TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA."

Transcripción

1 TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA.

2 1. - INTRODUCCIÓN Las operaciones que hemos realizado hasta ahora sobre una imagen, se realizaron en el dominio espacial, es decir, trabajando directamente con los niveles de gris y con las relaciones posicionales de los píxeles. También tenemos la posibilidad de trabajar en el dominio de la frecuencia, calculando la Transformada de Fourier. La Transformada de Fourier de una función representa el espectro o distribución de frecuencias de la misma. Si una función tiene cambios bruscos sus componentes son de alta frecuencia. Si la función es relativamente suave tiene componentes de baja frecuencia. La transformada de Fourier es una representación de la imagen como una suma de exponenciales complejas de distintas amplitudes, frecuencias y fases, que definen los cambios espaciales que ocurren en la imagen. FASES DE UN SISTEMA DE V.A. 2

3 2. TRANSFORMADA DE FOURIER DE UNA FUNCIÓN DE DOS VARIABLES ESPACIALES DISCRETAS Dada una imagen definida a través de f(m,n) (una función de dos variables espaciales discretas m y n) se define su transformada de Fourier bidimensional (2D-TF) como: F(w 1,w 2 ) f(m,n) representa el valor del pixel en la columna m y fila n frecuencia (0,0) 2π w sm -> 2 π 4π w 1 m TF 2π TF imagen w sn ->2 π 4π w 2 n f(m,n) se genera tras: Muestrear horizontalmente con una pulsación w sm = Muestrear verticalmente con una pulsación w sn = 2πf sm 2πf sn TF desplazada de la imagen π frecuencia (0,0) en el centro de la imagen que representa la transformada F(ω 1, ω 2 ) es la representación en el dominio de la frecuencia de f(m,n) π π π Las variables ω 1 y ω 2 son variables continuas que expresan frecuencia (cambios en la variables espaciales m y n) F(ω 1, ω 2 ) es una función periódica 1, de periodo 2π, tanto en ω 1 como en ω 2 La transformada de Fourier inversa de F(ω 1, ω 2 ) es: 1 Nótese como F(ω 1, ω 2 )= F(ω 1 +2π, ω 2 )= F(ω 1, ω 2 +2π) FASES DE UN SISTEMA DE V.A. 3

4 Ejemplos de representación del log F(ω 1, ω 2 ) de varias formas simples 2 : Imagen original 2D-TF 2D-TF con F(0,0) centrada Imagen original: f(m,n) 2D-TF con F(0,0) centrada 2 Se suele representar el logaritmo del módulo de la transformada debido a que este posee valores en un amplio rango, que se visualizan mejor haciendo el logaritmo. A veces, se representa log(1+ F(ω 1, ω 2 ) ) sumando 1 para evitar hacer el log(0) cuando el módulo F(ω 1, ω 2 ) = 0. FASES DE UN SISTEMA DE V.A. 4

5 3. TRANSFORMADA DE FOURIER DISCRETA DE UNA FUNCIÓN DISCRETA DE DOS DIMENSIONES. - Dada una imagen de dimensiones MxN, se define su transformada discreta de Fourier (2D-DFT): - Las variables p y q son variables discretas que expresan frecuencia (cambios en la variables espaciales m y n, también discretas) Los coeficientes de la Transformada discreta de Fourier F(p,q) son muestras de la transformada de Fourier F(w1,w2) - La transformada es una función discreta también de dos dimensiones (MxN) con tantas componentes, de valores complejos (con módulo y fase), como elementos tenga la imagen original (MxN). - La función F(p,q) se suele representar en módulo (o magnitud o espectro de la transformada) y fase. - A partir de los valores transformados, se puede recuperar la señal original mediante la fórmula de inversión (transformada inversa): FASES DE UN SISTEMA DE V.A. 5

6 - Los algoritmos FFT (Fast Fourier Transform) son métodos de cálculo que reducen el tiempo de computación de la DFT. - No en todas las aplicaciones es necesario obtener todos los términos de la transformada: en compresión y reconocimiento de formas suele bastar con los descriptores de orden más bajo F(0,0), F0,1), F(1,0) Ejemplos de transformada de Fourier discreta bi-dimensional Ejemplo 1: F(0,0) f(m,n) F(p,q) Ejemplo 2: load mandrill; im=ind2gray(x,map); figure, imshow(im); IM=fft2(im); figure; imagesc((abs(fftshift(im)))); colormap(jet);colorbar %figure, imagesc(log(abs(fftshift(im)))); colormap(jet);colorbar figure; imagesc((log(1+abs(fftshift(im))))); colormap(jet);colorbar valor medio imagen (o componente DC) = F(0,0)/(M N) Imagen original F(p,q) log (1 + F(p,q) ) Las imágenes usuales, sin variaciones muy bruscas, suelen tener los mayores valores de la transformada a bajas frecuencias, en torno a la frecuencia (0,0), que situaremos, usualmente, en el centro de la imagen FASES DE UN SISTEMA DE V.A. 6

7 4. FILTRADO DE IMAGENES EN EL DOMINIO DE LA FRECUENCIA. Para el filtrado de imágenes en el dominio de la frecuencia, se operará de la siguiente manera: Filtro H(p,q) f(m,n) F(p,q) H(p,q) F(p,q) f (m,n) Filtrado de imágenes en el dominio de la frecuencia Pasos: Matlab: parto de imagen en im - Hallar la Transformada de Fourier: F(p,q)= F { f(m,n))} F=fft2(im); - Crear la respuesta del filtro: H(p,q) H(p,q)= ; - Multiplicar 3 F (p,q) = H(p,q) F(p,q) NF=F.*H; - Calcular la transformada inversa: f (m,n)= F -1 {F (p,q)} nim=real(ifft2(nf)); Según el tipo de filtrado, se actuará, atenuando o aumentando, ciertas frecuencias (bajas, medias o altas) de la transformada. 3 Multiplicar en el dominio de la frecuencia es equivalente en el dominio espacial a hacer la convolución de la imagen con la respuesta al impulso del filtro: f(m,n)*h(m,n)=f (m,n) FASES DE UN SISTEMA DE V.A. 7

8 4.1.- Filtrado paso bajo. - Se pretende resaltar las bajas frecuencias de una imagen con respecto a sus componentes de altas frecuencias: contornos, bordes se degradan. Ejemplos: Filtro paso bajo ideal: q H(p,q) p 1 H ( p, q) = 0 p 2 + q 2 resto Ho la ganancia es uno en torno a la frecuencia 0,0 (continua) y nula para el resto. Imagen f(m,n) log (1 + F(p,q) ) H(p,q) log (1 + F (p,q) ) f (m,n) H(p,q) Filtro paso bajo gaussiano: H ( p, q) = e q p Imagen f(m,n) log (1 + F(p,q) ) H(p,q) log (1 + F (p,q) ) f (m,n) 2 k ( p 2 + q ) FASES DE UN SISTEMA DE V.A. 8

9 4.2.- Filtrado paso alto. Se eliminan las componentes de baja frecuencia, sin modificar las frecuencias altas. Ejemplo: H(p,q) 2 2 k ( p + q ) Filtro paso alto gaussiano: H ( p, q) = 1 e q p Imagen f(m,n) log (1 + F(p,q) ) H(p,q) log (1 + F (p,q) ) f (m,n) Tras el filtrado paso alto no se degradan los contornos, y sí que lo hacen aquellas zonas de la imagen donde no existían cambios de nivel (bajas frecuencias) FASES DE UN SISTEMA DE V.A. 9

10 4.3.- Eliminación de ciertas frecuencias. - Trabajando en el dominio de la frecuencia, es muy fácil diseñar cualquier tipo de filtro. - En las siguientes figuras se muestran varios ejemplos con sus respectivos resultados: Imagen original Eliminación de ciertas frecuencias Imagen filtrada FASES DE UN SISTEMA DE V.A. 10

11 Selección de ciertas frecuencias Eliminación de un margen de frecuencias Imagen filtrada FASES DE UN SISTEMA DE V.A. 11

12 5. TRANSFORMADA COSENO DISCRETA - La transformada coseno discreta representa una imagen como una suma de sinusoides de distintas amplitudes y frecuencias. - La transformada coseno discreta de una imagen de dimensiones MxN se define como: FASES DE UN SISTEMA DE V.A. 12

13 - Análogamente, la transformada inversa se define como: La DCT se usa para comprimir y transmitir imágenes (algoritmo JPEG) codificando y enviando una versión reducida de su transformada, y calculando la transformada inversa en el receptor. Ejemplo: coeficiente (0,0) de la DCT FASES DE UN SISTEMA DE V.A. 13

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER M.C. CAROLINA ROCÍO SÁNCHEZ PÉREZ 01 DE ABRIL DE 2011 Operaciones en el dominio de la frecuencia Una imagen digital es una representación

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 09

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 09 Procesamiento Digital de Imágenes Pablo Roncagliolo B. Nº 09 TRATAMIENTO DE IMÁGENES EN EL DOMINIO DE LAS FRECUENCIAS prb@2007 2 A principios del siglo XIX, Joseph Fourier indica que toda función periódica

Más detalles

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION Transformada de Fourier (Parte 1) Página 1 INTRODUCCION En una primera aproximación, podemos decir que todos los dominios transformados, que se utilizan dentro del tratamiento digital de imagen, tienen

Más detalles

Capítulo 6 Filtrado en el Dominio de la Frecuencia

Capítulo 6 Filtrado en el Dominio de la Frecuencia Capítulo 6 Filtrado en el Dominio de la Frecuencia...39 6. Método en el Dominio de la Frecuencia...39 6. Filtros Espaciales en la frecuencia...40 6.. Convolución Lineal y la Transformada Discreta de Fourier...45

Más detalles

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES Autor. Moisés Valenzuela Gutiérrez. 2009. Moisés Valenzuela Gutiérrez Portada diseño: Celeste Ortega (HUwww.cedeceleste.comUH) Edición cortesía de HUwww.publicatuslibros.comUH.

Más detalles

Filtros en el dominio de la frecuencia

Filtros en el dominio de la frecuencia Filtros en el dominio de la frecuencia Fundamentos de procesamiento de imágenes IIC / IEE 3713 1er semestre 2011 Cristián Tejos Basado en material desarrollado por Marcelo Guarini, Domingo Mery, libro

Más detalles

Transformada de Fourier

Transformada de Fourier Transformada de Fourier Transformada Inversa de Fourier Estas ecuaciones existen si f(x) es continua e integrable y si F(u) es integrable (casi siempre se cumplen en la práctica). Espectro de Fourier La

Más detalles

TRANSFORMADA DISCRETA DEL COSENO (DCT)

TRANSFORMADA DISCRETA DEL COSENO (DCT) Transformada discreta del coseno (DCT) Página 1 TRANSFORMADA DISCRETA DEL COSENO (DCT) La transformada discreta del coseno (DCT), - también denominada transformada del coseno -, es la más ampliamente utilizada

Más detalles

Transformada discreta de Fourier

Transformada discreta de Fourier Transormada discreta de Fourier Convolución en el espacio = multiplicación de la TDF de la imagen por la TDF de la respuesta impulsional del iltro. Mayor rapidez de aplicación (algoritmo FFT) Permite aplicar

Más detalles

Filtrado en el Dominio de la

Filtrado en el Dominio de la Filtrado en el Dominio de la Frecuencia Matlab para realizar una transformada discreta de Fourier a una matriz MxN usa el algoritmo: Transformada Rápida de Fourier (Fast Fourier Transform): F = fft2(f);

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES BIBLIOGRAFÍA PROCESAMIENTO DIGITAL DE SEÑALES 1. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989. 2. Parks, T.W., and C.S. Burrus. Digital

Más detalles

Filtrado de imágenes

Filtrado de imágenes Capítulo 3 Filtrado de imágenes Bibliografía: González, R.C., Wintz, P. (1996), Procesamiento digital de imágenes. Addison- Wesley, Tema 3,4, pág 89-269. Contenidos: 1. Fuentes de degradación de la imagen.

Más detalles

FILTRADO DE IMÁGENES

FILTRADO DE IMÁGENES FILTRADO DE IMÁGENES 1 INDICE RUIDO Qué es el ruido? Tipos de ruido TECNICAS DE FILTRADO EN DOMINIO ESPACIAL Promediado de imágenes Filtros de orden Filtros de medias DOMINIO FRECUENCIAL FUNCIONES EN MATLAB

Más detalles

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos

Equipos analizadores de señal. - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos - Introducción - Analizadores de Fourier - Analizadores de espectros heterodinos Introducción El análisis del espectro de colores es una forma de análisis de componentes frecuenciales que para el caso

Más detalles

Introducción general a la compresión de datos multimedia

Introducción general a la compresión de datos multimedia Introducción general a la compresión de datos multimedia Necesidad de la compresión La mayoría de las aplicaciones multimedia requieren volúmenes importantes de almacenamiento y transmisión. CD-ROM 640

Más detalles

TRATAMIENTO DIGITAL DE LA SEÑAL Tratamiento digital de imágenes

TRATAMIENTO DIGITAL DE LA SEÑAL Tratamiento digital de imágenes TRATAMIENTO DIGITAL DE LA SEÑAL Tratamiento digital de imágenes Práctica 4 Fecha: 11 de mayo de 2009 1. Introducción Una imagen digital es una señal de dos dimensiones que se representa por una matriz.

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Resumen el análisis de Fourier es un conjunto de técnicas matemáticas basadas en descomponer una señal en

Más detalles

Detección de bordes en una imagen.

Detección de bordes en una imagen. Detección de bordes en una imagen. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Utilizar distintas máscaras empleadas para

Más detalles

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Septiembre de 2005

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Septiembre de 2005 Filtrado Espacial Introducción El filtrado espacial es la operación que se aplica a una imagen para resaltar o atenuar detalles espaciales con el fin de mejorar la interpretación visual o facilitar un

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

Fundamentos de Procesamiento de Imágenes

Fundamentos de Procesamiento de Imágenes Fundamentos de Procesamiento de Imágenes Evento: CONATEC Sede: INSTITUTO TECNOLÓGICO DE CIUDAD MADERO Instructor: M. C. José Jaime Esqueda Elizondo Universidad Autónoma de Baja California, Unidad Tijuana

Más detalles

FUNDAMENTOS DE REALCE DE IMAGEN

FUNDAMENTOS DE REALCE DE IMAGEN UNIVERSIDAD DE VALLADOLID Especialista Universitario en Ingeniería Biomédica FUNDAMENTOS DE REALCE DE IMAGEN Laboratorio de Procesado de Imagen Santiago Aja Fernández E.T.S.I. Telecomunicación Valladolid,

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com Contenido DOMINIOS DEL TIEMPO Y DE LA FRECUENCIA 1.- Señales analógicas y digitales. 2.- Señales analógicas periódicas. 3.- Representación en los dominios del tiempo y de la frecuencia. 4.- Análisis de

Más detalles

Conversión Analógica-a-Digital

Conversión Analógica-a-Digital Conversión Analógica-a-Digital OBJEIVOS: Comprender la conversión de señales analógicas a digitales, analizando las modificaciones que se producen con este proceso. Fundamentalmente, las "réplicas" en

Más detalles

Práctica 1: Señales y análisis de Fourier

Práctica 1: Señales y análisis de Fourier Física de las Comunicaciones 2006/2007 Práctica 1 1 Práctica 1: Señales y análisis de Fourier 1. Objetivo y contenido En esta práctica pretendemos revisar parte de la materia del tema 2 de la asignatura

Más detalles

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1 LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA CURSO 005-006 PRÁCTICA SEÑALES Y SISTEMAS CONTINUOS Las presente practica trata distintos aspectos de las señales y los sistemas en tiempo continuo. Los diferentes

Más detalles

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES CAPÍTULO PROCESAMIENTO DIGITAL DE IMÁGENES En este capítulo se presentan de manera breve, una explicación de la visión, las imágenes digitales y como son capturadas por medios electrónicos, el campo encargado

Más detalles

Capítulo 7 Modulación de Pulsos

Capítulo 7 Modulación de Pulsos 237 Capítulo 7 Modulación de Pulsos Introducción Las modulaciones de amplitud, frecuencia y fase tratadas en los capítulos anteriores se designan genéricamente como modulaciones de onda continua, en que

Más detalles

Señales y Análisis de Fourier

Señales y Análisis de Fourier 2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El

Más detalles

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF INTRODUCCION TEORICA: El análisis de una señal en el modo temporal con ayuda de un osciloscopio permite conocer parte de la información contenida

Más detalles

Introducción a los Filtros Digitales. clase 10

Introducción a los Filtros Digitales. clase 10 Introducción a los Filtros Digitales clase 10 Temas Introducción a los filtros digitales Clasificación, Caracterización, Parámetros Filtros FIR (Respuesta al impulso finita) Filtros de media móvil, filtros

Más detalles

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda

Introducción. Frecuencia, longitud de onda y período. Dominio de tiempo y dominio de frecuencia. Ancho de banda Introducción El nivel físico es el encargado de establecer una conexión entre dos nodos y de enviar los datos como unos y ceros (u otra forma análoga). Para ello, este nivel define detalles físicos como

Más detalles

Conceptos de señales y sistemas

Conceptos de señales y sistemas Conceptos de señales y sistemas Marta Ruiz Costa-jussà Helenca Duxans Barrobés PID_00188064 CC-BY-NC-ND PID_00188064 Conceptos de señales y sistemas Los textos e imágenes publicados en esta obra están

Más detalles

Filtrado de imagen utilizando el algoritmo Non-Local Means. Aplicación Android

Filtrado de imagen utilizando el algoritmo Non-Local Means. Aplicación Android E.T.S. de Ingeniería Industrial, Informática y de Telecomunicación Filtrado de imagen utilizando el algoritmo Non-Local Means. Aplicación Android Grado en Ingeniería Informática Trabajo Fin de Grado Iosu

Más detalles

Texturas. Descripción y aplicaciones

Texturas. Descripción y aplicaciones Texturas Descripciónyaplicaciones Motivación Segmentación de texturas. Clasificación de texturas. Síntesis de texturas. Extracción de características. Reconocimiento de patrones. Reconocimiento de objetos.

Más detalles

Procesamiento Digital de Imágenes. Compresión de imágenes

Procesamiento Digital de Imágenes. Compresión de imágenes FICH, UNL - Departamento de Informática - Ingeniería Informática Procesamiento Digital de Imágenes Guía de Trabajos Prácticos 8 Compresión de imágenes 2010 1. Objetivos Analizar las características y el

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Discreta Resumen Propiedades de la Transformada de Fourier Linealidad Comportamiento de la fase Naturaleza

Más detalles

REDES DE COMPUTADORES

REDES DE COMPUTADORES REDES DE COMPUTADORES TEMA 2 TRANSMISIÓN DE DATOS Y TEORÍA DE LA INFORMACIÓN 1 TRANSMISIÓN DE DATOS Y TEORÍA DE LA INFORMACIÓN 1.- Conceptos y definiciones básicas. 1.1.- Elementos de un sistema de comunicación.

Más detalles

Practica 5: Ventanas espectrales

Practica 5: Ventanas espectrales 1 Practica 5: Ventanas espectrales 2 1. Objetivos El objetivo principal es mostrar un amplio número de ventanas y una forma sencilla de caracterizarlas, así como la comparación de sus propiedades. 2. Ventanas

Más detalles

Tema 4:Segmentación de imágenes

Tema 4:Segmentación de imágenes Tema 4:Segmentación de imágenes La segmentación de imágenes divide la imagen en sus partes constituyentes hasta un nivel de subdivisión en el que se aíslen las regiones u objetos de interés. Los algoritmos

Más detalles

Procesamiento de imágenes con MATLAB

Procesamiento de imágenes con MATLAB Procesamiento de imágenes con MATLAB MATLAB (abreviatura de MATrix LABoratory, "laboratorio de matrices") es un software matemático que ofrece un entorno de desarrollo integrado (IDE) con un lenguaje de

Más detalles

8 PROCESAMIENTO DIGITAL DE IMÁGENES USANDO MATLAB & SIMULINK RA-MA

8 PROCESAMIENTO DIGITAL DE IMÁGENES USANDO MATLAB & SIMULINK RA-MA ÍNDICE PRÓLOGO...19 CAPÍTULO 1. INTRODUCCIÓN...25 1.1 SISTEMA DE VISIÓN Y PROCESAMIENTO DE IMÁGENES...25 1.2 PROCESAMIENTO DIGITAL DE IMÁGENES...26 1.3 RELACIONES BÁSICAS ENTRE PÍXELES...27 1.3.1 Vecinos

Más detalles

Clase 4: Filtros: Distorsión de Fase

Clase 4: Filtros: Distorsión de Fase Clase 4: Filtros: Distorsión de Fase Como habíamos anticipado en las clases anteriores, los filtros causan desplazamientos temporales en mayor o menor medida para determinadas frecuencias. En esta clase

Más detalles

Capítulo III Procesamiento Digital de Imágenes

Capítulo III Procesamiento Digital de Imágenes Capítulo III Procesamiento Digital de Imágenes Contenido Introducción al Procesamiento digital de imágenes Orígenes del procesamiento digital de imágenes. Aplicaciones del Procesamiento de Imágenes Componentes

Más detalles

Representación de señales de audio

Representación de señales de audio Representación de señales de audio Emilia Gómez Gutiérrez Síntesi i Processament del So I Departament de Sonologia Escola Superior de Musica de Catalunya Curso 2009-2010 emilia.gomez@esmuc.cat 28 de septiembre

Más detalles

1.- INTRODUCCIÓN AL PROCESADO DIGITAL DE IMÁGENES

1.- INTRODUCCIÓN AL PROCESADO DIGITAL DE IMÁGENES 1.- INTRODUCCIÓN AL PROCESADO DIGITAL DE Los campos del procesado digital de señales en dos dimensiones (2-D) y procesado digital de imágenes han tenido una tremenda vitalidad en las dos décadas pasadas

Más detalles

Datos 1 seg. almacenados (Mb/s) (*) Frecuencia muestreo (C R,C B ) (MHz) 13.5 6.75 3.375

Datos 1 seg. almacenados (Mb/s) (*) Frecuencia muestreo (C R,C B ) (MHz) 13.5 6.75 3.375 Compresión de la información de vídeo 3. Compresión de la información de vídeo 3.1. Introducción La necesidad de la compresión en vídeo digital aparece en el momento que se tratan las secuencias de imágenes

Más detalles

TRATAMIENTO DE IMÁGENES

TRATAMIENTO DE IMÁGENES Procesamiento Digital de Imágenes Pablo Roncagliolo B. Nº 09 TRATAMIENTO DE IMÁGENES EN EL DOMINIO DE LAS FRECUENCIAS prb@2007 2 1 A principios del siglo XIX, Joseph Fourier indica que toda función periódica

Más detalles

3. Señales sísmicas y Ruido

3. Señales sísmicas y Ruido 3. Señales sísmicas y Ruido Una fuente importante de información de la estructura de la Tierra es obtenida de los datos del movimiento del suelo. La interpretación de estos datos necesita un buen conocimiento

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Discreta Resumen Respuesta en frecuencia de un sistema Convolución a través del dominio de la frecuencia Convolución

Más detalles

Introducción a las medidas en Sistemas Radiantes: Análisis de Cables y Antenas.

Introducción a las medidas en Sistemas Radiantes: Análisis de Cables y Antenas. Introducción a las medidas en Sistemas Radiantes: Análisis de Cables y Antenas. Por Stefan Pongratz Artículo cedido por Anritsu EMEA Ltd El sistema radiante de una Estación Base, formado por antena/s y

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

Algoritmo Esteganografico Robusto a Compresión JPEG Usando DCT

Algoritmo Esteganografico Robusto a Compresión JPEG Usando DCT Algoritmo Esteganografico Robusto a Compresión JPEG Usando DCT Julio López Hernández, Carlos Velasco Bautista, Mariko Nakano Miyatake y Héctor Pérez Meana Escuela Superior de Ingeniería Mecánica y Eléctrica

Más detalles

Tema 2. Preproceso (realzado y filtrado) de imágenes digitales

Tema 2. Preproceso (realzado y filtrado) de imágenes digitales Tema 2. Preproceso (realzado y filtrado) de imágenes digitales - Introducción - Procesamiento básico de imágenes - Histograma y realzado de imágenes - Filtrado en el dominio de la frecuencia - Filtrado

Más detalles

Capítulo II La Imagen Digital

Capítulo II La Imagen Digital Definición Clasificación de las imágenes digitales Imágenes Vectoriales Imágenes Ráster Formatos de Imágenes Ráster TIFF BMP GIF JPEG PNG Tipos de Imágenes Digitales RGB Indexadas Escala de grises Binarias

Más detalles

CAPÍTULO 3 - AUDIO Y CONTROL DIGITAL

CAPÍTULO 3 - AUDIO Y CONTROL DIGITAL CAPÍTULO 3 - AUDIO Y CONTROL DIGITAL 3.0 Introducción El Procesamiento de Señales Digitales (DSP Digital Signal Processing) es una de las tecnologías más poderosas que moldearán la ciencia e ingeniería

Más detalles

Cambio de la Frecuencia de Muestreo

Cambio de la Frecuencia de Muestreo Cambio de la Frecuencia de Muestreo Omar X. Avelar & Diego I. Romero PROCESAMIENTO DIGITAL DE SEÑALES (ESI05AA) Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Departamento de Electrónica,

Más detalles

Reducción del ruido en una imagen digital.

Reducción del ruido en una imagen digital. Reducción del ruido en una imagen digital. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Estudio de distintas máscaras para

Más detalles

SUPERRESOLUCION. ING. FAUSTO MORALES UCV Caracas-Venezuela. famorales@mipunto.com

SUPERRESOLUCION. ING. FAUSTO MORALES UCV Caracas-Venezuela. famorales@mipunto.com SUPERRESOLUCION ING. FAUSTO MORALES UCV Caracas-Venezuela famorales@mipunto.com Resumen En el mundo moderno de hoy se observa como cada día se requiere disponer de una mejor calidad de imagen en diversas

Más detalles

Página 1 de 16 TRANSFORMADA DE FOURIER Y EL ALGORITMO FFT INTRODUCCION

Página 1 de 16 TRANSFORMADA DE FOURIER Y EL ALGORITMO FFT INTRODUCCION Página 1 de 16 FCEFy Universidad acional de Cordoba ITRODUCCIO El estudio de las señales cotidianas en el dominio de la frecuencia nos proporciona un conocimiento de las características frecuenciales de

Más detalles

Transmisión Digital en Banda Base

Transmisión Digital en Banda Base Transmisión Digital en Banda Base PRÁCTICA 8 (2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería de Telecomunicación Javier Ramos, Fernando Díaz de María, David Luengo García y

Más detalles

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente Detección de bordes Métodos basados en operadores lineales de gradiente 1 Bordes Variaciones fuertes de la intensidad que corresponden a las fronteras de los objetos visualizados Métodos basados en el

Más detalles

Tratamiento Digital de la Señal

Tratamiento Digital de la Señal Departamento de Comunicaciones-UPV Tratamiento Digital de la Señal Teoría y Aplicaciones Antonio Albiol Valery Naranjo Josep Prades Índice 1. Muestreo 1 1.1. Introducción.............................

Más detalles

DENOMINACIÓN ASIGNATURA DE 4 CRÉDITOS: ING. INDUSTRIALES CURSO: CUATRIMESTRE:

DENOMINACIÓN ASIGNATURA DE 4 CRÉDITOS: ING. INDUSTRIALES CURSO: CUATRIMESTRE: DENOMINACIÓN ASIGNATURA DE 4 CRÉDITOS: ING. INDUSTRIALES CURSO: CUATRIMESTRE: SE- SIÓN FECHA (DÍA INICIAL DE LA SEMANA/ MES) DESCRIPCIÓN DEL CONTENIDO DE LA SESIÓN TEORÍ A TIPO (MARCAR CON UNA X) PRÁCT

Más detalles

CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial

CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial TÍTULO Segmentación, localización y reconocimiento de piezas OBJETIVO El objetivo de la práctica es mostrar al alumno un método para el reconocimiento de varias piezas existentes en el módulo servidor

Más detalles

CAPÍTULO 6 SIMULACIONES Y RESULTADOS

CAPÍTULO 6 SIMULACIONES Y RESULTADOS CAPÍTULO 6 SIMULACIONES Y RESULTADOS 6.1 Proceso de Simulación Las simulaciones fueros llevadas a cabo empleando como herramienta la Versión 6.5 Release 13 de Matlab. Para lo cual fue empleado un banco

Más detalles

CAPITULO I INTRODUCCION. Conforme la informática avanza, las imágenes se han convertido en un área muy

CAPITULO I INTRODUCCION. Conforme la informática avanza, las imágenes se han convertido en un área muy Introducción 4 CAPITULO I INTRODUCCION 1.1 Compresión de Imágenes. Conforme la informática avanza, las imágenes se han convertido en un área muy importante de esta. Hoy en día surgen más entornos gráficos

Más detalles

Comandos de MatLab utilizados para el procesamiento de imágenes.

Comandos de MatLab utilizados para el procesamiento de imágenes. Comandos de MatLab utilizados para el procesamiento de imágenes. Cargar imágenes en matrices: A=double(imread(NombreImagen,Formato)); Donde NombreImagen representa el nombre de la imagen con el path completo

Más detalles

transformada discreta de fourier resumen, ejemplos y ejercicios

transformada discreta de fourier resumen, ejemplos y ejercicios transformada discreta de fourier resumen, ejemplos y ejercicios Transformada Discreta de Fourier Resumen Resumen para ejercicios de cálculo. Definición. Para una función matemática x[n] de variable independiente

Más detalles

CLASIFICACIÓN DE IMÁGENES

CLASIFICACIÓN DE IMÁGENES CLASIFICACIÓN DE IMÁGENES Cesar Juárez Megías I.T.T. Imagen y sonido Carlos III de Madrid 100061832@alumnos.uc3m.es OBJETIVO. El objetivo principal de nuestro programa se basaría en la clasificación de

Más detalles

TRANSFORMACIONES GEOMÉTRICAS SOBRE IMÁGENES DIGITALES

TRANSFORMACIONES GEOMÉTRICAS SOBRE IMÁGENES DIGITALES TRANSFORMACIONES GEOMÉTRICAS SOBRE IMÁGENES DIGITALES Samuel Barreto Melo sbarreto@udistrital.edu.co Facultad de Ciencias Carrera de Matemáticas Universidad Distrital Francisco José de Caldas RESUMEN Las

Más detalles

Qué es una imágen digital?

Qué es una imágen digital? Qué es una imágen digital? Una imagen digital es una fotografía, un dibujo, un trabajo artístico o cualquier otra imagen que es convertida en un fichero de ordenador. Qué es una imágen digital? Una imagen

Más detalles

TAREA N 3 OPERADORES DE DETECCIÓN DE BORDES

TAREA N 3 OPERADORES DE DETECCIÓN DE BORDES Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL7007 Introducción al Procesamiento Digital de Imágenes TAREA N 3 OPERADORES DE DETECCIÓN DE BORDES

Más detalles

Computadores y Comunicaciones. Tema 6: Aplicaciones Multimedia

Computadores y Comunicaciones. Tema 6: Aplicaciones Multimedia Computadores y Comunicaciones Tema 6: Aplicaciones Multimedia Febrero, 2011 Jorge Juan Chico , Julián Viejo Cortés Departamento de Tecnología Electrónica Universidad

Más detalles

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1 SEÑALES Y ESPECTROS INTRODUCCIÓN. TERMINOLOGÍA USADA EN TRANSMISIÓN DE DATOS. FRECUENCIA, ESPECTRO Y ANCHO DE BANDA. DESARROLLO EN SERIE DE FOURIER PARA SEÑALES PERIÓDICAS. TRANSFORMADA DE FOURIER PARA

Más detalles

Objetivos específicos. Introducción teórica. Guía

Objetivos específicos. Introducción teórica. Guía Asignatura: Sistemas y señales discretos. Tema: La Transformada Rápida de Fourier (FFT) Lugar de Ejecución: Instrumentación y control (Edificio de electrónica) Objetivos específicos Conocer que es la Transformada

Más detalles

Mejoramiento de las Imágenes en el Dominio Espacial

Mejoramiento de las Imágenes en el Dominio Espacial Mejoramiento de las Imágenes en el Dominio Espacial Objetivos del Mejoramiento Procesar una imagen de tal modo que la Imagen resultante sea más adecuada que la original para una aplicación específica.

Más detalles

PROCESAMIENTO DIGITAL DE IMÁGENES DE ULTRASONIDO T E S I S QUE PARA OBTENER EL TÍTULO DE: INGENIERO EN COMUNICACIONES Y ELECTRONICA

PROCESAMIENTO DIGITAL DE IMÁGENES DE ULTRASONIDO T E S I S QUE PARA OBTENER EL TÍTULO DE: INGENIERO EN COMUNICACIONES Y ELECTRONICA INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA PROCESAMIENTO DIGITAL DE IMÁGENES DE ULTRASONIDO T E S I S QUE PARA OBTENER EL TÍTULO DE: INGENIERO EN COMUNICACIONES

Más detalles

Realce o aumento del contraste (enhancement). Suavizado o eliminación del ruido (denoising) Detección de bordes (edge detection)

Realce o aumento del contraste (enhancement). Suavizado o eliminación del ruido (denoising) Detección de bordes (edge detection) 4 Técnicas de preprocesado Las técnicas de procesado pretenden mejorar o realzar las propiedades de la imagen para facilitar las siguientes operaciones de la Visión Artificial, tales como las etapas de

Más detalles

Procesamiento de Señales basado en Wavelets Notas de Clase - Parte VI

Procesamiento de Señales basado en Wavelets Notas de Clase - Parte VI Procesamiento de Señales basado en Wavelets Notas de Clase - Juan Carlos Gómez 1 1 Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA, Universidad Nacional

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO:

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: Electrónica ACADEMIA A LA QUE Sistemas Digitales Avanzados PERTENECE: NOMBRE DE LA MATERIA: Taller de Procesamiento Digital de Señales CLAVE DE LA MATERIA:

Más detalles

Aplicaciones del Procesado de Imagen

Aplicaciones del Procesado de Imagen Práctica - Aplicaciones del Procesado de Imagen. Introducción En la carpeta Mis Documentos\TDSII\pImagen y en Moodle se encuentran - El calendario de las prácticas de la asignatura, CalendarioTdsii.pdf

Más detalles

Laboratorio de Procesamiento de Imágenes Curso 2010/11

Laboratorio de Procesamiento de Imágenes Curso 2010/11 Laboratorio de Procesamiento de Imágenes Curso 2010/11 1. Representación de imágenes digitales monocromáticas a) Construye la matriz vinculada a la imagen de la figura 1. Figura 1. Iluminación por focos.

Más detalles

SIMULADOR DE SISTEMAS DE COMUNICACIONES

SIMULADOR DE SISTEMAS DE COMUNICACIONES SIMULADOR DE SISTEMAS DE COMUNICACIONES Josu Etxaniz Marañón 1, Juan José Gude Prego 2 1 Universidad del País Vasco. e-mail: jtpetmaj@bi.ehu.es 2 Universidad de Deusto, e-mail: jgude@eside.deusto.es Resumen

Más detalles

TRATAMIENTO DEL RUIDO

TRATAMIENTO DEL RUIDO 1 TRATAMIENTO DEL RUIDO Facultad: Ingeniería. Escuela: Biomédica Asignatura: Imágenes Médicas Objetivo General Que el estudiante sea capaz de caracterizar los principales tipos de ruido que pueden estar

Más detalles

Realce y Restauración de imagen

Realce y Restauración de imagen Realce y Restauración de imagen Pedro Daniel Peguero Núñez 1 Imagen digital En numerosas ocasiones se piensa en lo que se ve como en lo que está ahí, cuando en realidad el ojo humano sólo percibe una pequeña

Más detalles

5. Modulación digital.

5. Modulación digital. 5. Modulación digital. La portadora y la señal modulada son analógicas como las señales AM y FM. La modulación digital se divide dos clases: - PSK ( Phase shift keying ) Codificación por cambio de fase.

Más detalles

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones Grado en Ingeniería de Tecnologías de Telecomunicación ETSIIT Universidad de Cantabria Asignatura: Comunicaciones Curso 2015-2016 Práctica 1: Medida del espectro de señales Objetivo Esta primera práctica

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Teoría de Sistemas y Señales Trabajo Práctico Nº 3 Análisis Frecuencial de Señales

Más detalles

CAPÍTULO 3 REVISIÓN DE LA TEORÍA DE WAVELETS

CAPÍTULO 3 REVISIÓN DE LA TEORÍA DE WAVELETS CAPÍTULO 3 REVISIÓN DE LA TEORÍA DE WAVELETS En este capítulo se presenta la teoría de wavelets iniciando con la perspectiva histórica de las wavelets, en la cual se define a la teoría de Fourier como

Más detalles

Esther Pueyo Paules Teoría (primavera) Despacho: D3.20 epueyo@unizar.es

Esther Pueyo Paules Teoría (primavera) Despacho: D3.20 epueyo@unizar.es Asignatura: 11943 SEÑALES Y SISTEMAS II Área: TEORÍA DE LA SEÑAL Y COMUNICACIONES Departamento: INGENIERÍA ELECTRÓNICA Y COMUNICACIONES Plan de estudios: INGENIERO EN TELECOMUNICACIÓN (Plan 94) Curso:

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

Tutorial para el uso de imágenes en Octave

Tutorial para el uso de imágenes en Octave Tutorial para el uso de imágenes en Octave Ing. Luis Vazquez Resumen Este artículo presenta los formatos y herramientas para el manejo de imágenes que usaremos en el curso Tratamiento de Imágenes por Computadora.

Más detalles

Capítulo 3. 3. Marco Teórico.

Capítulo 3. 3. Marco Teórico. Capítulo 3 3. Marco Teórico. La visión artificial o visión por computador se define como un área multidisciplinar que pretende, en cierta medida, reproducir artificialmente el sentido de la vista mediante

Más detalles

Competencias específicas de ingeniería

Competencias específicas de ingeniería A. IDENTIFICACIÓN ASIGNATURA: PROCESAMIENTO DIGITAL DE SEÑALES SIGLA: ELT 3952 SEMESTRE: NOVENO Ing. Electrónica, mención Telecomunicaciones NOVENO, Ingeniería Electrónica, mención automática PRE-REQUISITO:

Más detalles

Desarrollo de un algoritmo para el reconocimiento de objetos basado en FPGA aplicado a un Robot SCARA

Desarrollo de un algoritmo para el reconocimiento de objetos basado en FPGA aplicado a un Robot SCARA Desarrollo de un algoritmo para el reconocimiento de objetos basado en FPGA aplicado a un Robot SCARA Carlos Pillajo Facultad de Ingeniería Electrónica Universidad Politécnica Salesiana (UPS), Quito Ecuador

Más detalles

Introducció al Processament de Senyals Àudiovisuals Data d examen: 19 de gener de 2012. Professors: J. Ruiz, E. Monte

Introducció al Processament de Senyals Àudiovisuals Data d examen: 19 de gener de 2012. Professors: J. Ruiz, E. Monte DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS Introducció al Processament de Senyals Àudiovisuals Data d examen: 19 de gener de 2012 Notes provisionals: 25 de gener Període d al legacions: 27 de gener

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamiento Digital de Señal ema 4: Análisis de Fourier en tiempo discreto ransformada de Fourier en tiempo discreto (DF) Serie de Fourier en tiempo discreto (DFS) ransformada de Fourier Discreta (DF)

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles