Ecuaciones dinámicas no estándar a partir de lagrangianos convexos en la posición

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ecuaciones dinámicas no estándar a partir de lagrangianos convexos en la posición"

Transcripción

1 Ecuacione dinámica no etándar a partir de lagrangiano conveo en la poición J. D. Bulne Obervatório Nacional, Rua Gal. Joé Critino, 77, São Critóvão, CEP , Rio de Janeiro, RJ, Brail. bulne@on.br (Recibido el 4 de Enero de 00; aceptado el 3 de Enero de 00) Reumen En ete artículo, aprovechando la poibilidad de definir lagrangiano conveo en la variable de poición, etablecemo una nueva función dinámica y nueva ecuacione dinámica en el cao unidimenional. Para verificar la conitencia fíica de eta contrucción matemática conideramo lo cao de una partícula libre y un ocilador armónico imple. Palabra clave: Lagrangiano, Función dinámica, Ecuación dinámica. Abtract In thi article, taking advantage of the poibility of defining conve lagrangian in the poition variable, we etablih a new dynamic function and new dynamic equation in the one-dimenional cae. To verify the phyical conitency of thi mathematical contruction, we tudied the cae of the free particle and the imple harmonic ocillator. Keyword: Lagrangian, Dynamic function, Dynamic equation. PACS: i, 0.30.Zz, 45.0.Jj ISSN I. INTRODUCCIÓN Cuando e conidera un cierto itema fíico cláico interactuando con otro itema o con campo, también cláico, debe identificare un conjunto adecuado de coordenada generalizada y hacere uo de alguna ecuación dinámica para poder decribir el comportamiento dinámico de ee itema: la coordenada de centro de maa cambiará de acuerdo con una cierta ley de movimiento y el centro de maa mimo recorrerá una cierta trayectoria fíica. En ete artículo, a partir de la poibilidad matemática de que un lagrangiano conveo en la variable de poición puede er definido y aociado a un itema cláico unidimenional (-D), la que queda jutificada porque familia de lagrangiano equivalente al lagrangiano uual pueden er contruída, como fue motrado, por ejemplo, en [,, 3], obtenemo formalmente una función dinámica (no e trata del hamiltoniano) y funcione dinámica (no e trata de la canónica a travé de la aplicación de la tranformada de Legendre con relación a dicha variable, lo que contituye una variante con relación al procedimiento uual, donde e aplica dicha tranformación con relación a la variable de velocidad del lagrangiano etándar (lagrangiano conveo en la variable de poición dan utento matemático a eta variante). Contruimo dicha función dinámica en do cao: (i) una partícula libre -D, y (ii) un ocilador armónico imple, y verificamo, en ambo cao, que la (nueva ecuacione dinámica llevan a la ecuacione de movimiento correcta. Lo correpondiente cálculo y la etrucutura general de ete artículo on ofrecido en el iguiente orden: En la ubección A obtenemo una epreión general para lo lagrangiano equivalente (al etándar) de un itema cláico -D; en la ección II, procediendo formalmente, contruimo una función dinámica y la ecuacione dinámica, que denominano no etándar ; en la eccione III y IV conideramo lo cao del ocilador armónico imple y de la partícula libre, repectivamente, y verificamo la conitencia fíica tanto de la (nueva) función dinámica como de la (nueva ecuacione dinámica; finalmente, en la ección V, preentamo nuetra concluione. A. Lagrangiano equivalente Aquí eguimo la idea principale implementada en [, ] para obtener una epreión que define una familia de lagrangiano equivalente, la que, a pear de no er tan general como la obtenida en ea referencia, e uficientemente amplia como para incluir lagrangiano conveo en la variable de poición. Lat. Am. J. Phy. Educ. Vol. 4, No., Jan

2 J. D. Bulne De la ecuación de Euler-Lagrange, ecrita en forma dearrollada, podemo obtener una ecuación diferencial para lo lagrangiano i e que uponemo que la función L e deconocida, wl vl L L = 0, () vv v vt donde w, no e una variable de L. El artifício clave conite en uponer que w e obtiene de la ecuación de movimiento conocida, e decir, que w = v. Aí, la ecuación anterior no e la de Euler-Lagrange a pear de que formalmente e ecriba de la mima manera. Derivando () con repecto a la variable tenemo, Lv vlvv Lv wlvvv Lvvt = 0. () Suponiendo que ea válido ecribir, llegamo al iguiente reultado, L v = L v, (3) vlvv wlvvv Lvvt = 0. (4) Si ahora hacemo H ( = L ( obtenemo, vv vh whv Ht = 0. (5) Sea a( una olución de (5), entonce ecribimo, L vv ( = a(, (6) de donde, luego de integrar do vece, reulta, L(, tv, ) = atvdzd (,, ) σ vβ(, t α(, t, donde la funcione β y α on, hata aquí, arbitraria. Como (7) tiene que er olución de (4), luego de hacer la utitucione repectiva, vemo que tenemo que imponer la condición, (7) β α =, (8) t de manera que ahora olamente una de eta funcione e mantiene arbitraria. Finalmente podemo ecribir, a( dzd βt ( dz vβ ( L( = σ φ( t), (9) para definirla debemo reolver (5) coniderando un itema fíico concreto. II. FUNCIÓN Y ECUACIONES DINÁMICAS Conideremo un itema fíico unidimenional y un lagrangiano L aociado al mimo, no neceariamente el etándar. Supongamo que ee lagrangiano, de variable independiente t,, ea conveo en la variable de poición ; en ee cao, la tranformada de Legendre T de la función L con repecto a la variable etá bien definida, [4]. Aplicando tal tranformación e paa de la función L a la función T { L} = B, y de la variable: a la variable:. L ( B( ). (0) donde B ( queda definida a partir del valor de la función auiliar V, el que a u vez etá definido por la iguiente epreión, donde, V (, = L(, () = /. () variable a la cual vamo a denominar, por analogía con la ituación uual, la conjugada de la variable. A partir de la epreión () e debe depejar (uponiendo que ea poible) la variable, de manera que podamo ecribir, = X (, (3) Donde on variable independiente. Con eto, la tranformada de Legendre del lagrangiano L reulta er, e decir, B ( = V (, X ( ). (4) B( = X ( L ( X ( ). (5) La función B ería, formalmente, una función dinámica; verificaremo eto en la iguiente eccione al coniderar do itema fíico -D imple. A continuación, y iguiendo el procedimiento uualmente preentado en lo libro de mecánica teórica para la contrucción de la ecuacione canonica, como en Arnold [4], encontramo, donde β e una función derivable arbitraria y φ e una función arbitraria. La función L en (9) aún no e una olución de (4), pue la función a ( no etá definida; B B B X = = = v v t t,,. (6) Lat. Am. J. Phy. Educ. Vol. 4, No., Jan

3 Como B e una función dependiente de la variable, vamo a reecribir la ecuacione anteriore en término de dicha variable. Por ejemplo, para la ecuación del centro, tenemo, d = = =, (7) dt v donde, en el primer pao, hemo hecho uo de la ecuación de Euler-Lagrange. Reecribimo también la ecuación de la izquierda en (6) uando v = d / dt. De eta manera llegamo al iguiente conjunto de ecuacione, B v =, =, =, (8) t t la que, formalmente, erían ecuacione dinámica (no etándar). Lo reultado (5) y (8) contituyen el reultado principal de ete trabajo. III. EL CASO DEL OSCILADOR ARMÓNICO SIMPLE La ecuacione definida en (8) pueden er aplicada directamente al cao de un ocilador armónico imple (O.A.S.), de maa m y frecuencia w, pue u lagrangiano etándar e una función convea de, uando () coneguimo, L (, tv, ) = mv mw (9) = = (,, ) =, (0) mw mw X t v Ecuacione dinámica no etándar a partir de lagrangiano conveo en la poición = mw v = w w = 0, (4) donde hemo uado la epreión del lado izquierdo en (0), con lo cual e ha verificado que () e una función dinámica para el ocilador armónico imple (de frecuencia w ) y que (8) e un conjunto de ecuacione dinámica. IV. EL CASO DE LA PARTICULA LIBRE CON LAGRANGIANO CONVEXO EN X El lagrangiano (etándar) de la partícula libre no e conveo en, por ello uaremo la epreión general (9) para definir un (nuevo) lagrangiano que í poea eta caracterítica. La ecuación de movimiento para la partícula libre e mv = 0, y recordando el artificio mencionado en la ubección A, tenemo que la ecuación (5) queda reducida a la iguiente, vh H = 0, (5) t que e una ecuación diferencial parcial de primer orden. En ete cao, la correpondiente ecuación de la caracterítica, [5], e ecribe de la iguiente manera, d d e dv 0, v = = (6) de donde obtemo: v = c y = c t c. En (6) no tenemo otra relación independiente que podamo etraer entre la variable. Luego, la olución general de (5) tiene la iguiente forma, a( = G( vt), (7) al utituir (9) y (0) en (5) queda definida una función, B( = mv, () mw A continuación vamo a verificar que la función B tiene dinámica, con ello queremo decir que ella no conducirá a la ecuación de movimiento correcta; para ello uamo () y la ecuacione (8). Entonce, y también, v = v = 0, () mw = = mv, (3) combinando () y (3) reulta, iendo G una función arbitraria. Con ello el lagrangiano má general, uando (9), y en el cao de una particula libre -D, tiene la iguiente forma, L( = t ( dz G( η, ηt) dηdσ φ( t) β vβ ( (8) la función anterior etá bien definida. Para alcanzar nuetro propóito erá conveniente definir la iguiente funcione, β ( = z G( η, ηt) = m, φ( t) = 0, (9) iendo m una contante. Depué de hacer la debida utitucione e integracione obtenemo la función, L ( = mv vt, (30) Lat. Am. J. Phy. Educ. Vol. 4, No., Jan

4 J. D. Bulne pero ante de continuar conviene hacer alguna verificacione obre la conitencia fíica de eta función. Si la función (30) correponde a un lagrangiano de la partícula libre, entonce al emplearla en la ecuación de Euler-Lagrange no debe llevar a la ecuación de movimiento correcta. Veamo, L, = v L, v = t m (3) y uando la ecuación de Euler-Lagrange, d L, L, v = 0 m = 0, (3) dt lo cual etá correcto. Para mayor claridad, también e conveniente verificar tal validez a travé del cálculo del correpondiente hamiltoniano y del uo de la ecuacione canónica. Veamo, donde, H ( = pw ( L ( W ( ). (33) p = v = W ( = ( p t), (34) v m notar que en ete conteto, donde lo lagrangiano on má generale, ya no e má válida la epreión p = mv. Con eto el hamiltoniano queda definido por la epreión, H ( = ( p ( t m) t, (35) m Ahora uaremo la ecuacione canónica, y H = m = p (36) p H p = mp = ( t t m (37) depué de depejar p en (36) y de utituirlo en (37) obtenemo = 0, lo que etá correcto; ahora etamo eguro de que la función (30) e un (nuevo) lagrangiano de la partícula libre -D. A continuación determinamo la función B a partir del lagrangiano (30). Uando tal lagrangiano determinamo la conjugada de a travé de () y, de éta, coneguimo, = X ( = v (38) de manera que, uando (5), obtenemo, B( = ( vt) mv, (39) Ahora vamo a reolver la ecuacione (8), uando la función (39), para determinar i ella no conducen a la ecuación de movimiento correcta. Veamo, y también, v = v t v = 0, (40) = t mv v t vt = 0, (4) de donde de manera directa e encuentra mv = 0, o equivalentemente m = 0, lo que etá correcto, lo que demuetra que la función (39) y la ecuacione (8) on, como e eperaba, dinámica. V. CONCLUSIONES En ete artículo hemo eguido el procedimiento formal de contrucción del hamiltoniano a travé del lagrangiano y de la tranformación de Legendre y al hacerlo hemo coniderado una variante: la tranformada de Legendre fue aplicada con relación a la variable de poición (del lagrangiano). Como lo lagrangiano uuale, en general, no on conveo en dicha variable contruimo una epreión -de cierta generalidad- que genera un conjunto de lagrangiano no trivialmente equivalente al etándar, el que uponemo pueda incluir al meno uno que aegure que la tranformación mencionada eté bien definida, para aí dar utento matemático a dicha variante fíica; el lagrangiano (30) e uno de ee tipo. La función dinámica (5) y la ecuacione dinámica (8), que hemo denominado no etándar, correponden al cao unidimenional. Obtenemo (y verificamo la validez fíica de) la mima en do cao concreto: una partícula libre y un ocilador armónico imple. La aplicabilidad de la ecuacione dinámica (8), en el cao de un itema fíico particular, dependerá de la real poibilidad de definir un lagrangiano equivalente al etándar que ea conveo en la variable de poición. AGRADECIMIENTOS El autor agradece al Prof. Holger Valqui (UNI, Lima) por lo comentario realizado y al Conelho Nacional de Deenvolvimento Cientifico e Tecnológico, CNPq, Brail, por el apoyo financiero. REFERENCIAS [] Hojman S. and Shepley L., Lagrangiano Equivalente, Rev. Me. Fí. 8, 49 (98). Lat. Am. J. Phy. Educ. Vol. 4, No., Jan

5 Ecuacione dinámica no etándar a partir de lagrangiano conveo en la poición [] Yan, C., Contruction of Lagrangian and [4] Arnold, V., Mathematical Method of Claical Hamiltonian from the equation of motion, Am. J. Phy. Mechanic (Springer, nd Edition, New York, 989). 46, 67 (978). [5] Sneddon, I., Element of Partial Differential Equation [3] Currie, D. and Saletan, E., q-equivalent Particle (McGraw-Hill, t. Edition, Koga, 957). Hamiltonian.I. The Claical One-Simenional Cae, J. Math. Phy 7, 967 (966). Lat. Am. J. Phy. Educ. Vol. 4, No., Jan

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos XXI Congreo de Ecuacione Diferenciale y Aplicacione XI Congreo de Matemática Aplicada Ciudad Real, 21-25 eptiembre 2009 (pp. 1 8) Etudio de una ecuación del calor emilineal en dominio no-cilíndrico P.

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

1. Transformada de Laplace

1. Transformada de Laplace 1. Tranformada de Laplace Sea f : [, ) R, decimo que f e continua a trozo (continua por tramo) en [, ), i en cualquier intervalo [a, b] [, ) hay a lo má un número finito de punto de dicontinuidade t 1,...,

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

Riesgo Moral Dinámico con Agentes cuyas Preferencias tienen un Punto de Referencia

Riesgo Moral Dinámico con Agentes cuyas Preferencias tienen un Punto de Referencia Riego Moral Dinámico con Agente cuya Preferencia tienen un Punto de Referencia Alejandro Jofré * Sofía Moroni ** Andrea Repetto *** July, 2008 Reumen Hay coniderable evidencia empírica que indica que la

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

CI_UII Más ejercicios de Transformada de Laplace y Transformada inversa de Laplace 511

CI_UII Más ejercicios de Transformada de Laplace y Transformada inversa de Laplace 511 CI_UII Má ejercicio de Tranformada de aplace y Tranformada invera de aplace 5 Apéndice CI_UIII Má ejercicio de Tranformada de aplace y Tranformada invera de aplace Ejemplo de la Sección.6, propiedade de

Más detalles

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIOES BIDIMESIOALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIOES BIDIMESIOALES RESULTA DE ESTUDIAR FEÓMEOS E LOS QUE PARA CADA OBSERVACIÓ SE OBTIEE U PAR DE MEDIDAS Y, E COSECUECIA,

Más detalles

Ecuaciones diferenciales de orden superior.

Ecuaciones diferenciales de orden superior. 535 Análii matemático para Ingeniería M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO 9 Ecuacione diferenciale de orden uperior Tranformada de Laplace El objetivo de ete capítulo e introducir la

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Tema 4: Programación lineal con variables continuas: método del Simplex

Tema 4: Programación lineal con variables continuas: método del Simplex Tema 4: Programación lineal con variable continua: método del Simple Obetivo del tema: Reolver de forma gráfica un problema de programación lineal continuo Etudiar la forma equivalente de repreentación

Más detalles

CAPITULO 3: DIFERENCIACIÓN

CAPITULO 3: DIFERENCIACIÓN CAPITULO 3: DIFERENCIACIÓN 3.1 Cociente de la diferencia En mucho cao, e de interé la taa de cambio en la variable dependiente de una función cuando hay un cambio en la variable independiente. Por ejemplo,

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

Distribuciones continuas de carga: Ley de Gauss

Distribuciones continuas de carga: Ley de Gauss : Ley de Gau. Campo eléctrico de ditribucione continua de carga. Flujo del campo eléctrico. Ley de Gau. Aplicacione de la ley de Gau. BIBLIOGRAFÍA: -Tipler. "Fíica". Cap. 22. Reerté. -Serway. "Fíica".

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Etructura de Materiale Compueto Reitencia de lámina Ing. Gatón Bonet - Ing. Critian Bottero - Ing. Marco ontana Introducción Etructura de Materiale Compueto - Reitencia de lámina La lámina de compueto

Más detalles

MOTOR DE INDUCCIÓN TRIFÁSICOS

MOTOR DE INDUCCIÓN TRIFÁSICOS 1 NTRODUCCÓN MOTOR DE NDUCCÓN TRFÁSCOS Norberto A. Lemozy Lo motore aincrónico o de inducción, cuyo principio de funcionamiento etá baado en lo campo magnético giratorio dearrollado por Galileo Ferrari,

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

LEY DE GAUSS. A v. figura 5.1

LEY DE GAUSS. A v. figura 5.1 LY D GAUSS 5.1 INTRODUCCION. l campo eléctrico producido por objeto cargado etático puede obtenere por do procedimiento equivalente: mediante la ley de Coulomb o mediante la ley de Gau, ley debida a Karl

Más detalles

1. INTRODUCCIÓN HISTÓRICA. MODELO GEOCÉNTRICO Y HELIOCÉNTRICO.

1. INTRODUCCIÓN HISTÓRICA. MODELO GEOCÉNTRICO Y HELIOCÉNTRICO. a fuerza y u efecto 1 a fuerza Gravitación y u efecto 1. INODUCCIÓN HISÓICA. ODEO GEOCÉNICO Y HEIOCÉNICO. Dede lo tiempo má remoto, el Hombre conoció la exitencia de cuerpo celete que parecían movere en

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Unidad nº4-b. Métodos matemáticos de optimización no restringida Búsqueda multivariable

Unidad nº4-b. Métodos matemáticos de optimización no restringida Búsqueda multivariable Proceo Químico II Unidad nº4-b Método matemático de optimización no retringida Búqueda multivariable La optimización de uncione objetivo multivariable no lineale neceita el empleo de técnica robuta y eiciente.

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

La transformada de Laplace

La transformada de Laplace GUIA 7 La tranformada de Laplace. Concepto de la tranformada de Laplace Definición. Una función u(t) definida en t < tiene tranformada de Laplace i exite un real a > tal que la integral e t u(t) dt converge

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

Termodinámica estadística: Diferenciales, transformada de Legendre

Termodinámica estadística: Diferenciales, transformada de Legendre Termodinámica estadística: Diferenciales, transformada de Legendre Prof Jesús Hernández Trujillo 1. Diferenciales 1.1. Diferencial total La diferencial total de z = φ(, y) se define por dφ = ( ) φ d +

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

SEGUNDO PRINCIPIO DE LA TERMODINÁMICA. Funcionamiento de una nevera.

SEGUNDO PRINCIPIO DE LA TERMODINÁMICA. Funcionamiento de una nevera. SEGUNDO PRINCIPIO DE LA ERMODINÁMICA. Funcionamiento de una nevera..-a) Etablecer la condición para que un proceo ocurra epontáneamente en un itema ailado y en un proceo cíclico como el de la máquina de

Más detalles

ÓPTICA GEOMÉTRICA. Virtual: La imagen se forma al hacer concurrir en un punto al otro lado del espejo rayos que divergen tras reflejarse en el espejo.

ÓPTICA GEOMÉTRICA. Virtual: La imagen se forma al hacer concurrir en un punto al otro lado del espejo rayos que divergen tras reflejarse en el espejo. 12 ÓPTI GEOMÉTRI UESTIONES 1. La imagen de un objeto que e refleja en un epejo plano erá: a) Real, invertida y má pequeña. b) Virtual, invertida y del mimo tamaño. c) Real, derecha y del mimo tamaño. d)

Más detalles

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK DETERMINACIÓN DEL COMPORTAMIENTO DE LA POBLACIONE DE PECE E INERTEBRADO MEDIANTE LA ARIACIÓN DE CAUDALE A TRAÉ UNA IMULACIÓN EN IMULINK ÁREA TEMÁTICA: ECOHIDRÁULICA MODALIDAD DE PREENTACIÓN: PREENTACIÓN

Más detalles

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia.

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia. El alumno realizará una opción de cada uno de lo bloque. La puntuación máxima de cada problema e de punto, y la de cada cuetión de 1,5 punto. BLOQUE I-PROBLEMAS Se determina, experimentalmente, la aceleración

Más detalles

Revista Dugandia, Ciencias Básicas, Uniatlántico Volumen 1, No. 1, Enero-Junio 2005

Revista Dugandia, Ciencias Básicas, Uniatlántico Volumen 1, No. 1, Enero-Junio 2005 TAMAÑO DE MUESTRA PARA POBLACIONES MULTINOMIALES EN MUESTREO BIETÁPICO Svetlana Ivanovna Rudnykh. Departamento de Fíica Univeridad del Atlántico Km 7 antigua vía a Puerto Colombia, A.A. 1890, Barranquilla,

Más detalles

INTRODUCCIÓN Y AGRADECIMIENTOS

INTRODUCCIÓN Y AGRADECIMIENTOS ÍNDICE INTRODUCCIÓN Y AGRADECIMIENTOS El preente trabajo pretende er el egundo de lo do que han de er entregado para optar al título de Diplomado en Etudio Avanzado DEA por la Univeridad Autónoma de Madrid

Más detalles

Intensidad. Intensidad. Máximos

Intensidad. Intensidad. Máximos 4 Propiedade ondulatoria de la partícula En la interferencia luminoa producida por do rendija paralela, aparecen uno máximo de intenidad, eparado por mínimo (raya negra). En la fig.1.18, e muetra la imagen

Más detalles

PRÁCTICA 2. MANIOBRAS ORBITALES

PRÁCTICA 2. MANIOBRAS ORBITALES LABOATOIO DE TECNOLOGÍAS Y AQUITECTUAS EMBACABLES EN SATÉLITE PÁCTICA. MANIOBAS OBITALES Nombre:... 1. INTODUCCIÓN En eta práctica e va a trabajar obre lo concepto báico de maniobra orbitale, la cuale

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria 18va OLIMPIADA BOLIVIANA DE FISICA da Etapa (Examen Simultáneo) 6to de Primaria NO ESCRIBA NINGUN DATO PERSONAL EN LAS HOJAS DE EXAMEN SOLO EN EL ESPACIO HABILITADO EN LA PARTE INFERIOR Cada pregunta vale

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales REGRESIÓN CORRELACIÓN Método Etadítico Aplicado a la Auditoría Sociolaborale Francico Álvarez González http://www.uca.e/erv/fag/fct/ francico.alvarez@uca.e DISTRIBUCIONES BIVARIANTES El etudio de la relación

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

Diseño de medidor de humedad relativa (psicrómetro) con labview

Diseño de medidor de humedad relativa (psicrómetro) con labview Lucila Graciano Gaytán Miguel Eduardo González Elía Julián González Trinidad Unidad Académica de Ingeniería Eléctrica Univeridad Autónoma de Zacateca E mail: lgracianog@hotmail.com XII JORNADAS DE INVESTIGACIÓN

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática

Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Univeridad Central Del Ete U C E Facultad de Ciencia y Humanidade Ecuela de Pedagogía Mención Ciencia Fíica y Matemática Programa de la aignatura: (MAT351) Álgebra Superior Total de Crédito: 3 Teórico:

Más detalles

REGISTROS CONTABLES Y AJUSTES

REGISTROS CONTABLES Y AJUSTES REGISTROS CONTABLES Y AJUSTES Aiento de Ajute Para conocer el monto de la utilidad o pérdida del período, la emprea preparan el etado de reultado final del período contable. Para conocer con preciión el

Más detalles

Universidad de Valladolid, 47011 Valladolid, España E-mail: augusto@mat.uva.es 2 Departamento de Estadística, Investigación Operativa y Computación

Universidad de Valladolid, 47011 Valladolid, España E-mail: augusto@mat.uva.es 2 Departamento de Estadística, Investigación Operativa y Computación 27 Congreo Nacional de Etadítica e Invetigación Operativa Lleida, 8 11 de abril de 2003 THE EOQ/ω o + ωt/π o + πt/ρ INVENTORY SYSTEM L.A. San Joé 1, J. Sicilia 2, J.G. Laguna 3 1 Departamento de Matemática

Más detalles

Práctica 7. La transformada de Laplace

Práctica 7. La transformada de Laplace Práctica 7. La tranformada de Laplace En la primera parte de eta práctica e motrará cómo calcular la tranformada de Laplace y la tranformada invera de Laplace de ditinta funcione utilizando Mathematica.

Más detalles

Estándar Anual TALLER VI. Ciencias Básicas Física TALCES006CB32-A16V1. Programa. 1. Un cuerpo de masa M experimenta los siguientes movimientos:

Estándar Anual TALLER VI. Ciencias Básicas Física TALCES006CB32-A16V1. Programa. 1. Un cuerpo de masa M experimenta los siguientes movimientos: Programa Etándar Anual TALLER VI 1. Un cuerpo de maa M experimenta lo iguiente movimiento: En el tramo A, el cuerpo e mueve a lo largo de 10 metro obre una uperfi cie horizontal lia. En el tramo B, el

Más detalles

Contenido. 4. Dinámica Lagrangiana y Hamiltoniana. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38

Contenido. 4. Dinámica Lagrangiana y Hamiltoniana. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38 Contenido 4. Dinámica Lagrangiana y Hamiltoniana 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38 Contenido: Tema 04 4. Dinámica Lagrangiana y Hamiltoniana 4.1 Coordenadas

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

División 4. Levas: Descripción y cálculo Mecanismos desmodrómicos

División 4. Levas: Descripción y cálculo Mecanismos desmodrómicos Verión 1 CAPITULO MECANISMOS Diviión Leva: Decripción y cálculo Mecanimo demodrómico Verión 1 1. Introducción En eta diviión del capítulo de mecanimo e preentarán alguno tipo de leva y u funcionamiento.

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE El concepto de derivada. Relación entre continuidad y derivabilidad. Función derivada. Operaciones con derivadas. Derivación de las funciones

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA

TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA 1.- La ciencia. 2.- La ateria y u propiedade..- La edida..1.- Magnitud y unidad..2.- El itea internacional de unidade...- Magnitude fundaentale y derivada..4.-

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

EVAPORADORES. María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry

EVAPORADORES. María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry EVAPORADORES María Claudia Romero, Natalia Balletero, Julián Varga Echeverry Objetivo general Aplicar, analizar y comprobar experimentalmente lo principio undamentale de tranerencia de calor en un evaporador

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

TEMA I: LA TRANSFORMADA DE LAPLACE

TEMA I: LA TRANSFORMADA DE LAPLACE TEMA I: LA TRANSFORMADA DE LAPLACE. Introducción En el dearrollo del tema eguiremo la iguiente etrategia: en primer lugar definiremo la Tranformada de Laplace y trabajaremo con ella como una herramienta

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS Facultad de Ciencia Curo 00-0 SOLUCIONES PROBLEMAS FÍSICA. TEMA : MECÁNICA DE SÓLIDOS Y FLUIDOS. Una gota eférica de mercurio de radio,0 mm e diide en do gota iguale. Calcula a) el radio de la gota reultante

Más detalles

ECUACIÓN DE CAUCHY-EULER 2013

ECUACIÓN DE CAUCHY-EULER 2013 ECUACIÓN DE CAUCHY-EULER 3 LA ECUACIÓN DE CAUCHY-EULER Se trata de una ecuación con coeficientes variables cua solución general siempre se puede epresar en términos de potencias, senos, cosenos, funciones

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

Modelo Económico de Equilibrio General Computable para simular impactos de Políticas de Desarrollo Productivo

Modelo Económico de Equilibrio General Computable para simular impactos de Políticas de Desarrollo Productivo Modelo Económico de Equilibrio General Computable para imular impacto de Política de Dearrollo Productivo Reumen Ejecutivo La Dirección de Etudio Económico de Mype e Indutria (DEMI) elaboró y dieñó un

Más detalles

Segmento: Sustituye a: --- Procedimiento para el cálculo de la Garantía Inicial. Se detalla el cálculo de la Garantía Inicial.

Segmento: Sustituye a: --- Procedimiento para el cálculo de la Garantía Inicial. Se detalla el cálculo de la Garantía Inicial. Número: Segmento: C-IRS-04/2015 IRS Circular Fecha: 30 de julio de 2015 Fecha entrada en vigor: 30 de noviembre de 2015 Sutituye a: --- Aunto Procedimiento para el cálculo de la Garantía Inicial. Reumen

Más detalles