Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene;

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tarea 8. (xdy ydx) (1) A = 1 2. Por lo tanto el área es; [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ (2) Reduciendo la expresiónnalmentese obtiene;"

Transcripción

1 Tarea 8 1. Encuentre el área de el disco de radio R usando el teoréma de Green. e acuerdo con el teorema de Green, el área de la región es; A = 1 (xdy ydx) (1) Como es un discmo con centro en (, ) de radio R, la frontera se puede parametrizar mediante; x = Rcos(θ) y = Rsin(θ), θ<π Entonces las derivadas dx y dy son; Por lo tanto el área es; A = 1 dx = Rsin(θ)dθ dy = Rcos(θ)dθ, θ<π π [(Rcos(θ))(Rcos(θ)) (Rsin(θ))(Rsin(θ))] dθ () Reduciendo la expresiónnalmentese obtiene; A= 1 π R dθ = πr (3) 1

2 . Verique el teorema de Green para el disco con centro (, ) y radio R y la función P (x, y) = x + y, Q(x, y) = y. Usando la parametrización; onde las derivadas dx y dy son; x = Rcos(θ) y = Rsin(θ), θ<π dx = Rsin(θ)dθ dy = Rcos(θ)dθ, θ<π El lado izquierdo de la identidad del teorema de Green es; (P dx + Qdy) = (x + y)dx + ydy (4) Sustituyendo la parametrización se obtiene; (P dx+qdy) = π Reduciendo terminos se obtiene; ( R cos(θ)sin(θ) R sin (θ)+r sin(θ)cos(θ))dθ (5) π (P dx + Qdy) = R sin (θ)dθ = R π (6) Por el teorema de Green la misma integral debe ser igual a; ( Q x P ) y Se usará otra vez la parametrización de la Ec. (). Se puede escribir mediante r R y θ π. Con esto se calcula Q/ x = y P/ y = 1 y con el jacobiano para coordenadas polarres J = r, el lado derecho del teorema de Green se transforma en; π R (7) ( 1)rdrdθ = πr (8)

3 3. Encuentre el área del arco de cicloide x = a(θ sin(θ), y = a(1 cos(θ) donde a >, y θ π, y el eje x (use el teorema de Green). El teorema de Green dice que el área es; A = 1 (xdy ydx) (9) e la parametrización para el cicloide se obtiene; dx = a(1 cos(θ) dy = asin(θ)dθ Ya que el eje x forma parte de la frontera que se puede reescribir mediante x = πa(1 u) yy = para u 1. Tambien se observa que el cicloide va en el mismo sentido que el giro de las manecillas del reloj, esto es; de izquierda a derecha. Luego regresando de derecha a izquierda por el eje x. Como y = dy =, el área deseada es; A = 1 π [a(θ sin(θ) asen(θ)dθ a(1 cos(θ) a(1 cos(θ)dθ+ 1 Recudiendo terminos se obtiene; A = 1 π Usando integración por partes; A = ] π [ a + a 1 (x dx) (1) (a θsin(θ) a θ+a cos(θ)dθ (11) π Integrando nalmente nos queda; π cos(θ)dθ + a ( 1 + cos(θ))dθ (1) A = a π + a [ θ+sin(θ)] π = 3a π (13) onde el signo menos que aparece es debido a que no se tomó la orientación adecuada y debio tomarse en sentido contrario al giro de las manecillas del reloj. Cambiando sólo el signo se obtiene el área contenida en un arco del cicloide, 3a π. 3

4 4. Verique el teorema de divergencia para F = xi + yj y el disco unitario x + y 1. En coordenadas polares, sea; x = rcos(θ) y = rsin(θ) onde se puede describir mediante r 1 y θ π. Calculando la divergencia de F se tiene que div(f) = =. Como el jacobiano para coordenadas polares J = r, se obtiene; div(f)da = π 1 ()rdrdθ = π (14) Por otro lado se sabe que la normal unitaria al círculo de radio 1 que apunta hacia afuera es n = (cos(θ), sin(θ)), por lo tanto; F nds = π (cos(θ), sin(θ)) (cos(θ), sin(θ))ds (15) Haciendo la integral nalmente se obtiene; F nds = π (16) Por lo tanto se verica que; div(f)da = F nds (17) 4

5 5. Evalue la integral de la componente normal de xyi y j alrededor de la elipse denida por x /a + y /b = 1. el enunciado anterior se pide evaluar; F nds (18) donde F = xyi y j. Por el teorema de divergencia, la integral anterior es; F nds = (div(f)da (19) Por lo tanto se tiene; Finalmente; (div(f)da = (y y)dxdy () (div(f))da = (1) 5

6 6.Use el teorema de Green para encontrar el área de un lazo de la rosa de cuatro pétalos r = 3sin(θ). Para formar uno de los pétalo de la rosa, se toma desde θ= hasta θ=π/. Con esto, el área esta dada por; A = 1 (xdy ydx) () Usando coordenadas polares, sea x = rcos(θ) y y = rsin(θ). Como r es una función de θ se obtiene dx = ( θ (r)cos(θ) rsin(θ)dθ y dy = ( θ (r)sin(θ) rcos(θ))dθ. Sustituyendo en la igualdad del teorema de Green se obtiene; A = 1 π/ (rcos(θ))( θ (r)cos(θ)) rsin(θ) (rsin(θ))( θ (r)sin(θ) rcos(θ))dθ Realizando las operaciones correspondientes se obtiene; A = 1 π/ Sustituyendo la función de la rosa de cuatro pétalos; A = 9 A = 1 π/ π/ (3) r dθ (4) (3sin(θ)) dθ (5) ( 1 + cos(4θ) ) dθ = 9π 8 (6) 6

7 7. Sea n el vector normal unitario hacia fuera de ρ y u/ n = u n. Muestre que; u n ds = uda (7) B ρ ρ Usando la deifnición dada para u/ n; u n ds = u nds (8) Aplicando el teorema de divergencia en el plano a la región B = B ρ ; u n ds = ( u)da (9) Por lo tanto; B u n ds = uda (3) B 7

8 8. Suponga que u es una función denida sobre (i.e., u = sobre ) y que u tiene un máximo local (o mínimo) en el punto p en. Muestre que u debe ser constante en algún disco centrado en p. Suponiendo que u(p) es un punto máximo sobre dado que u es una función armónica, entonces u(p) puede ser expresada como el promedio de su valor en la circunferencia de cualquier disco centrado en p, esto es; u(p) = 1 uds (31) πr Esto es posible solo si u(p) = u(q) para toda q en. Si u(q) < u(p) para alguna q en, debe suceder que u(r) > u(p) para mantener el promedio. Entonces, u debe ser constante en algún disco con centro en p. 8

Tarea 9. H ds = E ds (2)

Tarea 9. H ds = E ds (2) Tarea 9. ea una supercie con frontera y suponga que E es un campo eléctrico que es perpendicular a - Muestre que el ujo magnético inducido a través de es constante en el tiempo. (Use la Ley de Faraday)

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

Coordenadas Polares y graficas polares

Coordenadas Polares y graficas polares REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO BARINAS UNEFA Complemento para evaluar parte de la Unidad III

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

Universidad Técnica Federico Santamaría

Universidad Técnica Federico Santamaría Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

7. Cambio de variables en integrales triples.

7. Cambio de variables en integrales triples. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos 1. Efectuar cada una de las operaciones indicadas. a) (35 + 25i) + ( 12 5i) b) ( 75 i) + (34 + 42i) c)

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

Estática. Momentos de Inercia

Estática. Momentos de Inercia Estática 10 Momentos de Inercia Objetivos Método para determinar el momento de inercia de un área Introducor el producto de inercia y cómo determinar el máx y mín momentos de inercia para un área Momento

Más detalles

Para formar el sistema de coordenadas polares en el plano, se fija un punto O llamado polo u origen, se traza un rayo inicial llamado eje polar.

Para formar el sistema de coordenadas polares en el plano, se fija un punto O llamado polo u origen, se traza un rayo inicial llamado eje polar. Coordenadas polares. Las coordenadas polares es un sistema de coordenadas que define la posición de un punto en un espacio bidimensional en función de los ángulos directores y de la distancia al origen

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 15-16 Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r r. La probabilidad

Más detalles

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln.   1 Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

TRIGONOMETRÍA DEL CÍRCULO

TRIGONOMETRÍA DEL CÍRCULO TRIGONOMETRÍA DEL CÍRCULO Otra unidad de medida para ángulos: RADIANES 1 Usamos grados para medir ángulos cuando aplicamos trigonometría a los problemas del mundo real. Por ejemplo, en topografía, construcción,

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ).

El teorema de Green. 1 x (t) 2 + y (t) 2 ( N(t) = y (t), x (t) ). apítulo 11 El teorema de Green El teorema de Green relaciona la integral de línea de un campo vectorial sobre una curva plana con una integral doble sobre el recinto que encierra la curva. Este tipo de

Más detalles

CÁLCULO INTEGRAL. HOJA 12.

CÁLCULO INTEGRAL. HOJA 12. ÁLULO INTEGRAL. HOJA 12. EL TEOREMA E GREEN. 1. efinición. iremos que una curva R 2 es regular a trozos si se puede parametrizar mediante un camino γ que a su vez puede escribirse como concatenación γ

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Otras distribuciones multivariantes

Otras distribuciones multivariantes Trabajo A Trabajos Curso -3 Otras distribuciones multivariantes Clase esférica de distribuciones en R p Definición. Dado un vector aleatorio X = X,..., X p t, se dice que se distribuye en la clase esférica

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

Tema 5. Geometría de masas 1.

Tema 5. Geometría de masas 1. Tema 5. Geometría de masas. Profesorado Grupo A: María Tirado Miranda Grupo B: Jorge Portí Durán Grupo : Artur cmitt Tema 5. Geometría de masas. Material elaorado por Juan Francisco Gómez opera. Tema 5.

Más detalles

PROYECTO Coordenadas polares: curvas maravillosas. Nombre curso fecha

PROYECTO Coordenadas polares: curvas maravillosas. Nombre curso fecha PROYECTO Coordenadas polares: curvas maravillosas Nombre curso fecha Transformación de coordenadas La navegación aérea es una empresa muy arriesgada, ya que cuando se vuela a grandes altitudes no existen

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Matemáticas Aplicadas

Matemáticas Aplicadas Matemáticas Aplicadas para Diseño de Videojuegos 4. Trigonometría Contenidos Ángulos: unidades de medida. Razones trigonométricas. Funciones trigonométricas. Coordenadas polares y esféricas. Identidades

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

COORDENADAS POLARES O CILÍNDRICAS

COORDENADAS POLARES O CILÍNDRICAS COORDENADAS POLARES O CILÍNDRICAS Para definir la posición de un punto en un plano (o en el espacio) podemos utilizar distintos tipos de coordenadas, siendo las más normales las coordenadas rectangulares

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial. ÁLULO ngeniería ndustrial. urso 2009-2010. Departamento de Matemática Aplicada. Universidad de evilla. Lección 10. álculo vectorial. Resumen de la lección. 10.1. ntegrales de línea. ntegral de línea de

Más detalles

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005 Soluciones de los ejercicios del examen de Primer curso de Ingeniería Informática - Febrero de 25 Ejercicio. A Dados los puntos A, y 2,2, calcula el camino más corto para ir de A a pasando por un punto

Más detalles

INTEGRALES CURVILÍNEAS

INTEGRALES CURVILÍNEAS (Apuntes sin revisión para orientar el aprendizaje) INTEGRALES URVILÍNEAS (Material de apoyo y orientación para preparar el tema) Las integrales curvilíneas constituyen el estudio de funciones sobre curvas.

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 26 de Enero de 2000 Primera parte. x 2 a 2 + y2

Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 26 de Enero de 2000 Primera parte. x 2 a 2 + y2 CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 6 de Enero de Primera parte Ejercicio. Se considera la elipse x a + y b =. Determinar, de entre los triángulos isósceles inscritos

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Contenido anes : Contenido Discutiremos: ángulo trigonométrico : Contenido Discutiremos:

Más detalles

Análisis Vectorial Licenciatura de Matemáticas. JESÚS GARCIA i FALSET Departament d Anàlisi Matemàtica Universitat de València

Análisis Vectorial Licenciatura de Matemáticas. JESÚS GARCIA i FALSET Departament d Anàlisi Matemàtica Universitat de València Análisis Vectorial Licenciatura de Matemáticas JESÚS GARCIA i FALSET Departament d Anàlisi Matemàtica Universitat de València 22 de diciembre de 2011 2 Índice general 1. Integrales de Línea 5 1.1. Vectores..............................

Más detalles

Unidad II: Curvas en R2 y ecuaciones paramétricas

Unidad II: Curvas en R2 y ecuaciones paramétricas Unidad II: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una recta,

Más detalles

7.1. CAMPOS VECTORIALES EN DEFINICIONES

7.1. CAMPOS VECTORIALES EN DEFINICIONES 7 n 7.. AMPO VETOIALE EN 7.. 7.. DEFINIIONE 7.. 7.. POPIEDADE 7.. 7.4. AMPO VETOIALE 7.4. ONEVATIVO 7.5. INTEGALE DE LÍNEA 7.6. TEOEMA DE GEEN 7.7. INTEGAL DE LÍNEA PAA EL ÁEA DE UNA EGIÓN PLANA 7.8. INTEGALE

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

Funciones Trigonométricas

Funciones Trigonométricas UNIVERSIDAD LA REPÚBLICA ESCUELA DE INGENIERÍA FUNDAMENTOS DE LA MATEMÁTICA PROF. FRANCISCA GONZÁLEZ AY. GABRIEL SORIA TRABAJO: Funciones Trigonométricas FECHA: 22 de septiembre de 1999 INTEGRANTES: CARLOS

Más detalles

Física: Rotación de un Cuerpo Rígido

Física: Rotación de un Cuerpo Rígido Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos

Más detalles

Segundo Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode2010. Primera Parte.

Segundo Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode2010. Primera Parte. Segundo Eamen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode00. Primera Parte. El eamen consta de 4 ejercicios (E, E, E3 E4) un problema (P) que se puntuarán cada uno de ellos

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

EL TEOREMA DE LOS CUATRO

EL TEOREMA DE LOS CUATRO EL TEOREMA DE LOS CUATRO VÉRTICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría Diferencial. Curso 1995/96

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad INDICE Capitulo 1. Números 1 Conjuntos 1 Números reales 1 Representación decimal de los números reales 2 Representación geométrica de los números reales 2 Operación con los números reales 2 Desigualdades

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

CONCEPTOS PRELIMINARES

CONCEPTOS PRELIMINARES CONCEPTOS PRELIMINARES Matemáticas II En R un conjunto abierto es la unión de intervalos abiertos. Tanto el concepto de conjunto abierto como de intervalo abierto se generaliza en el plano y en el espacio.

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO ESCRIBA CLARAMENTE

Más detalles

1. Lección 9 - Continuidad y Derivabilidad

1. Lección 9 - Continuidad y Derivabilidad 1. Lección 9 - Continuidad y Derivabilidad 1.1. Continuidad El concepto de continuación es el mismo que el visto en el primer cuatrimestre pero generalizado al caso de los campos escalares. Así, sea la

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Utiliza correctamente el lenguaje algebraico, geométrico y trigonométrico.. Identifica la simbología propia de la geometría y la trigonometría. Saberes

Más detalles

1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2.

1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2. Ejercicios resueltos sobre parabolas: 1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2. Trácese la gráfica con los

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

Los números complejos

Los números complejos Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud

Más detalles