Introducción a los Sistemas Espaciales. Enfocado al sistema de lanzamiento

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a los Sistemas Espaciales. Enfocado al sistema de lanzamiento"

Transcripción

1 Introducción a los Sistemas Espaciales Enfocado al sistema de lanzamiento

2 Panorama General Introducción. Mecánica orbital. Dinámica de vuelo. Propulsión espacial. Recursos disponibles. Conclusión.

3 La Carrera Espacial Introducción

4 El Proceso de Ingeniería Introducción

5 El Problema del Barómetro Consideremos a las siguientes personas: Un físico Un ingeniero Un topógrafo Un arquitecto Un agente de publicidad Cómo calcular la altura del edificio usando un barómetro? Figura 2.1: Problema del Barómetro (1)

6 Qué es el Proceso de Ingeniería? De acuerdo a la NASA, el proceso de ingeniería es un enfoque metódico y multidisciplinario para el diseño, operaciones técnicas, funcionamiento y retiro de un sistema. (2) Un sistema es una combinación de elementos funcionando en conjunto, para producir las condiciones necesarias para satisfacer una necesidad. (2) Los elementos son los siguientes: Hardware Software Material Instalaciones Personal Procesos Procedimientos

7 Qué es el Proceso de Ingeniería? Sistema de Sistemas Sistema 1 Sistema 2 Sistema 3 Subsistema 1 Subsistema 2 Subsistema 1 Subsistema 2 Componente 1 Componente 2 Elemento 1 Elemento 2 Figura 2.2: Estructura de Árbol del Producto

8 Cómo Aplicarlo a un Cohete de Agua? Cohete de Agua Vehículo Estación Terrestre Plataforma de Lanzamiento Carga Útil Estructura Tripie Bomba Estructura Central Botella 1 Nariz Aletas Botella 2 Figura 2.3: Estructura de Árbol de Cohete de Agua

9 Por Qué Ocupar el Proceso de Ingeniería? Figura 2.4: Ejemplo del Columpio (3)

10 Beneficios del Proceso de Ingeniería Permite el desarrollo e implementación de proyectos de cualquier tamaño de una manera lógica y ordenada. Promueve el cumplimiento del calendario del proyecto y los plazos de la misión. Promueve la reducción de riesgos asociados con el desarrollo del proyecto. Promueve la reducción de costos asociados a la implementación del proyecto.

11 Beneficios del Proceso de Ingeniería Figura 2.5: Configuraciones Posibles del SLS (4)

12 Por Qué Ocupar el Proceso de Ingeniería? Figura 2.6: Columbia 2003 (5)

13 Por Qué Ocupar el Proceso de Ingeniería? Columbia 2003 STS-107: condujo experimentos de micro-gravedad por 16 días. Al reingresar a la atmosfera la capsula se sobrecalentó y comenzó a desintegrarse. Qué salió mal? La validación de el reingreso fue realizada a través de datos extrapolados. Figura 2.7: Space Shuttle (6)

14 Por Qué Ocupar el Proceso de Ingeniería? Genesis 2004 Recolectar información sobre los vientos solares. El sistema de recuperación no libero el paracaídas ocasionando que se estrellara a una velocidad de 300 km/h. Qué salió mal? Dos interruptores de gravedad fueron instalados al revés. Figura 2.8: Genesis (6)

15 Modelos del Proceso de Ingeniería Modelo de cascada: Dr. Winston W. Royce 1969 Modelo en espiral: Dr. Barry W. Boehm 1983 Modelo de arquitectura en V Forsberg y Mooz 1990

16 Modelo de Cascado Requerimientos de Sistema Requerimientos de Software Diseño Preliminar Diseño Detallado Programación y Depuración Pruebas y Pre operaciones Figura 2.9: Modelo de Cascada Operaciones y Mantenimiento

17 Modelo en Espiral Figura 2.10: Modelo en Espiral (8)

18 Modelo de Arquitectura en V Necesidades del Cliente Entrega del Producto Concepto de la Misión Requerimientos de la Misión Concepto de Operación Diseño Preliminar V &V de Sistema de Sistemas V &V de Sistema V &V de Subsistemas V &V de Componentes Diseño Detallado V &V de Elementos Fabricación Figura 2.11: Modelo de Arquitectura en V

19 Modelo de Arquitectura en V Necesidades del cliente: Convocatorias. Contacto al cliente. Concepto de la misión: Analizan problemas similares. Ideas para solucionar el problema. Requerimientos de la misión: Se establece las necesidades y restricciones de la misión. La solución al problema debe cumplir al 100% con los requerimientos.

20 Modelo de Arquitectura en V Concepto de operaciones: Determina la estructura básica de la misión. Sección mas detallada antes del diseño. Operaciones básicas del sistema de sistemas. Diseño preliminar: Primera fase de diseño. Se busca validar numéricamente los requerimientos de jerarquía mayor a subsistema. Se requieren múltiples iteraciones de esta fase.

21 Modelo de Arquitectura en V Diseño detallado: Fase final del diseño. Se busca validar numéricamente todos los requerimientos. Se producen todos los documentos técnicos. Pude tener múltiples iteraciones. Usualmente, no hay cambios de diseño posteriores a esta fase. Fabricación: Fabricación secuencial o fabricación en paralelo. Se ensambla el sistema de sistema por primera vez y este es desensamblado para realizar pruebas especificas a sistemas.

22 Modelo de Arquitectura en V Verificación: Responde la pregunta: Se construyo el sistema correctamente? Compara el modelo fabricado con los dibujos técnicos. Validación: Responde la pregunta: Se construyo el sistema correcto? Requiere una vasta cantidad de pruebas. Entrega del Producto.

23 Componentes en una Misión Espacial Introducción

24

25 Mecánica Orbital

26 Qué es una Orbita? Latín Orbis Orbitus Orbita Anillo Circular Camino/trayectoria De acurdo con la Real Academia Española (RAE), orbita es definida como una curva debida a la acción gravitacional, descrita por un cuerpo celeste que se mueve en torno a otro. (9)

27 Qué es una Orbita? De acuerdo con la NASA, una orbita es un camino seguido por un planeta, satélite natural o satélite artificial mientras viaja alrededor de otro cuerpo en el espacio. (10) Orbita: La trayectoria cónica formada por el movimiento de un objeto, afectado por un cuerpo celeste, debido a efectos gravitacionales.

28 Qué Estudia la Mecánica Orbital? Mecánica celestial : Estudia el movimiento de los cuerpos celestes. Mecánica Orbital: Estudia el movimiento de todos los objetos en orbita. Mecánica de Posición: Estudia la orientación de cuerpos en el espacio. Astrodinámica: Estudia el movimiento de objetos creados por el hombre en el espacio, sujetos a fuerzas naturales y artificiales. (11)

29 Leyes de Kepler Mecánica Orbital

30 Leyes de Kepler Creadas por Johannes Kepler. ( ) Creadas gracias a los datos de Tycho Brahe. ( ) Describen el movimiento planetario, no lo explican. Descarto los antiguos modelos planetarios. La 1 ra y la 2 da ley fueron publicadas en (Astronomia Nova) La 3 ra ley fue publicada en (Harmonices Mundi Libri V)

31 1 ra Ley de Kepler Todos los planetas se mueven en orbitas elípticas, con el Sol en uno de los focos. F a b O a e F O - Centro F - Foco a - Semieje mayor b - Semieje menor e - Excentricidad Figura 3.1: Elipse con Propiedades

32 1 ra Ley de Kepler Todos los planetas se mueven en orbitas elípticas, con el Sol en uno de los focos. r a Θ r Figura 3.2: Elipse con Características Orbitales r p - Sol - Tierra r a - Apoapsis r p - Periapsis r - Posición Θ - Anomalía media

33 2 da Ley de Kepler La línea que une a un planeta con el Sol, recorre áreas iguales en tiempos iguales. Figura 3.3: Segunda Ley de Kepler (12)

34 3 ra Ley de Kepler El cuadrado del periodo orbital de cualquier planeta es proporcional al cubo de sus distancias medias al Sol. T α a 3 T =2 π (a 3 /μ) Ecuación 3.1 Ecuación 3.2

35 Problema de Dos Cuerpos Mecánica Orbital

36 Isaac Newton - Principia Demostró las leyes de Kepler. Creo las 3 leyes del movimiento. Creo la ley de la gravitación Universal. F = m a Ecuación 3.3 F α dv/dt Ecuación 3.4 F = Gm 1 m 2 /r 2 Ecuación 3.5

37 Problema de Dos Cuerpos Ecuación de Movimiento de una Orbita r = ) * + r Ecuación 3.6 Figura 3.4: Eje de Coordenadas con Dos Masas (13)

38 Parámetro Gravitacional Figura 3.5: Parámetros Gravitacionales de Cuerpos Celestes (14)

39 Formas de Orbitas Mecánica Orbital

40 Las Secciones Cónicas Figura 3.6: Secciones Cónicas (15)

41 Orbita Circular Figura 3.7: Orbita Circular (11)

42 Orbita Elíptica Figura 3.8: Orbita Elíptica (11)

43 Orbita Parabólica Figura 3.8: Orbita Parabólica (11)

44 Orbita Hiperbólica Figura 3.9: Orbita Hiperbólica (11)

45 Características Orbitales a e ε r v Circular a > 0 e = 0 ε < 0 r = a v = ) * Eliptica a > 0 0 < e < 1 ε < 0 r = /(123) v = :) * ) / Parábolica a < 0 e = 1 ε = 0 r = ; : (1 + tan θ: ) Hipérbolica a e > 1 ε > 0 r = /(123) v = v = :) * 2μ r μ a Tabla 3.1: Características de Orbitas 2D (11)

46 Elementos Orbitales Mecánica Orbital

47 Orbitas en 3D Dos formas de definir la posición de un objeto y su orbita en el espacio: Vectores de posición y velocidad. Elementos Orbitales Se necesitan puntos de referencia para ubicar las orbitas: x: En dirección del equinoccio de primavera y: Dirección ortogonal a los ejes x" y z z: Eje de rotación del cuerpo celeste. A el plano xy se le denomina ecuatorial. Se ocupan sistemas de coordenadas seudo-inerciales.

48 Elementos Orbitales a - semieje mayor e - excentricidad h - momento angular i - inclinación Ω - longitud del nodo ascendente n - vector nodal ω - argumento de periapsis e - vector de excentricidad θ - anomalía media Figura 3.10: Elementos Orbitales (16)

49 Datos Orbitales de Cuerpos Celestes Base de datos de cuerpos celestes: Horizons JPL Database Figura 3.11: Base de Datos Horizons

50 Transferencia de Hohmann Mecánica Orbital

51 Transferencia de Hohmann Walter Hohmann 1952 en su publicación la accesibilidad de cuerpos celestiales. Transferencia orbital de menor energía. Transferencia entre orbitas en el mismo plano.

52 Transferencia de Hohmann Figura 3.12: Transferencia de Hohmann (17)

53 Dinámica de vuelo

54 Fases de Vuelo en Vehículo a Escala Figura 4.1: Fase de Vuelo en Vehículo a Escala (18)

55 Fases de Vuelo en Vehículo a Escala Figura 4.2: Video de Vehículo a Escala (18)

56 Fases de Vuelo Figura 4.3: Fase de Vuelo (19)

57 Sitios de Lanzamiento Dinámica de vuelo

58 Componentes de Vuelo Dinámica de vuelo

59 Análisis de Fases de Vuelo Dinámica de vuelo

60 Propulsión Espacial

61 Sistemas de Propulsión Terrestre Propulsión Espacial

62 Sistemas de Propulsión Espacial Propulsión Espacial

63 Recursos Disponibles

64 Conclusión

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES Refracción Astronómica La densidad de la atmósfera aumenta al acercarse a la superficie terrestre,

Más detalles

Tema 9 Mecánica Orbital

Tema 9 Mecánica Orbital Introducción a la Ing. Aeroespacial Tema 9 Mecánica Orbital Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros

Más detalles

TEMA5 : gravitación Capitulo 1. Gravitación

TEMA5 : gravitación Capitulo 1. Gravitación TEMA5 : gravitación Capitulo 1. Gravitación TEMA 5: Gravitación Capítulo 1. Fuerza gravitaciónal Introducción Motivación de la Ley. Nacimiento de la Ley. Definición de la Ley de la Gravitación Universal.

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012)

TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) TEMA 2. CAMPO GRAVITATORIO. (SELECTIVIDAD 2014, 2013, 2012) CUESTIONES 1.- a.- Explique las características del campo gravitatorio de una masa puntual. b.- Dos partículas de masas m y 2m están separadas

Más detalles

Aeronaves y Vehículos Espaciales

Aeronaves y Vehículos Espaciales Aeronaves y Vehículos Espaciales Tema 9 Misiones Espaciales Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros

Más detalles

MOVIMIENTO DE LOS PLANETAS. Sistema del mundo de Ptolomeo Geocéntrico Sistema del mundo de Copérnico Heliocéntrico Leyes de Kepler Leyes de Newton

MOVIMIENTO DE LOS PLANETAS. Sistema del mundo de Ptolomeo Geocéntrico Sistema del mundo de Copérnico Heliocéntrico Leyes de Kepler Leyes de Newton MOVIMIENTO DE LOS PLANETAS Sistema del mundo de Ptolomeo Geocéntrico Sistema del mundo de Copérnico Heliocéntrico Leyes de Kepler Leyes de Newton Percepción del universo de los astrónomos antiguos Entre

Más detalles

Leyes de Kepler Enzo De Bernardini Astronomía Sur http://astrosurf.com/astronosur

Leyes de Kepler Enzo De Bernardini Astronomía Sur http://astrosurf.com/astronosur Leyes de Kepler Enzo De Bernardini Astronomía Sur http://astrosurf.com/astronosur El astrónomo alemán Johannes Kepler (1571-1630) formuló las tres famosas leyes que llevan su nombre después de analizar

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

3.1. POSICIONES DE UN PLANETA INTERIOR Y DE UNO EXTERIOR

3.1. POSICIONES DE UN PLANETA INTERIOR Y DE UNO EXTERIOR GUÍA Nº 3 ELEMENTOS DE MECÁNICA PLANETARIA Sistema Tierra Luna. Websshots.com 3.1. POSICIONES DE UN PLANETA INTERIOR Y DE UNO EXTERIOR Tomando el Sol como centro se dibujan las órbitas de tres planetas;

Más detalles

Coordenadas astronómicas Mecánica celeste. por José Bosch

Coordenadas astronómicas Mecánica celeste. por José Bosch Coordenadas astronómicas Mecánica celeste por José Bosch Las coordenadas terrestres: latitud y longitud La bóveda celeste. Ecuador, eclíptica y punto Aries Coordenadas ecuatoriales: ascensión recta y declinación

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler: Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada.

TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada. TEMA 4. Conceptos sobre órbitas. Kepleriana y perturbada. 1. Introducción. Las aplicaciones del GPS dependen en gran medida del conocimiento de las órbitas de los satélites. La determinación precisa de

Más detalles

3.4. El Tiempo. Las expresiones generales para el pseudorango y la fase serían: P i = ρ + c (dt dt) + δρ ion. + b P,s

3.4. El Tiempo. Las expresiones generales para el pseudorango y la fase serían: P i = ρ + c (dt dt) + δρ ion. + b P,s Fase: Con la fase portadora se mide la diferencia en tiempo entre la fase de la señal que genera el satélite al momento de la transmisión y la fase de la señal que genera el receptor al momento de la recepción.

Más detalles

2. Planeando una misión a Marte

2. Planeando una misión a Marte ------------------------------------------------------------------------------------------------- EJERCICIO 514: LA ORBITA DE TRANSFERENCIA DE HOHMANN, O COMO VIAJAR A OTROS PLANETAS -------------------------------------------------------------------------------------------------

Más detalles

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO A) Cuando en el espacio vacío se introduce una partícula, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula que se sitúa en él, estará sometida a una acción debida a

Más detalles

Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 81 Indice. 1. Movimiento de Rotación de la Tierra. 2. Movimiento Aparente de la Bóveda Celeste. 3. Orto y Ocaso.

Más detalles

Física. Choque de un meteorito sobre la tierra

Física. Choque de un meteorito sobre la tierra Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes

Más detalles

Leyes de Kepler. Física Mecánica

Leyes de Kepler. Física Mecánica Leyes de Kepler Física Mecánica En todos estos modelos las órbitas son circulares. Este modelo fue también propuesto por el griego Aristarco de Samos 1000 años antes que Copérnico, Por qué sus ideas no

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

Guía Gravitación y Leyes de Kepler.

Guía Gravitación y Leyes de Kepler. Guía Gravitación y Leyes de Kepler. Leyes de Kepler Johannes Kepler, trabajando con datos cuidadosamente recogidos por ycho Brahe y sin la ayuda de un telescopio, desarrolló tres leyes que describen la

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

La inercia rotacional

La inercia rotacional La inercia rotacional La inercia de los cuerpos El concepto de inercia no es nuevo para ti. En segundo año medio, estudiaste las leyes de Newton, y en estas tiene un papel importante la inercia. Recuerdas

Más detalles

Mm R 2 v= mv 2 R 24 5,98 10

Mm R 2 v= mv 2 R 24 5,98 10 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610

Más detalles

RECOMENDACIÓN UIT-R S * Términos y definiciones relativos a radiocomunicaciones espaciales

RECOMENDACIÓN UIT-R S * Términos y definiciones relativos a radiocomunicaciones espaciales Rec. UIT-R S.673-1 1 RECOMENDACIÓN UIT-R S.673-1 * Términos y definiciones relativos a radiocomunicaciones espaciales La Asamblea de Radiocomunicaciones de la UIT, (Cuestión UIT-R 209/4) (1990-2001) considerando

Más detalles

ovimiento de traslación de la tierra alrededor del sol

ovimiento de traslación de la tierra alrededor del sol ovimiento de traslación de la tierra alrededor del sol que observamos? el sol se desplaza 1 por día hacia el este con respecto a las estrellas fijas las estrellas salen 4 mas temprano cada día se mueve

Más detalles

ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA

ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA CONCEPTOS ELEMENTALES DE ASTRONOMÍA EN CUANTO A LA POSICIÓN SOLAR. La cantidad de radiación solar que llega a la tierra es inversamente proporcional al cuadrado

Más detalles

Algo de Cultura General: Satélites

Algo de Cultura General: Satélites Algo de Cultura General: Satélites A menudo nos preguntan dónde está y cómo ha llegado hasta allí el satélite que transmite la señal que deseamos captar. Nuestro satélite artificial es un objeto que gira

Más detalles

Copérnico (1543) El Sistema Planetario: Renacimiento. Movimiento Retrógrado en Sistema Heliocéntrico Tamaño del Sistema Planetario

Copérnico (1543) El Sistema Planetario: Renacimiento. Movimiento Retrógrado en Sistema Heliocéntrico Tamaño del Sistema Planetario El Sistema Planetario: Renacimiento Copérnico (1543) Sistema Heliocéntrico elimina necesidad de Epiciclos. El Sol al centro para iluminar el mundo: ideas religiosas y Aristotélicas. El texto de Copérnico

Más detalles

Estándar Anual. Física. Ejercicios PSU. Ciencias Básicas. Guía práctica El universo y el sistema solar GUICES028CB32-A16V1.

Estándar Anual. Física. Ejercicios PSU. Ciencias Básicas. Guía práctica El universo y el sistema solar GUICES028CB32-A16V1. Estándar Anual Nº Guía práctica El universo y el sistema solar Física Programa 1. El sistema solar está ubicado en A) B) C) D) E) 2. GUICES028CB32-A16V1 3. Ciencias Básicas Ejercicios PSU el centro de

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG UCLM)

Ejercicios de Interacción Gravitatoria (PAEG UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms 2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA 1. Teorías y módulos. 2. Ley de gravitación universal de Newton. 3. El campo gravitatorio. 4. Energía potencial gravitatoria. 5. El potencial gravitatorio. 6. Movimientos de masas

Más detalles

Nivel Tercer año Medio Diferenciado. Tema: Gravitación Universal. Repaso.

Nivel Tercer año Medio Diferenciado. Tema: Gravitación Universal. Repaso. Internado Nacional Barros Arana Depto. de Física. Nivel Tercer año Medio Diferenciado. Tema: Gravitación Universal. Repaso. Las preguntas siguientes se elaboraron para que repase los puntos más importantes

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Modelos del Sistema Solar. Nyurka Castro

Modelos del Sistema Solar. Nyurka Castro Modelos del Sistema Solar Nyurka Castro HACIA LA ASTRONOMÍA MODERNA Comienzos de la Astronomía Dónde se inicia la astronomía? Fue en Grecia donde comenzó a desarrollarse lo que ahora conocemos como astronomía

Más detalles

Las lunas de Júpiter. Física Básica Experimental I

Las lunas de Júpiter. Física Básica Experimental I Las lunas de Júpiter Física Básica Experimental I Historia En 1543, se publica la obra de Nicolas Copérnico DRevolutionibus Orbium Coelestium (Sobre las revoluciones de las esferas celestes) Aquí se expone

Más detalles

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA.

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Y BACHILLERATO Resumen EN ÉSTE

Más detalles

Comunicaciones Vía Satélite

Comunicaciones Vía Satélite Comunicaciones Vía Satélite Introducción a los Sistemas Satelitales M.C. Enrique Stevens Navarro Facultad de Ciencias Satélite: cuerpo celeste que gira en órbita en torno a un planeta. En terminos aeroespaciales,

Más detalles

RECOMENDACIÓN UIT-R S.1256

RECOMENDACIÓN UIT-R S.1256 Rec. UIT-R S.1256 1 RECOMENDACIÓN UIT-R S.1256 METODOLOGÍA PARA DETERMINAR LA DENSIDAD DE FLUJO DE POTENCIA TOTAL MÁXIMA EN LA ÓRBITA DE LOS SATÉLITES GEOESTACIONARIOS EN LA BANDA 6 700-7 075 MHz PRODUCIDA

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

97. De las siguientes gráficas, la que representa correctamente la función dada es C( t)

97. De las siguientes gráficas, la que representa correctamente la función dada es C( t) 3 AC - 0 - PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO I) Las preguntas de este tipo constan de un enunciado y de cuatro posibilidades de respuesta, entre las cuales usted debe escoger la

Más detalles

Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar

Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar Apellidos, nombre Departamento Centro Bautista Carrascosa, Inmaculada (ibautista@qim.upv.es) Química Universitat

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO

ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO 1ª) Qué es el movimiento? Es el cambio de posición que experimenta un cuerpo, al transcurrir el tiempo, respecto de un sistema de referencia que consideramos

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

El Sistema Solar. Fig1-T12: Planetas del Sistema Solar

El Sistema Solar. Fig1-T12: Planetas del Sistema Solar En la actualidad, el Sol no es considerado como el centro del universo. Existen numerosos sistemas planetarios, galaxias sin descubrir. Actualmente, las Leyes de Kepler y la Ley de Gravitación Universal

Más detalles

configuraciones planetarias

configuraciones planetarias configuraciones planetarias posiciones de los planetas con respecto al Sol y a la Tierra elongación de un planeta (λ): ángulo que forman las visuales dirigidas al Sol y al planeta desde la Tierra diferentes

Más detalles

1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Sol

1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Sol Leyes de Kepler 1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Planeta Sol 2.- El radio focal que une a un planeta con el Sol describe

Más detalles

Milenio 2.5: la fuerza que te acompaña

Milenio 2.5: la fuerza que te acompaña Milenio 2.5: la fuerza que te acompaña Leonardo Fernández-Jambrina leonardo.fernandez upm.es ETSI Navales Universidad Politécnica de Madrid Museo de la Ciencia y el Cosmos, La Laguna, 12 de septiembre

Más detalles

Interpolación de las coordenadas de los satélites GPS para el posicionamiento geodésico I. Resumen.

Interpolación de las coordenadas de los satélites GPS para el posicionamiento geodésico I. Resumen. Interpolación de las coordenadas de los satélites GPS para el posicionamiento geodésico I. Resumen. Los datos de las efemérides GPS que contienen las posiciones de los satélites G.P.S. (coordenadas x,

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física. martes, 19 de marzo de 13

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física.  martes, 19 de marzo de 13 FÍSICA MECÁNICA Dino E. Risso Carlos K. Ríos Departamento de Física http://maxwell.ciencias.ubiobio.cl/~drisso/wiki/ ANALISIS DIMENSIONAL Es una técnica para analizar las expresiones matemáticas de un

Más detalles

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura Índice general Índice general Presentación Prólogo Nomenclatura V X XIII XV 1 Introducción 1 1.1. Introducción a la ingeniería aeroespacial............. 1 1.2. Clasificación de las aeronaves...................

Más detalles

Solución a los problemas y cuestiones del Tema 2

Solución a los problemas y cuestiones del Tema 2 Astronáutica Solución a los problemas y cuestiones del Tema 1. Unidades canónicas: Para evitar el problema de trabajar con números muy grandes (y de difícil interpretación) se definen unidades canónicas

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA El universo y el sistema solar Nº Ejercicios PSU 1. La posición de la Tierra, considerando 1º al planeta más cercano al Sol, corresponde al MTP A) 2º planeta. B) 3º

Más detalles

Ley de Gravitación Universal

Ley de Gravitación Universal Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Tema 9.2 Rev 01 Ley de Gravitación Universal Ley de Gravitación Universal 1 El Movimiento de los Planetas. Leyes de Kepler Johannes

Más detalles

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA.

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 2. Hoja 1 Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. 1. Un solar de forma triangular tiene dos lados de longitudes 140,5 m y 170,6 m, y el

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Recuperación de los datos de navegación

Recuperación de los datos de navegación Chapter 4 Recuperación de los datos de navegación 4.1 Búsqueda de las transiciones de los bits Lo primero que hay que hacer es localizar los puntos donde el signo de la señal de navegación codificada cambia,

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

= 19 = 82,8. Es correcta la propuesta b

= 19 = 82,8. Es correcta la propuesta b CAMPO GRAVITATORIO 1*.En 1609, un astrónomo polaco Juan Kepler, que había heredado los cálculos experimentales realizados durante 0 años por el astrónomo de corte danés Tycho Brahe, publica el libro Astronomía

Más detalles

PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL

PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL 1. La distancia entre los centros de dos esferas es 3 m. La fuerza entre ellas es.75 x10-1 N. Cuál es la masa de cada esfera, si la masa de una

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Determinación de la distancia promedio de la Tierra a la Luna, con el valor de la excéntrica de la órbita terrestre: 0,

Determinación de la distancia promedio de la Tierra a la Luna, con el valor de la excéntrica de la órbita terrestre: 0, PROCEDIMIENTO PARA CALCULAR LAS VARIABLES, GEODÉSICAS Y ASTRONÓMICAS, PARA LA HOJA DE DATOS COMPARATIVOS QUE SE RELACIONAN CON LA TIERRA, LA LUNA Y EL SOL. Los datos esenciales son los siguientes: Período

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Pág. 166

Pág. 166 Pág. 166 Pág. 166 Pág. 166 Pág. 166 Pág. 166 Pág. 166 Qué es el movimiento? Es el cambio de posición que experimenta un cuerpo, al transcurrir el tiempo, respecto de un sistema de referencia que consideramos

Más detalles

Matemáticamente la primer ley, ley de las trayectorias se expresa del siguiente modo

Matemáticamente la primer ley, ley de las trayectorias se expresa del siguiente modo Para terminar de entender como funciona el Sistema de Posicionamiento Satelital GPS estudiaremos el Sistema Orbital. En particular este sistema cobra importancia para nosotros, a partir del momento en

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

HOJA SELECTIVIDAD GRAVITACIÓN

HOJA SELECTIVIDAD GRAVITACIÓN HOJA SELECTIVIDAD GRAVITACIÓN 1.- La Estación Espacial Internacional (ISS) describe alrededor de la Tierra una órbita prácticamente circular a una altura h = 390 km sobre la superficie terrestre, siendo

Más detalles

Balance Global de Energía

Balance Global de Energía Balance Global de Energía Balance de energía 1a Ley de la Termodinámica El balance básico global se establece entre la energía proveniente del sol y la energía regresada al espacio por emisión de la radiación

Más detalles

(Inscripción al final de la clase)

(Inscripción al final de la clase) Noticias: Marzo 13: R. Tamayo, S. Gaete Marzo 15: T. Barros, F. Valenzuela Marzo 20: P. Sandoval, J. Rivera, J. Huerta Marzo 22: V. Ortiz, G. Bisso, F. Cameron Marzo 27: M. Lyon, B. Escobar, C. Castillo

Más detalles

Clasificación de robots. Clasificación de robots. Universidad Autónoma de Guerrero Unidad Académica de Ingeniería

Clasificación de robots. Clasificación de robots. Universidad Autónoma de Guerrero Unidad Académica de Ingeniería Clasificación de robots Introducción a la robótica Sesión 2: Locomoción Eric Rodríguez Peralta En la actualidad los más comunes son: Robots manipuladores Limitación para moverse en su entorno Robots móviles

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GRAVITACIÓN 1- a) Describa las características de la interacción gravitatoria entre dos masas puntuales. b) Razone en qué punto, situado entre dos masas puntuales m 1 y m 2 (m 1 =m 2 ), sería nula la fuerza

Más detalles

Conocer la trayectoria exacta de un planeta implica conocer la posición del planeta como función exacta del tiempo?

Conocer la trayectoria exacta de un planeta implica conocer la posición del planeta como función exacta del tiempo? Conocer la trayectoria exacta de un planeta implica conocer la posición del planeta como función exacta del tiempo? Fernanda Santana 1, Paco Talero 1, 1 Grupo FISINFOR, Facultad de Ciencias y Educación,

Más detalles

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones Examen de Física I Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones 1. a) Enuncie las leyes de Kepler. Kepler enunció tres leyes que describían el movimiento planetario: 1 a ley o ley de las órbitas.

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES INSTITUTO DE FÍSICA PROGRAMA DE MECÁNICA CELESTE

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES INSTITUTO DE FÍSICA PROGRAMA DE MECÁNICA CELESTE UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES INSTITUTO DE FÍSICA APROBADO EN EL CONSEJO DE FACULTAD DE CIENCIAS EXACTAS Y NATURALES ACTA 34 DEL 30 DE SEPTIEMBRE DE 2015. PROGRAMA DE

Más detalles

Problemas adicionales de Física Cuántica (2010/2011)

Problemas adicionales de Física Cuántica (2010/2011) Problemas adicionales de Física Cuántica (2010/2011) Mª del Rocío Calero Fernández-Cortés María Jesús Jiménez Donaire Ejercicio 3.- La potencia (en forma de ondas gravitacionales) emitida por un sistema

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Laboratorio de Física Universitaria 1 Movimiento Circular Uniforme en Video Point. Primavera 2006 Arturo Bailón

Laboratorio de Física Universitaria 1 Movimiento Circular Uniforme en Video Point. Primavera 2006 Arturo Bailón MOVIMIENTO CIRCULAR UNIFORME OBJETIVO GENERAL DE LA FÍSICA: -El alumno obtendrá una clara visión de las ideas sobre la naturaleza a través de las prácticas experimentales. Una visión que lo acostumbrará

Más detalles

Problemas y cuestiones del Tema 3

Problemas y cuestiones del Tema 3 Problemas y cuestiones del Tema 3 (problemas marcados con *: para ampliar, con :problema teórico complementario a teoría) 1. (*) Demostrar las fórmulas de la trigonometría esférica. 2. ( ) Emplear la trigonometría

Más detalles

ACTIVIDADES DE PROFUNDIZACIÓN

ACTIVIDADES DE PROFUNDIZACIÓN ACTIVIDADES DE PROFUNDIZACIÓN Recordando la experiencia En el Taller de planetas extrasolares nos adentramos en una de las ramas de la Astronomía más excitante de los últimos tiempos, la búsqueda de planetas

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

Ejercicios de repaso.

Ejercicios de repaso. Ejercicios de repaso. U.1 La Tierra y su representación geográfica. 1. Lee las siguientes afirmaciones e indica si son verdaderas ( V ) o falsas ( F ) La Tierra es el planeta más cercano al Sol. La Tierra

Más detalles