 1. Introducción 2. Elementos: 2.1 Punto. 2.2 Línea. 2.3 Plano. 2.4 Textura. 2.5 Luz 2.6 Color. 17 1. Introdución El lenguaje plástico utiliza diferentes elementos

Más detalles

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN

CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN CAPÍTULO VI TRANSPORTE DE ENERGÍA POR RADIACIÓN 6.1 El espectro de radiación electromagnética El transporte de energía por conducción y convección necesitan la existencia de un medio material. La conducción

Más detalles

leyes de la radiación Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz Ingeniería Técnica en Topografía lección 2 Teledetección

leyes de la radiación Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz Ingeniería Técnica en Topografía lección 2 Teledetección lección 2 1 sumario 2 Fuentes de radiación. El cuerpo negro. Leyes de la radiación. Terminología radiométrica. fuentes de radiación 3 Energía radiante: es la energía transportada por una onda electromagnética.

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

El Espectro Electromagnético

El Espectro Electromagnético El Espectro Electromagnético ONDAS ELECTROMAGNETICAS Se componen de un campo eléctrico y un campo magnético, ambos variando en el tiempo Su energía aumenta con la frecuencia Se distinguen ondas ionizantes

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Tono, matiz o croma. Es el atributo que diferencia el color, el color propiamente dicho: naranja, cian, verde

Tono, matiz o croma. Es el atributo que diferencia el color, el color propiamente dicho: naranja, cian, verde TEMA 12: EL COLOR. Gracias a Isaac Newton (1642-1519) sabemos hoy en día que el color de un objeto es una sensación visual, una impresión de color que se produce en nuestro cerebro. Cada color se percibe

Más detalles

RADIACIÓN ELECTROMAGNÉTICA

RADIACIÓN ELECTROMAGNÉTICA LUZ Y VISIÓN RADIACIÓN ELECTROMAGNÉTICA LUZ: ENERGIA ELECTROMAGNETICA EMITIDA DENTRO DE LA PORCION VISIBLE DEL ESPECTRO ESPECTRO ELECTROMAGNÉTICO RADIACION ULTRAVIOLETA RADIACION INFRARROJA 380-435 nm

Más detalles